Stellar Shocks From Dark Asteroids

Kevin Zhou

arXiv: 2106.xxxxx with Anirban Das, Sebastian Ellis, Philip Schuster

PHENO Symposium — May 24, 2020

90 Orders of Magnitude

Macroscopic Dark Matter

- Wide mass range available
- Forms in a variety of models
 - Direct fusion in asymmetric DM, dark nucleosynthesis 1411.3739, 1707.02316
 - Collapse and cooling by dark U(1) 1707.03829, 1812.07000
 - Phase transitions forming "nuggets" or solitons
 1810.04360, 2105.02840

Strong DM-SM interactions allowed, but still hard to detect because of rarity

"Low" masses probed by terrestrial searches:

1807.03788

WIMP/neutrino detectors

1803.08044, 1812.09325

Ancient mica 2105.06473

Etched plastic 2012.13406

Gravitational wave detectors

Meteors and cosmic rays

Seismic waves

2008.01285

1610.09680

Strong DM-SM interactions allowed, but still hard to detect because of rarity

For higher masses, too rare to detect on Earth, $\Gamma \lesssim 1/(10^4 \, {\rm yr})$

Strong DM-SM interactions allowed, but still hard to detect because of rarity

Highest masses excluded by gravitational lensing

Strong DM-SM interactions allowed, but still hard to detect because of rarity

A relatively unconstrained "dark asteroid" range

Few existing constraints, near atomic density and higher, even for geometric cross section $\sigma=\pi R_{\rm DM}^2$

Probe by looking for stellar impacts: a dark matter direct detection experiment on astronomical scales!

Naive Estimates

Rate per star:

$$\Gamma \sim \frac{\rho_{\rm DM} v_{\rm DM}}{M_{\rm DM}} \pi R_{\star}^2 \left(1 + \frac{v_{\rm esc}^2}{v_{\rm DM}^2} \right) \sim \frac{1}{10^4 \, \rm yr} \frac{10^{-15} M_{\odot}}{M_{\rm DM}}$$

Energy dissipated in star:

$$E_{\rm DM} \sim \frac{1}{2} M_{\rm DM} v_{\rm esc}^2 \sim 10^{34} \, {\rm erg} \, \frac{M_{\rm DM}}{10^{-15} M_{\odot}}$$

Naive Estimates

Rate per star:

$$\Gamma \sim \frac{\rho_{\rm DM} v_{\rm DM}}{M_{\rm DM}} \pi R_{\star}^2 \left(1 + \frac{v_{\rm esc}^2}{v_{\rm DM}^2} \right) \sim \frac{1}{10^4 \, \rm yr} \frac{10^{-15} M_{\odot}}{M_{\rm DM}}$$

Energy dissipated in star:

$$E_{\rm DM} \sim \frac{1}{2} M_{\rm DM} v_{\rm esc}^2 \sim 10^{34} \, {\rm erg} \, \frac{M_{\rm DM}}{10^{-15} M_{\odot}}$$

Average power $\Gamma E_{\rm DM}$ negligible, but $E_{\rm DM}$ high, potentially observable as strong transient

Dark asteroid experiences gravitational force $M_{\rm DM}g$ and drag $F_d\sim \rho\sigma v^2$ Taking geometric cross section $\sigma=\pi R_{\rm DM}^2$, but qualitatively similar for lower σ

Naively, energy deposited even at depth $R_{\star}/10$ takes **very** long time to get out

Naively, energy deposited even at depth $R_{\star}/10$ takes **very** long time to get out

But dark asteroid is traveling supersonically, at $Ma = v_{\rm esc}/c_s \sim 100$, so energy dissipated forms shock waves, which efficiently propagate to surface!

Naively, energy deposited even at depth $R_{\star}/10$ takes **very** long time to get out

But dark asteroid is traveling supersonically, at $Ma = v_{\rm esc}/c_s \sim 100$, so energy dissipated forms shock waves, which efficiently propagate to surface!

A complicated hydrodynamic problem, but solvable with controlled approximations known for decades

Whitham (1956), ReVelle (1976)

Near the dark asteroid: since $Ma \gg 1$, can approximate with known cylindrical blast wave

Characteristic size $R_0 \sim \mathrm{Ma}\,R_\mathrm{DM}$

Beyond R_0 , match onto a weak shock solution — essentially an acoustic wave with additional dissipation

Rays refract radially outward

Weak shock waves lose energy, but grow in strength as they approach the stellar surface

Shock waves grow strong very close to the photosphere, heating a patch of the surface

Point of shock calculation: typical final temperature is UV; energy released is suppressed by shock dissipation as $R_{
m DM}$ decreases, but still sizable

Detecting the Signal

Main signature: thermal UV transient spread over ~hundreds of seconds

Search Strategies

Local search

- Wide field search for transients on nearby (within 1 kpc) stars
- Does not require dedicated survey
- Rate low, so targets low $M_{
 m DM}$
- Stellar superflare background could be high

Focused search

- Point to region with high $\Gamma \propto \rho_{\rm DM}/\nu_{\rm DM}$
- Requires dedicated search with powerful UV telescope
- Multiple kpc away, so targets high $M_{
 m DM}$
- Events very energetic, background negligible

Local search: planned UV transient telescope ULTRASAT, nearby K dwarfs

Focused search: Hubble Space Telescope, core of globular cluster 47 Tuc

Future Directions

- Other star types (brown dwarf) and telescopes (LSST)?
- Constraints with archival data?
- Other focused searches (galactic center, Milky Way satellites, other globular clusters)?
- Hydrodynamic simulation of shock propagation and subsequent cooling?

Questions?

