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early-universe dynamics

Basic idea…

linear matter power
spectrum P(k)

dark-matter phase-space
distribution f(p)
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early-universe dynamics

Basic idea…

linear matter power
spectrum P(k)Volcano

meteorite

•
•
•

reconstructed f(p)

dark-matter phase-space
distribution f(p)

• What can we learn from the 
matter power spectrum P(k)?

• To what extent is an inversion 
possible?

?



Phase-Space Distribution
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homogeneity and isotropy
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For any particle species in the universe, its properties can be described 
through its phase space distribution 𝑓(𝑝, 𝑡)

Often, 𝑓(𝑝, 𝑡) is assumed to be thermal. However, this need not be the case. In fact, 𝑓(𝑝, 𝑡) could take
any reasonable functional form.
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𝑔 𝑝, 𝑡 ≡ 𝑎! 𝑡 𝑝!𝑓 𝑝, 𝑡

𝑁 𝑡 ~ 𝑛 𝑡 𝑎! ~+𝑑 log 𝑝 (𝑎𝑝)!𝑓 𝑝, 𝑡

It turns out it is very convenient to use the 
rescaled distribution w.r.t. log 𝑝

Picturing the evolution
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𝑔 𝑝, 𝑡 ≡ 𝑎! 𝑡 𝑝!𝑓 𝑝, 𝑡

Picturing the evolution

𝑁 𝑡 ~ 𝑛 𝑡 𝑎! ~+𝑑 log 𝑝 (𝑎𝑝)!𝑓 𝑝, 𝑡

It turns out it is very convenient to use the 
rescaled distribution w.r.t. log 𝑝

A non-trivial DM phase-space distribution at 
late times can represent the imprint of 
complex dynamics at earlier points in the 
cosmological history.

If deposits occur at different times during
the cosmological history, a non-trivial, multi-
modal distribution can result at present time!



Why is the DM phase-space distribution important?

It turns out that the formation of structure (clusters, 
galaxies, etc.) is sensitive to the velocity of DM!

Structure formation is suppressed if DM has non-
negligible velocity and therefore deviates from what 
is expected for CDM!

In fact, the cosmic structure carries an imprint of 
the DM velocity distribution.

10
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e.g., in the linear regime, can be reflected in 
the shape of the matter power spectrum 𝑃(𝑘).

Since structure formation depends on gravity only...
• Studying the relation between the DM phase-space distribution and the large-scale 

structure enables us to learn about DM from its gravitational interaction only.
• This provides a way to learn about the dark sector even if the dark sector does not 

interact with the SM at all, except through gravity!



To study the impact of non-negligible 
velocities on P(k), a standard approach 
is to define a single “free-streaming 
horizon” as a benchmark scale below 
which structure is suppressed

6

Relies on averaging, not suitable for non-trivial or multi-modal 
distributions – average velocity might NOT be able to capture 
all the features in the distribution.
In some cases, the distribution might not even contain any DM 
particle with velocity 𝑣 !

𝑘)*+ ≡ #
,!"#$

,%#&
𝑑𝑡

𝑣 𝑡
𝑎 𝑡

-.



Normally, 𝑘"#$ would be interpreted as defining the minimum value of 𝑘 which can be 
affected by dark matter in that momentum slice.

However, we shall instead take the defining relation for 𝑘"#$(𝑝) as defining a mapping
between the 𝑝-variable of 𝑔(𝑝) and the 𝑘-variable of 𝑃(𝑘). 

𝑝 → 𝑘
7

We begin by considering momentum slices through our 
dark-matter packet, relating each slice of momentum p to 
a corresponding value 𝑘"#$(𝑝).

𝑘"#$ 𝑝 ≡ 𝜉 +
%!"#$

%%#&
𝑑𝑡

𝑣(𝑡)
𝑎 𝑡

&'

Our approach



In other words, we identify 𝑘!"# 𝑝 with 𝑘 and thereby consider 𝑔(𝑝) as having a corresponding 
profile in 𝑘-space:

𝑔 𝑝 → +𝑔 𝑘
It then follows

𝑁 𝑡 ~ #𝑑 log 𝑝 𝑔(𝑝) = #𝑑 log 𝑘 +𝑔(𝑘)

Thus &𝑔(𝑘) describes a dark-matter distribution in 𝑘-space! 

Moreover, because this &𝑔(𝑘) lives in the same space as 𝑃(𝑘), these two functions can even be 
plotted together along the same axis!

Now it makes sense to ask:
Can we discover/conjecture any relation between
these two functions?

8

Our approach



• The amount of suppression differs, but the slope at large 𝑘 is essentially unaffected by widths!
This suggests the accumulated abundance is correlated with the slope, NOT with the net
suppression.

12
9

Vary width with average/area fixed
(a complementary CDM component is added to get the total DM abundance)

Examining the relations
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We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'



10

We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'



10

We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'



10

We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'



10

We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'



10

We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

relation holds to very high precision!

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'



10

We define the hot-fraction function,

𝐹 𝑘 ≡
∫!"
#$% & 6𝑔(𝑘′) 𝑑 log 𝑘'

∫!"
" 6𝑔 𝑘' 𝑑 log 𝑘'

relation holds to very high precision!

We found the slope of the transfer function at a particular
scale 𝑘 is related to the amount of DM particles that is able
to freestream a distance larger than ~1/𝑘,
i.e., the fraction of DM particles that is effectively “hot”
relative to the scale 𝒌

Relating 6𝑔(𝑘) and 𝑇((𝑘)

This allows us to “resurrect” 6𝑔(𝑘)
directly from the transfer function 𝑇((𝑘)!



Dark ensemble consists of N+1 real scalars 𝜙$ with 𝑗 = 0,1, …𝑁, and a
mass spectrum:

𝑚$ = 𝑚% + 𝑗&Δ𝑚
Lagrangian:

ℒ =4
ℓ(%

)
1
2
𝜕*𝜙ℓ𝜕*𝜙ℓ −

1
2
𝑚ℓ
+𝜙ℓ

+ −4
,(%

ℓ

4
$(%

,

𝑐ℓ,$ 𝜙ℓ𝜙,𝜙$ +⋯

The trilinear coupling:

𝑐ℓ,$ = 𝜇𝑅ℓ,$
𝑚ℓ −𝑚, −𝑚$

Δ𝑚

-
1 +

𝑚, −𝑚$
Δ𝑚

./

Θ 𝑚ℓ −𝑚, −𝑚$
difference between 
products

An Illustrative Model

difference between 
parent and products

15

In our 
analysis we 
considered 

N=9
(10 states)

Positive 𝒓 à Decays with more kinetic energy
Negative 𝒓 à Decays more marginal (less phase space)

Positive 𝒔 à Decay products tend to have similar masses
Negative 𝒔 à Decay products tend to have different masses

11



Deposits to
the ground
state tend to
occur around
the same time

Deposits to
the ground
state tend to
occur at
different times

16

The figure shows how decays 
proceed step by step from a heavy 
state to the ground state. Only 
major decay chains are shown. 

Many different patterns of decay 
chains could emerge!

Illustrative Model: Decay chains 𝒔

𝑟

Symmetry in decays
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unimodal
distributions

multi-modal
distributions

As expected!

• Cases in which decay chains land
on the ground state at similar
timescales tend to produce
unimodal distributions

• Multi-modal distributions could
result if timescales of different
decay chains differ significantly

A rich variety of distributions
emerges!

Final Phase-Space Distribution 

Numerically solve the Boltzmann 
equation assuming only the heaviest 
state is populated initially.

13



To what extent can we “resurrect” the DM phase-
space distribution from the transfer function?

Recall our conjecture…

14

Reconstruction Test



To what extent can we “resurrect” the DM phase-
space distribution from the transfer function?

Recall our conjecture…

Blue: original DM distribution in k-space
Red: reconstruction directly from 𝑇+(𝑘)

Our reconstruction is surprisingly
accurate for a variety of possible DM
distributions.
Able to resurrect the salient features of
the original distribution!

14

Reconstruction Test



Conclusions

• Early-universe processes could leave identifiable patterns in the phase-space distribution 𝑔(𝑝)
of dark matter which are then imprinted on the cosmic structure.

• The DM phase-space distribution 𝑔(𝑝) is correlated with the matter power spectrum 𝑃 𝑘
through the hot-fraction function 𝐹(𝑘) .

• We proposed a reconstruction conjecture which enables us to reproduce the DM phase-space 
distribution. The reconstruction conjecture is simple and allows us to resurrect the salient
features of the phase-space distribution directly from 𝑃(𝑘).

• The reconstruction conjecture is local, i.e., partial reconstruction could be obtained from 
incomplete information.

• Since structure formation relies on gravity only, such approach allows us to learn about dark-
sector dynamics even if the dark sector has only gravitational couplings to the SM.

• The dark sectors of string theory generically include unstable Kaluza-Klein towers, thus could 
potentially lead to multi-modal distributions and non-trivial 𝑃(𝑘). This provides motivation to 
measure/bound 𝑃(𝑘) with increased precision.
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