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ALP meets GW
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ALP meets GW

“+ Gravitational waves (GWs) with (way) lower
frequency are relevant for CMB

= wavelength comparable to Hubble patch size

<+ Axion-like particles (ALPs) can be the sources of
the GW

= coupled to dark photons

= tachyonic instability leads to exponential enhancement of

the gauge modes .



Tachyonic Instability

“* Consider a Lagrangian of ALPs and dark photons
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[for spacially inhomogeneous ALP
6 see Schwaller et. al. 2012.11584]



Tachyonic Instability

“* Consider a Lagrangian of ALPs and dark photons

1 1 o .
— | N _ mvo 224

V(9) = 5m*e?

“* The dark sector doesn’t couple to or mix with the
SM sector

“* Also, we assume the dark photons are not
produced from inflation but just live in the Bunch-
Davis vacuum (i.e. plane wave)



Tachyonic Instability

“* Setup

= 100 discretized gauge modes, logarithmically spaced in k

= the k-range determined by trial-and-error

= initial condition: plane wave for gauge modes and ¢;

= parametrize m = A%/ f

knob of the signal strength

m (eV) kmax (Mpc_l) Abound 8
BM1 4 x 10739 0.94 15 meV | 400
BM2 | 8.8 x 1031 0.78 9 meV | 400

f
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The CMB anisotropy spectrum

“ The dark sector also influences the CMB
anisotropy spectrum (TT), through both the tensor
and scalar perturbation
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“ Scalar: mainly integrated Sachs-Wolfe (ISW)
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new contribution to
the scalar spectrum

[Gorbunov & Rubakov, Introduction to the
theory of the early universe: Cosmological
perturbations and inflationary theory]| 10



The CMB anisotropy spectrum

* The scalar potential is obtained by solving the
linear Einstein equations

o +6,, =30,

/
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“+ Solve the above equations with Green’s Function
method

= the dark sector energy density perturbation as the source
= boundary condition G¢(7,7) = a(7)/(3a’ (7))
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The CMB anisotropy spectrum

<+ Tensor perturbations
TT _ / " / Jil(to — 7)K] ’
; l_2 /Dk:Dk: {/ iy (k1) } )

< Again, solve the tensor spectrum above w/ GF

7 9 the stress tensor
_ 5 a _

d3
Hij (k, T) — / ! @271 = (QJ k) 8)\1 A2 (Qa k, T)

(2m)°
1 gauge modes
81\1)\2 (qa ka T) — _0—2 [’\1/\2 |q||k - Q| U, (Q)’U)\z (k - Q) + ’US\I (q),U,AQ (k - q)
magnetic electric )

[for detailed derivation see e.g.
12 Schwaller et. al. 1811.01950]



The CMB anisotropy spectrum
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= Compared with the error bar of the binned Planck 2018 result
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CMB B-modes

“* Of course also B-mode signals, as we have tensor
perturbations

Pab = —{VaVp}Pe —{e. ViV }PB

_ (-2 _ (1-2)
Pe(n) = V2D | igyiimYim(n) 7>B<n>—ﬂl§7; T 291 %m Yim ()

1 ;
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<+ We focus on the contributions from around
reionization (z~8)

[for contribution around recombination,
see Weiner et. al. 2008.01732]
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CMB B-modes

<+ The B-mode can be calculated as
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Conclusion

“* We have studied the CMB power spectra generated
by ALPs via a tachyonic instability at around the
cosmic reionization epoch

“* The signal can leave a visible imprint on B-mode to
the next generation experiments, and meanwhile
stays compatible with the current CMB anisotropy
measurements

“* Roads ahead:
= non-Gaussianity?
= more to exploit from chiral GW?
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Back up



Quantizing the gauge modes

“* The dark photon field in Coulomb gauge
Xi _ /Dk (€+i(k)’0+(7’, k)é.+ (k)eik'x - hC) ]
Xo=0,

k°€:|:=O,k><€:|:::Fik€:|:, €:|:°€:|:=O, €:|:-€:|:=1
“* Using these we will have
k2dk
Z / Re [v5 (k, 7)vh (k, T)]

2m2a

“ Energy density fluctuations of the dark sector
pe 50 [(@0X0)] + 16 [XX,]. 60] = 0 — (0)
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Amplitude of the spectra

+ Spectrum amplitudes are sensitive to the values of
the parameters

= Parametrizing m = A*/f

= The dark photon energy density

= oo [ DR GIP + R - B

= As tachyonic production quickly transfer the axion energy into
dark photon, we expect |v| oc A?

= The power counting of the mode functions in these spectra
suggests that when fixing m, the spectrum amplitudes scale

as A°
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The E-modes?

<+ There are also the E-modes, from both tensor and
scalar. Similar to the calculations before

= tensor

(1+2)(1+1)
(20 + 1)(20 — 1)

6(1+2)(1 — 1)
21+ 3)(21 — 1)

I(1—1)
(20 +3)(20 + 1

Ip.i(k) = Tei(k) = Ji—2(K) — Ji(k) + )jl+2(/<6)

= gcalar

O [+ 2)! . 37 1(T0 — Trei) K]
EE:— 2- D D ! q) rei q) rei ) ; rei) ’ l
CFF = S Ta g | DRDK (@(ra)®(re) - ki) - 2 LT

“* Not as constrained as the TT spectrum
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Chiral GW

“* E- and B-modes are at odd under parity so in the
standard calculation we usually don’t expect <EB>

“ A non-zero <EB> may indicate direct CPV for
photons, but not necessary. Chiral GW can be
another source
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