A Reconstruction Conjecture: Deciphering the Structure of the Dark Sector from the Matter Power Spectrum

Fei Huang

ITP CAS, and UC Irvine

arXiv: 2001.02193, 2101.10337

in collaboration with

Keith Dienes, Jeff Kost, Kevin Manogue, Shufang Su, Brooks Thomas

05/25/2021

PHENO 2021

A Reconstruction Conjecture: Deciphering the Structure of the Dark Sector from the Matter Power Spectrum

Fei Huang

ITP CAS and UC Irvine

arXiv: 2001.02193, 2101.10337 focus of this talk

in collaboration with

Keith Dienes, Jeff Kost, Kevin Manogue, Shufang Su, Brooks Thomas

05/25/2021

PHENO 2021

A Reconstruction Conjecture: Deciphering the Structure of the Dark Sector from the Matter Power Spectrum

Fei Huang

ITP CAS and UC Irvine

arXiv: 2001.02193, 2101.10337

See the next talk by Kevin Manogue

in collaboration with

Keith Dienes, Jeff Kost, Kevin Manogue, Shufang Su, Brooks Thomas

05/25/2021

PHENO 2021

Basic idea...

early-universe dynamics

dark-matter phase-space distribution f(p)

linear matter power spectrum P(k)

Basic idea...

early-universe dynamics

dark-matter phase-space distribution f(p)

linear matter power spectrum P(k)

•

reconstructed *f*(*p*)

- What can we learn from the matter power spectrum P(k)?
- To what extent is an inversion possible?

Phase-Space Distribution

For any particle species in the universe, its properties can be described through its phase space distribution f(p,t)

$$f(\vec{x}, \vec{p}, t) \approx f(p, t)$$
 homogeneity and isotropy

$$n(t) \equiv g \int \frac{d^3p}{(2\pi)^3} f(p,t)$$

$$\rho(t) \equiv g \int \frac{d^3p}{(2\pi)^3} Ef(p,t) \qquad w(t) \equiv \frac{P(t)}{\rho(t)}$$

$$P(t) \equiv g \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} f(p,t)$$

Often, f(p,t) is assumed to be thermal. However, this need not be the case. In fact, f(p,t) could take any reasonable functional form.

$$N(t) \sim n(t)a^3 \sim \int d \log p \left(ap\right)^3 f(p,t)$$

$$g(p,t) \equiv a^3(t)p^3f(p,t)$$

$$N(t) \sim n(t)a^3 \sim \int d\log p \left(ap\right)^3 f(p,t)$$

$$g(p,t) \equiv a^3(t)p^3f(p,t)$$

$$N(t) \sim n(t)a^3 \sim \int d \log p \left(ap\right)^3 f(p,t)$$

$$g(p,t) \equiv a^3(t)p^3f(p,t)$$

$$N(t) \sim n(t)a^3 \sim \int d \log p \left(ap\right)^3 f(p,t)$$

$$g(p,t) \equiv a^3(t)p^3f(p,t)$$

$$N(t) \sim n(t)a^3 \sim \int d \log p \left(ap\right)^3 f(p,t)$$

$$g(p,t) \equiv a^3(t)p^3f(p,t)$$

$$N(t) \sim n(t)a^3 \sim \int d\log p \left(ap\right)^3 f(p,t)$$

$$g(p,t) \equiv a^3(t)p^3f(p,t)$$

It turns out it is very convenient to use the rescaled distribution w.r.t. log p

$$N(t) \sim n(t)a^{3} \sim \int d \log p \left[(ap)^{3} f(p,t) \right]$$
$$g(p,t) \equiv a^{3}(t)p^{3} f(p,t)$$

If deposits occur at different times during the cosmological history, a non-trivial, multimodal distribution can result at present time!

It turns out it is very convenient to use the rescaled distribution w.r.t. log p

$$N(t) \sim n(t)a^{3} \sim \int d \log p \left[(ap)^{3} f(p, t) \right]$$
$$g(p, t) \equiv a^{3}(t)p^{3} f(p, t)$$

If deposits occur at different times during the cosmological history, a non-trivial, multimodal distribution can result at present time!

A non-trivial DM phase-space distribution at late times can represent the imprint of complex dynamics at earlier points in the cosmological history.

Why is the DM phase-space distribution important?

It turns out that the <u>formation of structure (clusters,</u> <u>galaxies, etc.) is sensitive to the velocity of DM!</u>

Structure formation is <u>suppressed</u> if DM has nonnegligible velocity and therefore deviates from what is expected for CDM!

In fact, the cosmic structure carries an <u>imprint</u> of the DM velocity distribution.

e.g., in the linear regime, can be reflected in the shape of the matter power spectrum P(k).

Since structure formation depends on gravity only...

- Studying the relation between the DM phase-space distribution and the large-scale structure enables us to learn about DM from its gravitational interaction only.
- This provides a way to learn about the dark sector even if the dark sector does not interact with the SM at all, except through gravity!

To study the impact of non-negligible velocities on P(k), a standard approach is to define a single "<u>free-streaming</u> <u>horizon</u>" as a benchmark scale below which structure is suppressed

$$k_{\text{FSH}} \equiv \left[\int_{t_{\text{prod}}}^{t_{\text{now}}} dt \, \frac{\langle v(t) \rangle}{a(t)} \right]^{-1}$$

Relies on <u>averaging</u>, not suitable for non-trivial or multi-modal distributions – average velocity might <u>NOT</u> be able to capture all the features in the distribution.

In some cases, the distribution might not even contain any DM particle with velocity $\langle v \rangle$!

Our approach

We begin by considering *momentum slices* through our dark-matter packet, relating each slice of momentum p to a corresponding value $k_{hor}(p)$.

Normally, k_{hor} would be interpreted as defining the <u>minimum</u> value of k which can be affected by dark matter in that momentum slice.

However, we shall instead take the defining relation for $k_{hor}(p)$ as defining a **mapping** between the p-variable of g(p) and the k-variable of P(k).

$$p \to k$$

Our approach

In other words, we *identify* $k_{\text{hor}}(p)$ with k and thereby consider g(p) as having a corresponding profile in k-space:

$$g(p) \to \tilde{g}(k)$$

It then follows

$$N(t) \sim \int d \log p \ g(p) = \int d \log k \ \tilde{g}(k)$$

Thus $\tilde{g}(k)$ describes a dark-matter distribution in k-space!

Moreover, because this $\tilde{g}(k)$ lives in the same space as P(k), these two functions can even be plotted together along the same axis!

Now it makes sense to ask:

Can we discover/conjecture any relation between these two functions?

Examining the relations

Vary width with average/area fixed

(a complementary CDM component is added to get the total DM abundance)

• The amount of <u>suppression</u> differs, but the <u>slope</u> at large k is essentially <u>unaffected</u> by widths! This suggests the <u>accumulated abundance is correlated with the slope</u>, NOT with the net suppression.

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$,

i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$,

i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$,

i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$,

i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$,

i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$,

i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

$$\left| \frac{d \log T^2}{d \log k} \right| \approx [F(k)]^2 + \frac{3}{2}F(k)$$

relation holds to very high precision!

We found the <u>slope</u> of the transfer function at a particular scale k is related to the amount of DM particles that is able to freestream a distance larger than $\sim 1/k$, i.e., the fraction of DM particles that is effectively "hot" relative to the scale k

We define the **hot-fraction function**,

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') \, d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') \, d \log k'}$$

$$\left| \frac{d \log T^2}{d \log k} \right| \approx [F(k)]^2 + \frac{3}{2}F(k)$$

relation holds to very high precision!

$$\frac{\widetilde{g}(k)}{\mathcal{N}} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

This allows us to "resurrect" $\tilde{g}(k)$ directly from the transfer function $T^2(k)$!

An Illustrative Model

Dark ensemble consists of N+1 real scalars ϕ_j with j=0,1,...N, and a mass spectrum:

$$m_j = m_0 + j^{\delta} \Delta m$$

Lagrangian:

$$\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_{\mu} \phi_{\ell} \partial^{\mu} \phi_{\ell} - \frac{1}{2} m_{\ell}^{2} \phi_{\ell}^{2} - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell i j} \phi_{\ell} \phi_{i} \phi_{j} \right) + \cdots$$

The trilinear coupling:

$$c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_{\ell} - m_i - m_j}{\Delta m}\right)^r \left(1 + \frac{\left|m_i - m_j\right|}{\Delta m}\right)^{-s} \Theta(m_{\ell} - m_i - m_j)$$
difference between parent and products difference between products

Positive $r \rightarrow$ Decays with more kinetic energy **Negative** $r \rightarrow$ Decays more marginal (less phase space)

Positive $s \rightarrow$ Decay products tend to have similar masses **Negative** $s \rightarrow$ Decay products tend to have different masses

Illustrative Model: Decay chains

The figure shows how decays proceed step by step from a heavy state to the ground state. Only major decay chains are shown.

Many different patterns of decay chains could emerge!

Final Phase-Space Distribution

Numerically solve the Boltzmann equation assuming only the heaviest state is populated initially.

A rich variety of distributions emerges!

As expected!

- Cases in which decay chains land on the ground state at <u>similar</u> <u>timescales</u> tend to produce <u>unimodal distributions</u>
- <u>Multi-modal</u> distributions could result if <u>timescales</u> of different decay chains <u>differ significantly</u>

Reconstruction Test

To what extent can we "<u>resurrect</u>" the DM phasespace distribution from the transfer function?

Recall our conjecture...

$$\frac{\widetilde{g}(k)}{\mathcal{N}} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

Reconstruction Test

To what extent can we "<u>resurrect</u>" the DM phasespace distribution from the transfer function?

Recall our conjecture...

$$\frac{\widetilde{g}(k)}{\mathcal{N}} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

Blue: original DM distribution in k-space

Red: reconstruction directly from $T^2(k)$

Our reconstruction is surprisingly accurate for a variety of possible DM distributions.

Able to resurrect the <u>salient features</u> of the original distribution!

Conclusions

- Early-universe processes could leave <u>identifiable patterns</u> in the phase-space distribution g(p) of dark matter which are then <u>imprinted</u> on the cosmic structure.
- The DM phase-space distribution g(p) is <u>correlated</u> with the matter power spectrum P(k) through the **hot-fraction function** F(k).
- We proposed a <u>reconstruction conjecture</u> which enables us to reproduce the DM phase-space distribution. The reconstruction conjecture is simple and allows us to <u>resurrect the salient</u> <u>features</u> of the phase-space distribution directly from P(k).
- The reconstruction conjecture is local, i.e., partial reconstruction could be obtained from incomplete information.
- Since structure formation relies on gravity only, such approach allows us to learn about dark-sector dynamics even *if the dark sector has only gravitational couplings to the SM*.
- The dark sectors of string theory generically include unstable Kaluza-Klein towers, thus could potentially lead to multi-modal distributions and non-trivial P(k). This provides motivation to measure/bound P(k) with increased precision.