Superfluid effective field theory

for sub-GeV dark matter direct detection

Yining You, University of Florida Collaborators: Wei Xue, Konstantin Matchev, Jordan Smolinsky

1. Direct detection set-up

2. Quasi-particles in Superfluid He-4

Godfrin, H., et al. 2021

3. Deliverables

Previous works $m_{DM} < MeV$

Knapen, S., et al. 2017

Caputo, A., et al. 2019

Baym, G., et al. 2020

3. Deliverables

Our work $MeV < m_{DM} < GeV$

DM scatters helium atom

Helium cascade

Helium atoms emit quasiparticles

Quasi-particles decay/self interaction

4. Phonon as Goldstone boson

Number conservation U(1) symmetry -- $\Phi e^{-i\alpha}$

Symmetry breaking produce Goldstone boson -- $\pi + \alpha$

 $\mathcal{L}(\Phi) \to \mathcal{L}(\pi)$

Phonon -- π Superfluid helium -- $\Phi = \langle vac \rangle e^{-i\pi}$

5. Roton φ^4 from power counting

Phase space similar to Fermi surface \downarrow Power counting shows φ^4 is a marginal operator

6. Phonon interact with hard quasi-particles

6. Hard quasi-particle as an impurity

Dispersion in moving fluid – Dispersion in static fluid = Interaction with the moving fluid

(after quantization) with phonon

Landau, L. D. Statistical physics, part 2

7. Helium emitting quasi-particles

Slow helium (Non-perturbative)

Fast/Weakly interacting particles (Perturbative)

7. Helium-phonon coupling

$$D_{\mu}\Phi = (\partial_{\mu} + i\partial_{\mu}\pi)\Phi$$

$$\downarrow$$
Scalar + Vector coupling
between Helium Φ and
phonon π currents
$$\downarrow$$
Reproduce form factor
 $S(q, \omega)$ of phonon

7. "Form factor"

Scalar + Vector coupling between Helium Φ and phonon π

Scalar + Vector coupling between Helium Φ and any quasi-particles ↓ We can calculate the production rate from numerical/experimental value of the form factor

Campbell, C. E., et al. 2015

Summary

- Phonon as Goldstone boson \rightarrow phonon as spurious gauge boson \rightarrow Helium-phonon coupling
- Roton with a Fermi type power counting
- Hard quasi-particle interacting with phonon (impurity)
- Helium emitting quasi-particles from Form Factors

Thanks for your attention!

