

A model of light pseudo scalar Dark matter

Shreyashi Chakdar College of the Holy Cross schakdar@holycross.edu

Chakdar, Ghosh, Hung, Khan & Nanda (in preparation, arXiv: 2105.XXXXX)

Phenomenology Symposium

University of Pittsburgh

24-26 May, 2021

standard WIMP Freeze out scenario

- Most studied BSM DM scenario: WiMP → EW +weak coupling SM
- Produced thermally early Universe, thermal equilibrium with SM up to certain temp \rightarrow decouples from thermal bath@ T_f , interaction rate drops below expansion rate of Universe (H) $\rightarrow \Omega h^2 \simeq 0.12$
- Observed abundance is set almost exclusively by annihilation crosssec, largely insensitive to unknown details of early Universe and to mass

- Null results at direct detection ⇒ Strong constraints WIMP paradigm
- Alternate possibilities: FIP, Axion, ALPs etc.

Dark matter Freeze out vs in

Fig 1: Evolution with temperature of DM abundance for conventional freeze-out and freeze-in mechanism.

- Freeze-in as opposite process
 to freeze-out: as T drops below
 the mass of the relevant
 particle, DM is either heading
 away from (freeze- out) or
 towards (freeze-in) thermal
 equilibrium
- Freeze-in: DM interacts
 extremely weakly with SM
 particles, negligible initial
 abundance and never attain
 thermal equilibrium (Feebly
 Interacting Particle)

Theory Framework

- EW ν_R model contains non-sterile RH $\nu's$ with Majorana masses ~EW
- Dirac mass term comes from a complex singlet scalar ϕ_s , imaginary part of this singlet is a pseudo-NG (PNG) boson A_s^0 (light DM)
- When a global symmetry is spontaneously broken A_s^0 acquires mass from explicit breaking term in scalar potential
- EW SSB scale of global symmetry & sub-MeV explicit breaking scale for A_S^0 makes this PNG boson naturally light DM candidate

Majorana $\mathcal{L}_{M} = g_{M}(I_{R}^{M,T}\sigma_{2}) \left(i \tau_{2} \widetilde{\chi}\right) I_{R}^{M} + h.c.$ $\widetilde{\chi} \left(3, \frac{Y}{2} = 1\right)$ $M_{R} = g_{M}v_{M}; <\chi^{0} >= v_{M} \sim \Lambda_{EW}$ $\widetilde{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}}\chi^{+} & \chi^{++} \\ \chi^{0} & -\frac{1}{\sqrt{2}}\chi^{+} \end{pmatrix}$

Dirac
$$\mathcal{L}_S = g_{sl} \bar{l}_L \phi_S l_R^M + h.c.$$

$$\phi_S \left(1, \frac{Y}{2} = 0\right)$$

$$m_\nu^D = g_{Sl} v_S \qquad \text{where} \qquad <\phi_S>=v_S$$

$$m_\nu \leq 1 eV \quad \Rightarrow \quad v_S \sim 10^{5-6} eV \text{ with } g_{Sl} \sim \mathcal{O}(1)$$
 or
$$v_S \sim \Lambda_{EW} \text{ with } g_{Sl} \sim \mathcal{O}(10^{-6})$$

Particle content: EW u_R model

SM+ mirror fermions+ extended scalar sector (DM)

Left-handed fermion doublets

Right-handed mirror fermion doublets

Refs: Chakdar, Ghosh, Hoang, Hung, Nandi *Phys.Rev.D* 95 (2017) 1, 015014, *Phys.Rev.D* 93 (2016) 3, 035007

5

Complete Scalar Sector

Scalar sector parameters

- Complex part of singlet scalar A_S^0 does not mix with other scalars
- Mass of complex singlet scalar

$$M_{A_s^0}^2 = 8 \; \lambda_{5c} (v_1 + v_2) \; (v_{1M} + v_{2M})$$

- $\sqrt{(v_1^2 + v_{1M}^2 + v_2^2 + v_{2M}^2 + 8v_M^2)}$ = 246 GeV
- After Spontaneous EW symmetry breaking \rightarrow SU(2)_D singlet mass eigenstates denoted by \widetilde{H}_S , \widetilde{H} , \widetilde{H}' , \widetilde{H}'' , \widetilde{H}''' , \widetilde{H}''''
- $\widetilde{H}_S \to \text{lightest, singlet DM, next heavier ones are } \widetilde{H}', \widetilde{H}'', \widetilde{H}''', \text{ with heaviest state } \widetilde{H}'''' \text{ and } \widetilde{H} \text{ being the 125 GeV Higgs}$
- The decay rate of \widetilde{H} into two lightest CP-even scalars $\widetilde{H_S}$ (A_S^0) can contribute to the Higgs invisible decay width depending on mixing, i.e., the value of the quartic coupling λ_{4a} and vevs
- Singlet scalar $v_{s} \sim 10^{4}$ GeV, $y_{sl} \sim 10^{-8}$ chosen $\rightarrow \nu$ mass $\sim 0.1~eV$

BP's and $\mu's$: Scalar mass spectrum

																4								
	Benchmark Points																							
	VEV of the scalar fields (GeV)					Scalar quartic couplings λ 's							<i>λ</i> 's		Masses of the scalar fields (GeV)									
	v_1	v_2	v_{1M}	v_{2M}	v_{M}	v_s	λ_{1a}	λ_{1b}	λ_{2a}	λ_{2b}	λ_3	λ_4	λ_5	λ_8	λ_s	$M_{\widetilde{H}''''}$	$M_{\widetilde{H}'''}$	$M_{\widetilde{H}''}$	$M_{\widetilde{H}'}$	$M_{\widetilde{H}}$	$M_{\widetilde{H}_s}$	m_5	m_{3,H^\pm,H_3^0}	$m_{3, \mathrm{All\ others}}$
BP-1	140	145	43.5	43.5	45	10^{4}	0.09	0.1	9.0	9.0	9.0	2.9	9.0	9.0	10^{-14}	1126.12	607.15	369.85	352.90	124.16	0.0028	1279.4	738.66	972.59
$52.04\% \Phi_1, 47.95\% \Phi_2$						<u> </u>			'	<u>L</u> '	<u></u> _ '		'											
BP-2	138	142	51.07	51.07	45	104	0.1	0.1	9.0	9.0	9.0	2.9	9.0	9.0	10^{-14}	1130.13	610.94	433.36	402.58	125.18	0.0028	1279.4	738.66	972.34
$51.52\% \Phi_1, 48.47\% \Phi_2$			<u> </u>	<u> </u>		<u></u> '	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u> _ '	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	
BP-3	152	145	42.99	42.99	40	104	0.001	0.1	9.0	9.0	9.0	0.5	9.0	9.0	10^{-14}	622.02	454.13	364.76	337.63	125.82	0.0.0028	1279.4	738.66	987.95
$51.52\% \Phi_1, 48.47\% \Phi_2$			'			<u> </u>				L_'	'		'											
BP-4	130	135	68.19	68.19	45	10^{4}	0.116	0.1	9.0	9.0	9.0	2.9	9.0	9.0	10^{-14}	1142.13	624.92	534.13	463.67	125.23	0.0028	1279.4	738.66	972.34
$53.69\% \Phi_1, 46.31\% \Phi_2$				<u> </u>		<u></u> '		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>								<u> </u>	
BP-5	130	140	62.95	62.95	45	10^{4}	0.11	0.11	9.0	9.0	9.0	2.9	9.0	9.0	10^{-14}	1150.57	635.59	578.61	481.12	124.23	0.0028	1279.4	738.66	972.34
$52.03\% \Phi_1, 47.97\% \Phi_2$			1 '	1 '		1	1	'	'	'	'	'	'	'		'	'	'						

TABLE I: BPs obtained fitting for constraints with m_H at 125 GeV in conjunction with other heavier scalars

Signal Strength	Benchmark Points and Signal strength of SM like Higgs										
	$\mu_{bar{b}}$	$\mu_{ auar{ au}}$	μ_{WW}	μ_{ZZ}	$\mu_{\gamma\gamma}$						
$\mu_{\mathrm{Best-Fit}}$	$2.51^{+2.43}_{-2.01}$	$1.05^{+0.53}_{-0.47}$	$1.35^{+0.35}_{-0.21}$	$1.22^{+0.23}_{-0.21}$	$1.16^{+0.21}_{-0.18}$						
$\mu_{\mathrm{BP-1}}$	1.70	1.91	1.214	1.211	1.19						
$\mu_{\mathrm{BP-2}}$	1.81	2.03	1.239	1.236	1.25						
$\mu_{\mathrm{BP-3}}$	1.42	1.59	1.114	1.111	1.10						
$\mu_{ m BP-4}$	1.85	2.06	1.03	1.029	1.23						
$\mu_{\mathrm{BP-5}}$	2.06	2.30	1.16	1.15	1.22						

TABLE II: 125 GeV Higgs signal strengths corresponding to the BP's shown in Table I

05/05/20 Chakdar PHENO2020

Why NOT Freeze out?

- For viable sub-MeV *DM*, corresponding quartic coupling $\lambda_{5c} < 10^{-12}$
- Allowed annihilation channels are: $A_S^0 A_S^0 o \widetilde{H}_{All}' o \overline{\nu}_l \nu_l / l \overline{l}$

- Large Higgs portal couplings produce relic density at right ballpark through freeze-out mechanism, but violates direct detection limits
- DM unable to remain in thermal bath at MeV due to BBN, forcing it to decouple from thermal bath at some higher temperature
- For such relativistic decoupling, the relic density can be calculated by

$$\Omega h^2 = 7.83 \times 10^4 \left(\frac{g_i}{g_{*s}(T_{dec})} \left(\frac{M_{DM}}{MeV} \right) \right)$$

Turns out to be Overabundant by a few orders of magnitude!

05/25/21

Freeze in relic density

- DM is produced from annihilations of SM particles: $a + b \rightarrow \chi + \chi$ or decay of heavier particle in equilibrium with thermal bath: $Y \rightarrow \chi + \chi$
- In this model, FIP DM is produced dominantly from the decay of the mirror fermions and heavy Higgs (scattering processes negligible)

• Boltzmann equation: $\frac{dn}{dt} + 3Hn = -\sum_i S\left(X_{Heavy,i} \to A_S^0 A_S^0, A_S^0 f_{SM}\right)$ & corresponding relic density:

$$\Omega h^2 = \frac{h^2}{3H_0^2 \ M_{Pl}^2} M_{A_S^0} \sum_i \frac{g_{XHeavy,i} \ \Gamma(X_{Heavy,i} \to A_S^0 A_S^0, A_S^0 f_{SM})}{M_{XHeavy,i}^2}$$

05/25/21

Freeze in relic density

Decay of heavy Higgs into DM & decay of mirror fermion to SM + DM,

$$\Gamma\left(\widetilde{H}_{i} \to A_{S}^{0} A_{S}^{0}\right) = \frac{y_{\widetilde{H}_{i}}^{2} A_{S}^{0} A_{S}^{0}}{32 \pi M_{\widetilde{H}_{i}}} \left(1 - \frac{M_{A_{S}^{0}}^{2}}{M_{\widetilde{H}_{i}}^{2}}\right)^{1/2}, \Gamma\left(f_{MF} \to f_{SM} A_{S}^{0}\right) = \frac{M_{f_{MF}}}{8\pi} y_{f_{MF} f_{SM}}^{2} A_{S}^{0}$$

• Decay of heavy scalars and Mirror fermions can be controlled by λ_{5c} , λ_{4a} , λ_s , y_{sl} and VEVs with $M_{A_s^0}$ mainly depending on λ_{5c} and VEVs

Fig: Variation of the parameters λ_{5c} and λ_{4a} and dark matter mass $M_{A_s^0}$ against λ_{4a} variation

Evolution of *FIP* DM with T

Freeze-in effect:
initially density
of DM being zero and
increasing during the
cooling of Universe and
after a certain
temperature DM density
becoming constant.

Fig: The variation of Yield Y(x) against x for contributions coming from heavy Higgs and Mirror fermion decay ($M_{A_{0}^{0}} = 10 \text{ keV}$)

Bounds and Searches

• $A_s^0 \to ff$ not possible at tree level, $A_s^0 \to \gamma \gamma$ via charged particles

- Lifetime of the decay (dominated by e): $\tau_{A_s^0} = \frac{6.582 \times 10^{-25}}{\Gamma_{tot}(A_s^0 \to \gamma \gamma) GeV} sec$
- DM can remain stable for $y_{sl}\sim {\rm O}(10^{-2})$ for keV mass scale and $y_{sl}\sim {\rm O}(10^{-5})$ for MeV scales respectively ($y_{sl}<10^{-4}$ from rare decays)
- Indirect detection: weak scale DM (100 MeV) constrained by FERMILAT ($\tau_{A_s^0} > 10^{26} {\rm s}$); HEAO-1 and INTEGRAL able to put stringent constraints on parameter space preferring DM lifetime $\tau > 10^{29} {\rm s}$
- **Direct detection**: due to feeble interactions hard to get the signature of DM from the direct-detection experiments through nucleon-dark matter scattering ($\sigma \sim 10^{-61} {\rm cm}^2$)

Exclusion region

- Blue dashed line relic density $\Omega h^2 = 0.1198 \pm 0.0026$.
- DM is stable in the region below the redline, $\tau_{A_S^0} > \tau_U$ (3 red lines correspond to $g_u^M = 1$; $\sqrt{4\pi}$ and 4π).
- Grey region is excluded from $\mu \rightarrow e \gamma$ and $\mu 2e$ implying $g_{sl} < 10^{-4}$.
- Indirect detection bounds are shown preferring lifetime $\tau > 10^{29} \text{s}$

Fig: y_{sl} vs $M_{A_s^0}$ exclusion plot showing the relic density constraints

Freeze in in Colliders

 Can be searched in Colliders using charged track forming due to the decay of mirror fermions into SM fermion and DM.

- Requires new experiments like MATHUSLA: construction of detector on surface above ATLAS/CMS (surface $\sim 40000 \, m^2$, \sim height 25m)
- Large luminosity + energy to get significant event MATHUSLA100/200 detector for this scenario(prod cross-section of mother particle $< O(10^{-10})$ fb.)

Outlook

- Investigated prospect of a light (sub-MeV) scalar as a FIP DM
- Freeze in: DM interacts very weakly with SM & never attain thermal equilibrium
- DM sector gets populated through decay (or annihilation) of SM until the number density of SM species becomes Boltzmann-suppressed
- Mechanism needs feeble interactions →naturally suppressed coupling
- Successfully identified exclusion region for sub-MeV FIP, consistent with rare decay constraints, relic density and direct/indirect searches
- Tricky to search through direct detections, indirect detections have some handle, large energy & luminosity needed for MATHUSLA

