Sources of Low-energy Backgrounds in SENSEI

Mukul Sholapurkar C.N. Yang Institute for Theoretical Physics, Stony Brook

Phenomenology 2021 Symposium

*in collaboration with Peizhi Du, Daniel Egana-Ugrinovic and Rouven Essig

SENSEI at MINOS

Overview:

• Uses silicon Skipper-CCDs to probe sub-GeV DM by precisely measuring ionization

*SENSEI, 2020

Excess Low Energy Events in SENSEI

- SENSEI observed a sizable number of 1-e events
- Cannot be explained by previously explored backgrounds

SENSEI at MINOS

SENSEI data:

- Excellent spatial resolution:

 Can place cuts based on the position of events relative to the positions of high-energy tracks
- Observed a correlation in positions of 1-e events and the positions of high energy events
- Observed ~ 450 1-e events per (gram*day) after applying a 60pixel (~900 μm) halo-mask cut

• Several unexplored radiative backgrounds exist; in this talk, will focus only on Cherenkov radiation

• Several unexplored radiative backgrounds exist; in this talk, will focus only on Cherenkov radiation

• Cherenkov radiation emitted by sufficiently energetic charged particles interacting with any non-conducting material in the detector can be absorbed to produce one- or a few-electron event

- Several unexplored radiative backgrounds exist; in this talk, will focus only on Cherenkov radiation
- Cherenkov radiation emitted by sufficiently energetic charged particles interacting with any non-conducting material in the detector can be absorbed to produce one- or a few-electron event
- Can account for a significant fraction of 1-e events

• Cherenkov radiation is the spontaneous emission of radiation by a charged particle passing through a dielectric material, when the speed of the particle exceeds the speed of light in the material

• Cherenkov radiation is the spontaneous emission of radiation by a charged particle passing through a dielectric material, when the speed of the particle exceeds the speed of light in the material

 $\epsilon(\omega)$: Dielectric Function as a function of photon frequency ω

$$v^2 \mathrm{Re} \ \epsilon(\omega) > 1$$

• Cherenkov radiation is the spontaneous emission of radiation by a charged particle passing through a dielectric material, when the speed of the particle exceeds the speed of light in the material

 $\epsilon(\omega)$: Dielectric Function as a function of photon frequency ω

$$v^2 \mathrm{Re} \ \epsilon(\omega) > 1$$

$$\cos \theta_{\rm Ch} = \frac{\sqrt{{\rm Re } \epsilon(\omega)}}{v|\epsilon(\omega)|}$$

• Cherenkov radiation is the spontaneous emission of radiation by a charged particle passing through a dielectric material, when the speed of the particle exceeds the speed of light in the material

 $\epsilon(\omega)$: Dielectric Function as a function of photon frequency ω

$$v^2 \mathrm{Re} \ \epsilon(\omega) > 1$$

$$\cos \theta_{\rm Ch} = \frac{\sqrt{{\rm Re}\ \epsilon(\omega)}}{v|\epsilon(\omega)|}$$

$$\frac{d^2N}{d\omega dx} = \alpha \left(1 - \frac{\operatorname{Re}\epsilon(\omega)}{v^2|\epsilon(\omega)|^2} \right)$$

Materials that can emit Cherenkov:

- Silicon CCD (675 μm)
- Silicon in pitch adapter (675 μm)
- Epoxy-glue (80 μm)

High-energy Particles	Cherenkov Energy Threshold (Si)
Electrons	20 keV
Muons	4.1 MeV

Emitted Cherenkov photons can be absorbed to produce 1-e event

Can evade 60-pixel halo-mask if energy is close to bandgap

Simulate Cherenkov background:

- Simulate high-energy particle tracks
- Tracks in CCD or pitch-adapter will emit Cherenkov photons
- Include reflections, refractions, and thin-film interference at interfaces, and reflections from copper housing

Copper

Simulate Cherenkov background:

- Simulate high-energy particle tracks
- Tracks in CCD or pitch-adapter will emit Cherenkov photons
- Include reflections, refractions, and thin-film interference at interfaces, and reflections from copper housing

Vacuum ~ 340 μm

Copper

Simulate Cherenkov background:

- Simulate high-energy particle tracks
- Tracks in CCD or pitch-adapter will emit Cherenkov photons
- Include reflections, refractions, and thin-film interference at interfaces, and reflections from copper housing

Copper

SENSEI Images

Simulated Tracks

SENSEI data

SENSEI Images

Simulated Tracks + Cherenkov

SENSEI data

• From an analysis of our current simulations, we can explain an O(1) fraction of the 1-e event rate observed in SENSEI

- From an analysis of our current simulations, we can explain an O(1) fraction of the 1-e event rate observed in SENSEI
- We have identified another possible source, namely radiative recombination

- From an analysis of our current simulations, we can explain an O(1) fraction of the 1-e event rate observed in SENSEI
- We have identified another possible source, namely radiative recombination
- Several systematic uncertainties which we are investigating, for example,

- From an analysis of our current simulations, we can explain an O(1) fraction of the 1-e event rate observed in SENSEI
- We have identified another possible source, namely radiative recombination
- Several systematic uncertainties which we are investigating, for example,
 - Behavior of electron-hole pairs and photons in the doped
 CCD Backside

- From an analysis of our current simulations, we can explain an O(1) fraction of the 1-e event rate observed in SENSEI
- We have identified another possible source, namely radiative recombination
- Several systematic uncertainties which we are investigating, for example,
 - Behavior of electron-hole pairs and photons in the doped
 CCD Backside
 - CCD surface roughness

Summary and Conclusions

- We have identified an important and unexplored background for lowthreshold DM detectors: Cherenkov radiation
- Likely explains a sizable fraction of low-energy events observed in SENSEI
- Evaluation of systematic uncertainties and other unexplored radiative backgrounds is in progress