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• dark matter traces an equilibrium (thermal) 
abundance curve


• Boltzmann suppressed as temperature drops 

• freeze out when interactions become slower 

than the Hubble rate 

DARK MATTER : WHAT SETS ITS ABUNDANCE?
The most popular paradigm: Thermal Freezeout


Standard Picture
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• dark matter traces an equilibrium (thermal) 
abundance curve


• Boltzmann suppressed as temperature drops 

• freeze out when interactions become slower 

than the Hubble rate 

DARK MATTER : WHAT SETS ITS ABUNDANCE?
The most popular paradigm: Thermal Freezeout


Standard Picture

Dark matter abundance undergoes the 
usual suppression, but bounces up at 

late times and freezes out with an 
enhanced relic abundance!

THIS TALK
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THERMAL FREEZEOUT: A CLOSER LOOK

Particle X in the bath follows Boltzmann distribution

1 Motivation

  $ XX

It is plausible that the dark matter mass arises, as is the case with all the SM particles
we know of, from spontaneous symmetry breaking, via its coupling to a scalar field that ob-
tains a nonzero vev. In this case, the dynamics of symmetry breaking – the transition from
unbroken to broken phase – leads to the production of dark matter particles. In particular,
we are interested in studying dark matter production due to non-adiabatic changes in the
vev of the scalar field during the expansion of true vacuum bubbles produced during a first
order phase transition. While dark matter that gets its mass from spontaneous symmetry
breaking can be produced in several stages of the phase transition, including in a homoge-
neous transition from false to true vacuum [?], from collisions of expanding bubbles of true
vacuum [?], or through filtering mechanisms [?,?] or spontaneous freezeout [?] of dark matter
already present in the bath (these processes can provide the dominant mechanism for dark
matter, but could also be suppressed/negligible depending on the details of the phase tran-
sition and the underlying model), we are interested in this particular production mechanism
since the relevant parameter space can be correlated directly with observable signatures in
gravitational waves in a fairly model independent manner.

While dark matter production during the phase transition is very generic in models where
dark matter gets its mass from spontaneous symmetry breaking, this epoch of production
is of little relevance if dark matter subsequently thermalizes with the SM bath, in which
case all prior information from this phase gets washed out. Therefore, this production
mechanism accounts for the observed dark matter relic density only in frameworks where such
thermalization does not occur. We will concern ourselves with such nonthermal scenarios in
this work (we will discuss the necessary conditions for this in detail below).

For concreteness, we will consider a first order phase transition in a dark sector containing
three particles:

• a scalar � with mass m� and vev v�, which breaks the symmetry (that DM is charged
under) that the phase transition is associated with.

• a fermion dark matter particle X whose mass is protected by the gauge symmetry,
which obtains a mass mX = y�v� through a Yukawa interaction with the scalar once
the symmetry is broken.

• the associated gauge boson Z
0 with massmZ0 = g

0
v�, which plays the role of dissipating

bubble wall energy into the plasma during and after the phase transition.

The relevant parameters for our discussion are

• ↵: The strength of the phase transition, generally defined as ↵ ⌘
⇢(vacuum)
⇢(radiation) , which

measures the total energy released in the phase transition relative to the total energy
density in the thermal bath at the time of the transition.

• T⇤: The temperature (of the SM thermal bath) at which bubbles of true vacuum
percolate and the phase transition ends.

1

If dark matter primarily annihilates into species X in the bath

Only the part of X distribution with 

can participate in the production of dark matter 

E > mψ

T decreases → a smaller and smaller fraction 
of X distribution can participate → 


familiar exponential (Boltzmann) suppression
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Only the part of X distribution with 

can participate in the production of dark matter 

E > mψ
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of X distribution can participate → 


familiar exponential (Boltzmann) suppression

Dark matter thermal histories in most models follows this pattern

• Interactions controlling DM freezeout feature lighter particles → (Inverse) 

processes that populate dark matter need thermal support, grow weaker as the 
temperature falls → DM abundance Boltzmann suppressed


• Interactions with heavier particles in the bath generally irrelevant, as these are 
less abundant than dark matter
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A MODIFIED DARK MATTER SETUP

A dark sector with three particles:

H (heavy; dark matter)


M (medium)

L (light)

Consider a hidden sector where the aforementioned statements do not hold:

All four particle interactions allowed, e.g. 

HH↔LL, HH↔MM, HM↔ML, HM↔LL, MM↔HL … 

Key assumption:

1 Motivation

  $ XX
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COSMOLOGICAL HISTORY
L

M

H

• 200 GeV

• 240 GeV

• 260 GeV



8

COSMOLOGICAL HISTORY
L

M

H

• Hidden sector out of 
(chemical) equilibrium 

from the SM thermal bath

•  Comoving number density 

in the hidden sector 
(H+M+L) conserved


• Interactions between 
hidden sector species rapid
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
eq

i
e
µi/T , we can write this as

n
2
M

=
n
eq

M

2

n
eq

L
n
eq

H

nLnH ⌘ ñ
2
nLnH (2)

Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(5)

YM =
ñ

p
4Y 2

1 � (4� ñ2)Y 2
2 � ñ

2
Y1

4� ñ2
(6)

YH =
4Y1 � (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(7)

These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ

2 = n
eq

M

2
/(neq

L
n
eq

H
) =
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2 = n
eq

M

2
/(neq

L
n
eq

H
) =

• Relation between chemical potentials:
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p
4Y 2

1 � (4� ñ2)Y 2
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expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are
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These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ
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• Relation between chemical potentials:
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
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i
e
µi/T , we can write this as
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Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ

2)Y2 � ñ
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These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ
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suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
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i
e
µi/T , we can write this as
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Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ
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These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ
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• Relation between chemical potentials:
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Only remaining rapid interaction:

MM↔HL

Boltzmann suppression logic reversed:

 Thermal bath needs to choose between MM (heavier) and HL 

(lighter); the latter is (exponentially) more “favored”! Leads to a 
conversion of M population to HL states

H producing

H reducing
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
eq

i
e
µi/T , we can write this as
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Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ

2)Y2 � ñ
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1 � (4� ñ2)Y 2
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2(4� ñ2)
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ñ

p
4Y 2

1 � (4� ñ2)Y 2
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These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
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/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
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e
µi/T , we can write this as
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Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ
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2

2(4� ñ2)
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These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ
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is no longer an acceptable solution to 
the Boltzmann equations

Only remaining rapid interaction:
MM↔HL

H producing

H reducing

Modified relation for chemical potentials
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DARK MATTER WITH A BOUNCE

Final relic abundance of dark matter “bounces up” and can be larger 
by several orders of magnitude!


Corresponds to a “bounce” in its equilibrium distribution
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
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/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
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e
µi/T , we can write this as

n
2
M

=
n
eq

M

2

n
eq

L
n
eq

H

nLnH ⌘ ñ
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Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
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(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are
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These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ

2 = n
eq

M

2
/(neq

L
n
eq

H
) =
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
eq

i
e
µi/T , we can write this as

n
2
M

=
n
eq

M

2

n
eq

L
n
eq

H

nLnH ⌘ ñ
2
nLnH (2)

Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(5)

YM =
ñ

p
4Y 2

1 � (4� ñ2)Y 2
2 � ñ

2
Y1

4� ñ2
(6)

YH =
4Y1 � (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(7)

These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ

2 = n
eq

M

2
/(neq

L
n
eq

H
) =
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CONTEXT
Can occur in realistic setups


 e.g. a dark (“twin”) QCD sector with multiple dark mesons

“Split SIMPs with Decays”

Andrey Katz, Ennio Salvioni, Bibhushan Shakya


arXiv: 2006.15148 [hep-ph] 
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PARTICLE DECAYS
L

M

H

Too much L; needs to 
decay (before BBN)

M might be OK; could be 
effectively stable and a 

component of dark matter 

H
L/M

SM final 
states

H can be completely stable (if protected by a symmetry)

Or unstable on cosmological timescales (via L (M) loop decays)
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H
L/M

SM final 
states

H can decay via loops of L/M

For L/M lifetime ~1s, 


H lifetime: ~1027 s

Long enough to be dark matter, short enough 

to see indirect detection signals!

INDIRECT DETECTION SIGNALS

Indirect detection signals from dark matter annihilation: HH→MM,LL

Rates larger than “naively” expected from standard freezeout

ANNIHILATION

DECAY
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ANOTHER EXAMPLE

2

( m
2
M

mLmH

)3/2 exp(�(2mM �mL�mH)/TD). From this so-
lution, we can see that 2mM > mL + mH and 2mM <

mL + mH lead to drastically di↵erent behavior. In the
latter case, YH is monotonically decreasing, as is charac-
teristic of standard freezeout processes. However, in the
former case 2mM > mL + mH , we see that YH above
monotonically increases as the temperature drops. In
particular, ñ ! 0 as the temperature decreases, and the
dark matter yield approaches a constant value in this
limit,

YH !
1

2
(Y1 � Y2) =

1

2
YM0 + YH0. (8)

This limit is straightforward to understand: for MM $

HL the only rapid process and 2mM > mL + mH , the
thermal bath in the hidden sector exponentially prefers to
populate the lighter LH combination rather than MM .
Hence all of the M population present at TD0 will even-
tually get converted to H + L if MM $ HL remains
faster than Hubble. This accounts for the 1

2YM0 in Eq.8,
which gets added to the YH0 already present in the bath
at TD0. In practice, however, this limit is not reached,
for two reasons. First, YH freezes out when MM $ HL

freezes out, ie when

Y
2
M

YH

sh�viMM!HL ⇡ H (9)

Second, as soon as YH ⇠ YM , HM ! ML becomes com-
parable in strength to MM ! HL, causing a departure
from the above conditions.

To summarize: the dark matter abundance YH ini-
tially undergoes the standard Boltzmann suppression in
the early Universe while several processes are rapid, going
down to YH0 at T0. However, if at this point, these pro-
cesses freeze out but MM ! HL remains rapid, dark
matter abundance subsequently undergoes an increase
(Eq.7), before freezing out when MM ! HL freezes out
(Eq.9).

A. Constraints and Decays

First, note that we require 3mL > mH , otherwise four-
point interactions can be combined to lead to the rapid
decay channel H ! 3L. Next, note that L is several or-
ders of magnitude more abundant than H, and therefore
must decay before BBN, otherwise it will mess up observ-
able aspects of cosmology. Consider an e↵ective coupling

ge↵ with the SM that enables L to decay, �L ⇠
g
2
eff

16⇡mL.
For this lifetime to be less than 1s in order for the L popu-
lation to be depleted before BBN, we require ge↵ > 10�13.
(Here one must also ensure that such long lifetimes do not
lead to the L dominating the energy density of the Uni-
verse before they decay, which would lead to a period of
matter domination).

Next, note that if 2mL < mH , H can decay into two
on-shell L and one o↵ shell L ! SM , for which the H

lifetime is of the same order as the L lifetime (larger only
by some O(1) factors), which is not su�cient. Hence we
need 2mL > mH ; in this case, H decays involve two o↵-
shell L decays, hence �H / g

4
e↵, giving lifetimes ⇠ 1026s

for ge↵ ⇠ 10�13. This lifetime is in the right ballpark to
be interesting for indirect detection of dark matter decay
signals.
The M abundance is comparable to H abundance at

freezeout (and can be much lower if MM ! HL remains
in equilibrium for a long time). Hence M being abso-
lutely stable (which could be the case, if it is charged)
does not necessarily create any problems. We could also
consider it to be unstable with some finite lifetime, in
which case the same considerations as above apply.

Finally, we also note that strong indirect detection sig-
nals are expected from HH ! MM,LL,ML. Naively,
large cross sections for these annihilation processes would
also have led to late freezeout, hence strong Boltzmann
suppression of the dark matter freezeout abundance,
making large cross sections inconsistent with the ob-
served dark matter relic density. However, since the dark
matter abundance receives a late ”bounce” in our frame-
work, these two aspects can be made consistent.

B. A model

Consider three scalars transforming as �H ⇠ 30, �M ⇠

2+1, �L ⇠ 10 under an exact dark SU(2)⇥ U(1). These
representations automatically allow the coupling struc-
ture that can lead to a bounce, in particular MMHL

in the form �
†
M
�
a
�M�

a

H
�L, while e.g. HHHL van-

ishes since ✏
abc

�
a

H
�
b

H
�
c

H
�L = 0. In the bounce regime

2mM > mH + mL both H,M are stable, while L can
be coupled in a variety of ways to make it decay quickly
enough.

III. TWO PARTICLE FRAMEWORK

Consider a setup with a heavy (H) and light (L) par-
ticle in a hidden sector, where H is dark matter. We
are interested in the scenario 3mL > 2mH , so that the
final DM number changing process to freeze out is the
3 ! 2 process 3L ! 2H. When this is the only rapid
interaction, it forces the relations

3µL = 2µH , or

✓
nL

n
eq

L

◆3

=

✓
nH

n
eq

H

◆2

(10)

also, 2YL + 3YH is conserved,

2YL + 3YH = Y0 (11)

where Y0 can be calculated at an earlier time when the
L,H abundances still track some thermal, Boltzmann
suppressed distribution.
We thus have two equations with two unknowns

YL, YH , which can be solved. Substituting YL = (Y0 �

A dark sector with two particles:

H (heavy; dark matter)


L (light)

As another illustration of the mechanism, consider a different setup

Final interaction to decouple:


2

( m
2
M

mLmH

)3/2 exp(�(2mM �mL�mH)/TD). From this so-
lution, we can see that 2mM > mL + mH and 2mM <

mL + mH lead to drastically di↵erent behavior. In the
latter case, YH is monotonically decreasing, as is charac-
teristic of standard freezeout processes. However, in the
former case 2mM > mL + mH , we see that YH above
monotonically increases as the temperature drops. In
particular, ñ ! 0 as the temperature decreases, and the
dark matter yield approaches a constant value in this
limit,

YH !
1

2
(Y1 � Y2) =

1

2
YM0 + YH0. (8)

This limit is straightforward to understand: for MM $

HL the only rapid process and 2mM > mL + mH , the
thermal bath in the hidden sector exponentially prefers to
populate the lighter LH combination rather than MM .
Hence all of the M population present at TD0 will even-
tually get converted to H + L if MM $ HL remains
faster than Hubble. This accounts for the 1

2YM0 in Eq.8,
which gets added to the YH0 already present in the bath
at TD0. In practice, however, this limit is not reached,
for two reasons. First, YH freezes out when MM $ HL

freezes out, ie when

Y
2
M

YH

sh�viMM!HL ⇡ H (9)

Second, as soon as YH ⇠ YM , HM ! ML becomes com-
parable in strength to MM ! HL, causing a departure
from the above conditions.

To summarize: the dark matter abundance YH ini-
tially undergoes the standard Boltzmann suppression in
the early Universe while several processes are rapid, going
down to YH0 at T0. However, if at this point, these pro-
cesses freeze out but MM ! HL remains rapid, dark
matter abundance subsequently undergoes an increase
(Eq.7), before freezing out when MM ! HL freezes out
(Eq.9).

A. Constraints and Decays

First, note that we require 3mL > mH , otherwise four-
point interactions can be combined to lead to the rapid
decay channel H ! 3L. Next, note that L is several or-
ders of magnitude more abundant than H, and therefore
must decay before BBN, otherwise it will mess up observ-
able aspects of cosmology. Consider an e↵ective coupling

ge↵ with the SM that enables L to decay, �L ⇠
g
2
eff

16⇡mL.
For this lifetime to be less than 1s in order for the L popu-
lation to be depleted before BBN, we require ge↵ > 10�13.
(Here one must also ensure that such long lifetimes do not
lead to the L dominating the energy density of the Uni-
verse before they decay, which would lead to a period of
matter domination).

Next, note that if 2mL < mH , H can decay into two
on-shell L and one o↵ shell L ! SM , for which the H

lifetime is of the same order as the L lifetime (larger only
by some O(1) factors), which is not su�cient. Hence we
need 2mL > mH ; in this case, H decays involve two o↵-
shell L decays, hence �H / g

4
e↵, giving lifetimes ⇠ 1026s

for ge↵ ⇠ 10�13. This lifetime is in the right ballpark to
be interesting for indirect detection of dark matter decay
signals.
The M abundance is comparable to H abundance at

freezeout (and can be much lower if MM ! HL remains
in equilibrium for a long time). Hence M being abso-
lutely stable (which could be the case, if it is charged)
does not necessarily create any problems. We could also
consider it to be unstable with some finite lifetime, in
which case the same considerations as above apply.

Finally, we also note that strong indirect detection sig-
nals are expected from HH ! MM,LL,ML. Naively,
large cross sections for these annihilation processes would
also have led to late freezeout, hence strong Boltzmann
suppression of the dark matter freezeout abundance,
making large cross sections inconsistent with the ob-
served dark matter relic density. However, since the dark
matter abundance receives a late ”bounce” in our frame-
work, these two aspects can be made consistent.

B. A model

Consider three scalars transforming as �H ⇠ 30, �M ⇠

2+1, �L ⇠ 10 under an exact dark SU(2)⇥ U(1). These
representations automatically allow the coupling struc-
ture that can lead to a bounce, in particular MMHL

in the form �
†
M
�
a
�M�

a

H
�L, while e.g. HHHL van-

ishes since ✏
abc

�
a

H
�
b

H
�
c

H
�L = 0. In the bounce regime

2mM > mH + mL both H,M are stable, while L can
be coupled in a variety of ways to make it decay quickly
enough.

III. TWO PARTICLE FRAMEWORK

Consider a setup with a heavy (H) and light (L) par-
ticle in a hidden sector, where H is dark matter. We
are interested in the scenario 3mL > 2mH , so that the
final DM number changing process to freeze out is the
3 ! 2 process 3L ! 2H. When this is the only rapid
interaction, it forces the relations

3µL = 2µH , or

✓
nL

n
eq

L

◆3

=

✓
nH

n
eq

H

◆2

(10)

also, 2YL + 3YH is conserved,

2YL + 3YH = Y0 (11)

where Y0 can be calculated at an earlier time when the
L,H abundances still track some thermal, Boltzmann
suppressed distribution.
We thus have two equations with two unknowns

YL, YH , which can be solved. Substituting YL = (Y0 �

Key assumption:

2

( m
2
M

mLmH

)3/2 exp(�(2mM �mL�mH)/TD). From this so-
lution, we can see that 2mM > mL + mH and 2mM <

mL + mH lead to drastically di↵erent behavior. In the
latter case, YH is monotonically decreasing, as is charac-
teristic of standard freezeout processes. However, in the
former case 2mM > mL + mH , we see that YH above
monotonically increases as the temperature drops. In
particular, ñ ! 0 as the temperature decreases, and the
dark matter yield approaches a constant value in this
limit,

YH !
1

2
(Y1 � Y2) =

1

2
YM0 + YH0. (8)

This limit is straightforward to understand: for MM $

HL the only rapid process and 2mM > mL + mH , the
thermal bath in the hidden sector exponentially prefers to
populate the lighter LH combination rather than MM .
Hence all of the M population present at TD0 will even-
tually get converted to H + L if MM $ HL remains
faster than Hubble. This accounts for the 1

2YM0 in Eq.8,
which gets added to the YH0 already present in the bath
at TD0. In practice, however, this limit is not reached,
for two reasons. First, YH freezes out when MM $ HL

freezes out, ie when

Y
2
M

YH

sh�viMM!HL ⇡ H (9)

Second, as soon as YH ⇠ YM , HM ! ML becomes com-
parable in strength to MM ! HL, causing a departure
from the above conditions.

To summarize: the dark matter abundance YH ini-
tially undergoes the standard Boltzmann suppression in
the early Universe while several processes are rapid, going
down to YH0 at T0. However, if at this point, these pro-
cesses freeze out but MM ! HL remains rapid, dark
matter abundance subsequently undergoes an increase
(Eq.7), before freezing out when MM ! HL freezes out
(Eq.9).

A. Constraints and Decays

First, note that we require 3mL > mH , otherwise four-
point interactions can be combined to lead to the rapid
decay channel H ! 3L. Next, note that L is several or-
ders of magnitude more abundant than H, and therefore
must decay before BBN, otherwise it will mess up observ-
able aspects of cosmology. Consider an e↵ective coupling

ge↵ with the SM that enables L to decay, �L ⇠
g
2
eff

16⇡mL.
For this lifetime to be less than 1s in order for the L popu-
lation to be depleted before BBN, we require ge↵ > 10�13.
(Here one must also ensure that such long lifetimes do not
lead to the L dominating the energy density of the Uni-
verse before they decay, which would lead to a period of
matter domination).

Next, note that if 2mL < mH , H can decay into two
on-shell L and one o↵ shell L ! SM , for which the H

lifetime is of the same order as the L lifetime (larger only
by some O(1) factors), which is not su�cient. Hence we
need 2mL > mH ; in this case, H decays involve two o↵-
shell L decays, hence �H / g

4
e↵, giving lifetimes ⇠ 1026s

for ge↵ ⇠ 10�13. This lifetime is in the right ballpark to
be interesting for indirect detection of dark matter decay
signals.
The M abundance is comparable to H abundance at

freezeout (and can be much lower if MM ! HL remains
in equilibrium for a long time). Hence M being abso-
lutely stable (which could be the case, if it is charged)
does not necessarily create any problems. We could also
consider it to be unstable with some finite lifetime, in
which case the same considerations as above apply.

Finally, we also note that strong indirect detection sig-
nals are expected from HH ! MM,LL,ML. Naively,
large cross sections for these annihilation processes would
also have led to late freezeout, hence strong Boltzmann
suppression of the dark matter freezeout abundance,
making large cross sections inconsistent with the ob-
served dark matter relic density. However, since the dark
matter abundance receives a late ”bounce” in our frame-
work, these two aspects can be made consistent.

B. A model

Consider three scalars transforming as �H ⇠ 30, �M ⇠

2+1, �L ⇠ 10 under an exact dark SU(2)⇥ U(1). These
representations automatically allow the coupling struc-
ture that can lead to a bounce, in particular MMHL

in the form �
†
M
�
a
�M�

a

H
�L, while e.g. HHHL van-

ishes since ✏
abc

�
a

H
�
b

H
�
c

H
�L = 0. In the bounce regime

2mM > mH + mL both H,M are stable, while L can
be coupled in a variety of ways to make it decay quickly
enough.

III. TWO PARTICLE FRAMEWORK

Consider a setup with a heavy (H) and light (L) par-
ticle in a hidden sector, where H is dark matter. We
are interested in the scenario 3mL > 2mH , so that the
final DM number changing process to freeze out is the
3 ! 2 process 3L ! 2H. When this is the only rapid
interaction, it forces the relations

3µL = 2µH , or

✓
nL

n
eq

L

◆3

=

✓
nH

n
eq

H

◆2

(10)

also, 2YL + 3YH is conserved,

2YL + 3YH = Y0 (11)

where Y0 can be calculated at an earlier time when the
L,H abundances still track some thermal, Boltzmann
suppressed distribution.
We thus have two equations with two unknowns

YL, YH , which can be solved. Substituting YL = (Y0 �
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suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
eq

i
e
µi/T , we can write this as

n
2
M

=
n
eq

M

2

n
eq

L
n
eq

H

nLnH ⌘ ñ
2
nLnH (2)

Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(5)

YM =
ñ

p
4Y 2

1 � (4� ñ2)Y 2
2 � ñ

2
Y1

4� ñ2
(6)

YH =
4Y1 � (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(7)

These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ

2 = n
eq

M

2
/(neq

L
n
eq

H
) =
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Dark matter relic abundance goes through a bounce - following a period of the familiar Boltzmann

suppression as temperature decreases, its relic abundance undergoes an increase in the final phases

of thermal freezeout. We illustate this phenomenon in two frameworks, one with two particles

dominated by a 2 ! 3 process, and another with a three particle framework with dark matter

semi-annihilation.

I. MOTIVATION

Dark matter can be part of a rich multiplet with several
states close to one another in mass.

II. THREE PARTICLE FRAMEWORK

Consider a hidden sector with three kinds of parti-
cles, heavy (H), medium (M), and light (L), with masses
mH > mM > mL respectively, with mH ⇡ mM ⇡ mL ⇡

m. We are interested in scenarios where H is dark mat-
ter, and the others are su�ciently stable to be around
when DM freezes out. This hidden sector needs to be se-
cluded from the SM bath from very early times (in order
to satisfy lifetime constraints; more later), so entropy in
this hidden sector is separately conserved.

Initially, all possible four point interactions in the hid-
den sector are rapid compared to Hubble, and the species
in the hidden sector share a common temperature TD.
TD might or might not be the same as the visible sec-
tor temperature Tv, but these redshift in the same way
/ a

�1 while the hidden sector species are relativistic.
Once TD drops below the mass scale of the hidden sector
particles, it will fall faster, TD / a

�2. We will parame-
terize the relation between the hidden and visible sector
temperatures as Tv = ⇠

p
Td mL for Td < mL. We will

use the variable x = mL/Td to track the evolution of the
abundances of hidden sector species, but note that the
Hubble scale H ⇠ T

2
v
/MPl under the assumption that

most of the entropy is in the visible sector.
We will be interested in the scenario where 2mM >

mL + mH , and MM $ HL is the final process in the
hidden sector to go out of equilibrium, hence controlling
the thermal freezeout of the dark matter abundance.

At early temperatures, while all interactions in the hid-
den sector are rapid, the chemical potentials for all three
species are identical, µH = µM = µL, and the early Uni-
verse abundances of these species follow the usual Boltz-
mann suppressed equilibrium distributions with “shifted”
curves due to the nonzero chemical potential. Assume
that all processes other than MM $ HL go out of
equilibrium at some temperature Td = TD0. Let us
denote the common chemical potential at this point as
µH = µM = µL = µ0. Here µ0 can be thought of as a

free parameter that encodes the entropy density in the
hidden sector.
From hereon, with only MM $ HL rapid compared

to Hubble, the relation between the chemical potentials
is driven to

2µM = µL + µH . (1)

Using ni = n
eq

i
e
µi/T , we can write this as

n
2
M

=
n
eq

M

2

n
eq

L
n
eq

H

nLnH ⌘ ñ
2
nLnH (2)

Since the coming number density in this hidden sector
is also conserved in the absence of interactions with the
SM plasma, we also have that YL+YM+YH is conserved,
with Yi = ni/s, where s ⇠ T

3
v
. This constant can be

expressed in terms of known values at TD0:

YL + YM + YH = YL0 + YM0 + YH0 ⌘ Y1 (3)

where the RHS denotes values at TD0, Yi0 =
n
eq

i
(TD0)eµ0/T /s(TD0).
Furthermore, since the only significant process that

changes comoving number densities is MM $ HL, one
must also have that YL � YH is conserved; thus

YL � YH = YL0 � YH0 ⌘ Y2 (4)

We thus have three equations (Eq.1,3,4) with three un-
knowns (YL, YM , YH), which can therefore be solved.
However, by inspection, we can already see that µL =
µH(= µM ) is no longer a solution to these equations.

After some algebra, the solutions to the above equa-
tions are

YL =
4Y1 + (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(5)

YM =
ñ

p
4Y 2

1 � (4� ñ2)Y 2
2 � ñ

2
Y1

4� ñ2
(6)

YH =
4Y1 � (4� ñ

2)Y2 � ñ

p
4Y 2

1 � (4� ñ2)Y 2
2

2(4� ñ2)
(7)

These give the abundances of the hidden sector species at
T < TD0 while MM $ HL remains e�cient. Note that
these abundances are determined entirely by three quan-
tities: Y1, Y2, ñ. Since Y1, Y2 are constant, all of the tem-
perature dependence is encoded in ñ
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SUMMARY

• An exponentially (Boltzmann) suppressed abundance as a 
consequence of dark matter thermal freezeout: generic, but not 

necessary! 

•  possible for late stages of DM freezeout to feature a “bounce” in the DM 

abundance, increasing by several orders of magnitude 

• Requires late stages to be driven by an annihilation channel into DM that 

does not require thermal support 

• Present day dark matter annihilation cross section larger than naively 

expected from standard freezeout processes

• Dark matter can be cosmologically unstable, with decay lifetimes of 

interest for observable signals


