Is a Miracle-less WIMP Ruled out?

Jason Arakawa

University of California, Irvine

arXiv:2101.11031 with Tim M.P. Tait

Miracle-less WIMP

WIMPs: popular DM candidate for many years.

- ▶ Predicted by many BSM theories (e.g. SUSY)
- ▶ Freeze out of WIMPs \longrightarrow correct relic abundance (WIMP Miracle)

However,

- ▶ Direct, indirect, and collider searches \rightarrow constrain WIMP miracle regime
- ▶ No data before BBN \rightarrow Early universe is unknown

What are the constraints for WIMPs if we stay agnostic to the production mechanism?

Miracle-less WIMP

We make only the following assumptions:

- 1. WIMP is a real scalar $\mathrm{SU}(2)_{EW}$ triplet, ϕ
- 2. Masses between 0.1 GeV $\lesssim m_{\phi} \lesssim 100$ TeV.
- 3. DM abundance matches observed value Outline:
 - 1. General Model
 - 2. Collider Constraints
 - 3. Direct Detection
 - 4. Indirect Detection

For a real $SU(2)_{EW}$ triplet scalar, ϕ , the most general, renormalizable Lagrangian is:

$$\mathcal{L} = \frac{1}{2} (D_{\mu}\phi)_i (D^{\mu}\phi)_i - \frac{\mu_{\phi}^2}{2} \phi^2 - \frac{\lambda_{\phi}}{4!} \phi^4 - \lambda H^{\dagger} \phi^2 H$$

$SU(2)_{EW}$ Triplet Scalar DM

Small Higgs coupling $\lambda \to$ fine tuning. λ is renormalized by the diagrams

with one-loop correction,

$$\lambda(\mu) \simeq \lambda(\mu_0) + \frac{g_2^4}{\pi^2} \ln\left(\frac{\mu^2}{\mu_0^2}\right)$$

Collider Searches

High energy colliders may be able to produce dark matter. LHC \rightarrow few search methods:

- ▶ Monojet searches
- ▶ Disappearing Charged Tracks (DCTs)
- Invisible Higgs decays

 $m_{\phi} \lesssim 287 \text{ GeV excluded}^1$ if: $\overline{\Delta}m \equiv m_{\phi^{\pm}} - m_{\phi^0} \approx 166 \text{ MeV}$ (electroweak effects)

Can evade bounds by adding a dim. 6 operator \rightarrow increases $\Delta m:$

$$\mathcal{L}_{\text{Mass}} = -\frac{1}{\Lambda^2} |\phi^a H^{\dagger} T^a H|^2 = -\frac{1}{16\Lambda^2} (\phi^0)^2 (v+h)^4$$

¹C.-W. Chiang, G. Cottin, Y. Du, K. Fuyuto, and M. J. Ramsey-Musolf, arXiv:2003.07867

Invisible Higgs Decays

If $m_{\phi} \leq M_h/2 \rightarrow h \rightarrow \phi^0 \phi^0$

$$\Gamma_{h\to\phi^{0}\phi^{0}} = \frac{\sqrt{M_{h}^{2} - 4m_{\phi^{0}}^{2}}}{16\pi M_{h}^{2}} v^{2} \lambda_{\rm eff}^{2},$$

Branching ratio is bounded²,

$$\mathcal{B}(h \to \mathrm{inv}) = rac{\Gamma_{\mathrm{DM}}}{\Gamma_{\mathrm{SM}} + \Gamma_{\mathrm{DM}}} \le 0.19$$

Requires $\lambda_{\text{eff}} \lesssim 10^{-2}$ for $m_{\phi^0} \ll M_h$.

²A. M. Sirunyan et al. (CMS), Phys. Lett. B 793, 520 (2019), arXiv:1809.05937

Direct Detection

DM can scatter off nucleons in terrestrial experiments:

DM-nucleon cross section

$$\sigma_{\rm SI}(\phi \ n \to \phi \ n) = \frac{\lambda^2}{8\pi m_{\phi}^2} \frac{\mu_{\phi n}^2 m_n^2}{m_H^4} (f_{T,u}^n + f_{T,d}^n + f_{T,s}^n + \frac{2}{9} f_{T,g}^n)^2$$

Direct Detection

E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562
D. Akerib et al. (LUX-ZEPLIN), Phys. Rev. D 101, 052002 (2020), arXiv:1802.06039

▶ Most constraining annihilation final state, WW.

▶ Must include Sommerfeld, generated by ladder diagrams.

> Encodes effect of long range potential!

M. Ackermann et al. (Fermi-LAT), Phys. Rev. Lett. 115, 231301 (2015), arXiv:1503.02641
H. Abdallah et al. (H.E.S.S.), Phys. Rev. Lett. 117, 111301 (2016), arXiv:1607.08142

Indirect Detection: Below the W mass

N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), arXiv:1807.06209

Is a Miracle-Less WIMP Ruled Out?

Questions?

Back-up Slides

We can have annihilation into SM fermions through the Higgs portal.

L. Rinchiuso, N. L. Rodd, I. Moult, E. Moulin, M. Baumgart, T. Cohen, T. R. Slatyer, I. W. Stewart, and V. Vaidya, Phys. Rev. D 98, 123014 (2018), arXiv:1808.04388