Indirect Detection of Secluded Supersymmetric Dark Matter

Patrick Barnes

https://arxiv.org/abs/2003.13744 https://arxiv.org/abs/2106.XXXXX Patrick Barnes, Zachary Johnson, Aaron Pierce, Bibhushan Shakya

May 24, 2021

Brief Outline

Overview and Motivation

Photon Spectra from Dark Matter Annihilations

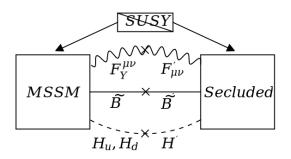
Analysis and Indirect Detection Bounds

Secluded WIMPS and Indirect Detection

The WIMP paradigm remains a popular model of dark matter.

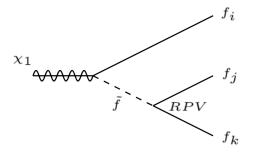
Traditional WIMP candidates, such as MSSM neutralinos, are increasingly bounded by direct detection experiments.

WIMP dark matter within a secluded sector with small portal couplings to the Standard Model can evade direct detection and collider bounds.


Indirect detection signals, however, will not be suppressed.

Supersymmetric Secluded Sectors and Portals

Supersymmetry can explain why the secluded particles are at the weak scale.


A SUSY kinetic mixing provides a gauge, gaugino, and Higgs portal,

$$\frac{\epsilon}{2} \int d^2\theta \ W_Y W' + h.c. = \epsilon D_Y D' - \frac{\epsilon}{2} F_Y^{\mu\nu} F'_{\mu\nu} + i\epsilon \tilde{B} \sigma^\mu \partial_\mu \tilde{B}'^\dagger + i\epsilon \tilde{B}' \sigma^\mu \partial_\mu \tilde{B}^\dagger.$$

R-Parity Violation

R-Parity is sometimes postulated in the MSSM to stabilize the LSP.

We can add R-Parity violating couplings and investigate the results of different ones on our annihilation spectra.

Photon Spectra from Annihilation

For R-Parity even final states, we have Dirac DM ψ , a dark photon Z', and dark Higgs H'. We do not assume supersymmetry.

$$\psi ar{\psi} o Z' H'$$
 (Higgs Mechanism)

$$\psi ar{\psi} o Z' Z'$$
 (Stueckelberg)

Branching ratios set by

$$\mathcal{L} = \xi |H'|^2 |H|^2 - \frac{\epsilon}{2} F_Y^{\mu\nu} F_{\mu\nu}'. \tag{1}$$

R-Parity Even Final States

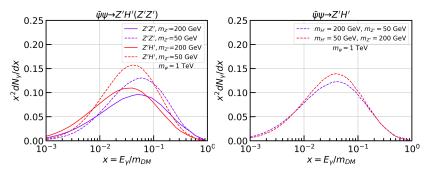


Figure 1: **Left:** Spectra for $\psi\bar{\psi}$ annihilation to either Z'Z', or Z'H' in the degenerate case $m_{Z'}=m_{H'}$. **Right:** We now allow $m_H'\neq m_{Z'}$.

$$H' o bar b$$
 or W^+W^-

$$Z' o u \bar u$$

R-Parity Odd Final States

If the secluded sector is supersymmetric, annihilation to neutralinos, $\psi \bar{\psi} \to \chi_1' \chi_1'$, is possible.

We assume H' is charged under U(1)', so the Higgsino and gaugino mix to form Majorana mass eigenstates χ_1' and χ_2' .

These neutralinos will decay to SM states through the gaugino portal.

LSP in the Visible Sector

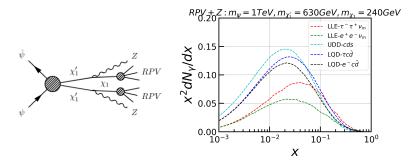


Figure 2: **Left:** Effective DM annihilation through a neutralino cascade. "RPV" indicates the three fermion final state from RPV χ_1 decay, which differs based on the dominant RPV coupling. **Right:** The resulting spectra for specific examples of non-zero RPV couplings.

$$W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c.$$
 (2)

LSP in the Secluded Sector

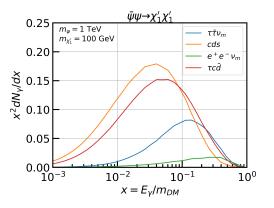
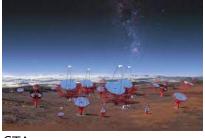
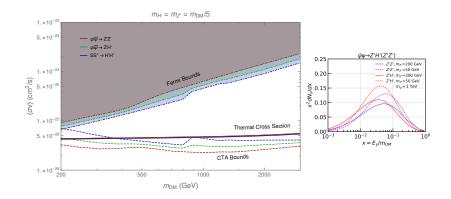



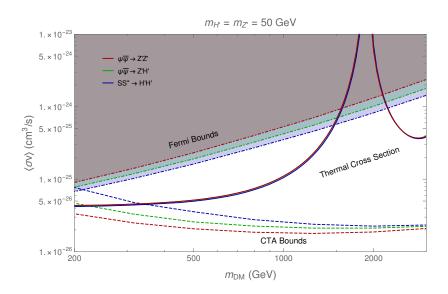
Figure 3: The photon spectra for direct ψ annihilation to χ'_1 , shown for multiple potential RPV mediated χ'_1 decays.

If the χ_1' is lighter than its MSSM counterparts, it may decay directly to the SM via RPV couplings.

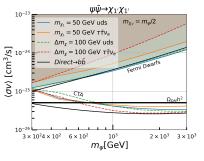
Analysis

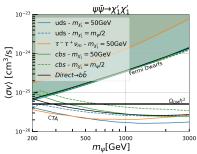

Fermi-LAT

6 years of data 15 dSph galaxies https://arxiv.org/abs/1503.02641


CTA

Projected 525 hours Milky Way galactic center https://arxiv.org/abs/2007.16129


R-Parity Even Final States



R-Parity Even Final States

R-Parity Odd Final States

Takeaways

Indirect detection can provide a robust probe of DM models where small couplings will suppress direct and collider signals.

A well motivated example is a supersymmetric secluded sector.

For large areas of parameter space, CTA will probe the thermal relic cross section for such a model.