Gravitational Particle Production of Scalar Dark Matter in α-Attractor Models of Inflation

ArXiv:2101.11621

Siyang Ling (sl135 at rice dot edu) Rice University

This Talk

Superheavy scalar dark matter from gravitational particle production in α-attractor models of inflation

- Siyang Ling & Andrew J. Long
- ArXiv:2101.11621, to be published on PRD

Gravitational Particle Production

- Strong gravitational field can produce particles out of vacuum.
- Analogue: Schwinger effect

Chung, Daniel J. H. and Kolb, Edward W. and Riotto, Antonio, Superheavy dark matter J Audretsch and G Schafer 1978, Thermal particle production in a radiation dominated Robertson-Walker universe

3 N. D. Birrell and P. C. Davies, *Quantum fields in curved space* And so on...

Gravitational Particle Production

• EOM for particle production:

$$egin{aligned} &[\partial_\eta^2-oldsymbol{
abla}^2+a^2m_{ ext{eff}}^2](a\chi)=0\ &m_{ ext{eff}}^2=m_\chi^2+rac{1}{6}R \end{aligned}$$

• Production induced by time-varying a and R!

Inflation

Figure due to A. Mazumdar

Alpha-attractor

• A class of inflaton potential...

Renata Kallosh and Andrei Linde, Planck, LHC, and α-attractors

Relic density spectrum

Relic density spectrum

e-foldings at horizon crossing -11-10 -9 -8 -7 -6 -5 -4 -3 -2 -10 100.000 $m_{\phi} = 5.98 \times 10^{-6} M_p$ $\alpha = 1$ T Model $m_{\chi}/m_{\phi}=0.001$ $m_{\chi}/m_{\phi}=0.01$ comoving density: $a^3 n_{k'} a_e^3 H_e^3$ 0.001 $m_{\chi}/m_{\phi}=0.0316$ $m_{\chi}/m_{\phi}=0.1$ $-m_{\chi}/m_{\phi}=0.158$ $-m_{\chi}/m_{\phi}=0.251$ $m_{\chi}/m_{\phi}=0.398$ 10^{-8} $m_{\chi}/m_{\phi}=0.631$ $m_{\chi}/m_{\phi}=0.794$ $m_{\chi}/m_{\phi}=0.891$ $- m_{\chi}/m_{\phi}=1.$ 10^{-13} m_{χ}/m_{ϕ} =1.12 $m_{\chi}/m_{\phi}=1.26$ $m_{\chi}/m_{\phi}=1.58$ $m_{\chi}/m_{\phi}=2.$ $m_{\gamma}/m_{\phi}=2.51$ 10^{-18} 10^{-4} 0.0010.0100.1001 10comoving wavenumber: k/a_eH_e

Relic abundance

Isocurvature

• Isocurvature is also generated.

Planck 2018 gives isocurvature constraint β _iso < 0.035

Figure due to Daniel J. Chung

Constraints

Constraints

Conclusion

- Supermassive particles can be produced by gravity during inflation sourced by alphaattractor potentials.
- This process generates isocurvature perturbations, which we may be able to detect in the future.

Extra

