Hunting for axions in the solar basin

W. DeRocco,¹ J. Huang,² K. Van Tilburg,^{3, 4} S. Wegsman³

¹Stanford University

²Perimeter Institute

³New York University

⁴Flatiron Institute

Motivation

 Stars are well-known to be excellent sources of new particles

Motivation

 Stars are well-known to be excellent sources of new particles

Most analyses focus on escaping flux

Motivation

- Stars are well-known to be excellent sources of new particles
- Most analyses focus on escaping flux
- What about the lowvelocity tail?

Outline

• Part I: Stellar basins are a generic phenomenon

 Part II: Existing observations of the Sun may shed new light on axions

Outline

• Part I: Stellar basins are a generic phenomenon

 Part II: Existing observations of the Sun may shed new light on axions

Gravitational trapping

 Low-velocity particles cannot escape gravitational well

Low-velocity tail

- Low-velocity particles cannot escape gravitational well
- Small fraction of spectrum

Stellar basin

- Low-velocity particles cannot escape gravitational well
- Small fraction of spectrum
- Long accumulation time!

$$\rho(r) \sim \dot{\rho}(r)\tau$$

 Particles accumulate to form "stellar basin"

Stellar basin

- Low-velocity particles cannot escape gravitational well
- Small fraction of spectrum
- Long accumulation time!

$$\rho_b(r) \sim \dot{\rho_b}(r)\tau$$

$$\Rightarrow \rho_b(r) \gg \rho_{DM}$$

 High abundance leads to new signatures!

Outline

• Part I: Stellar basins are a generic phenomenon

 Part II: Existing observations of the Sun may shed new light on axions

Outline

• Part I: Stellar basins are a generic phenomenon

 Part II: Existing observations of the Sun may shed new light on axions

Solar basin

- Low-velocity particles cannot escape gravitational well
- Particles accumulate to form "stellar basin"
- What can we see in our very own solar basin?
 - Axions!

Model

Observable signatures

- Low-velocity particles cannot escape gravitational well
- Particles accumulate to form "stellar basin"
- Axions produced in solar core accumulate around the Sun for $\tau \sim \frac{1}{\Gamma}$
- Decay to two photons is observable

Decay signatures: energy spectrum

- Signal maximized at $m_a \approx T_{sun}(0)$
- Axions decay near rest
- X-ray line at ~ keV energy

Decay signatures: spatial template

 Integrated line of sight doubles at solar limb photons axions

Decay signatures: spatial template

- Integrated line of sight doubles at solar limb
- Signal falls off with $T(\theta) \propto \int dl \ R^{-4} \propto \theta^{-3}$
- Profile with ~ arcminscale features

 $\theta \equiv$ angle from solar center

NuSTAR

- Orbital X-ray telescope
- Two identical detectors (FPMA and FPMB)
- Energy range: 3 78 keV;
 40 eV bins
- Angular resolution ~ 0.3 arcmin

New data

- Recent quiescent limb dwells (September 2020)
- Very clean dataset with discovery potential!

https://github.com/ianan/nsigh_all/blob/master/maps/maps_20200912/maps_20200912_104222_nu80610202001_FPMA.png

Initial constraints

- Naive Poisson limit
- Improves constraints by over an order of magnitude
- But this can only improve...

Future work

- Grid FOV into 13 x 13 arcmin² regions for both detectors
- Fit with spatial template
- Compute log-likelihood ratio for signal at particular mass

https://github.com/ianan/nsigh_all/blob/master/maps/maps_20200912/maps_20200912_104222_nu80610202001_FPMA.png

Future work

- Grid FOV into 13 x 13 arcmin² regions for both detectors
- Fit with spatial template
- Compute log-likelihood ratio for signal at particular mass
- Stay tuned!

https://github.com/ianan/nsigh_all/blob/master/maps/maps_20200912/maps_20200912_104222_nu80610202001_FPMA.png

Outline

• Part I: Stellar basins are a generic phenomenon

 Part II: Existing observations of the Sun may shed new light on axions

Takeaways

• Part I: Stellar basins are a generic phenomenon

 Part II: Existing observations of the Sun may shed new light on axions

Thank you for listening!

BACKUP

Full parameter sapce

- Naive Poisson limit
- Improves constraints by two orders of magnitude

Poisson Limit

• Expected signal in a bin exceeds observed counts by $\sim 1.65\sigma = 1.65\sqrt{N_{data}}$ (90% CL)

- Crude initial estimate
- Cannot be used for discovery

Resolution effects

 Known X-ray line broadened by detector effects

Radial scaling

1 Injection rate radial scaling

Between any given radii R and $R+\Delta R$, the only particles contributing appreciably to the basin are produced in the Sun with $\sqrt{\frac{2GM}{R+\Delta R}} < v < \sqrt{\frac{2GM}{R}}$ because these are the ones that turn around between R and $R+\Delta R$, hence spend the longest time there. In terms of energy, they have $m(1+\frac{GM}{R+\Delta R}) < \omega < m(1+\frac{GM}{R})$.

The luminosity of all particles (bound and unbound) is

$$L = \int_{\text{Sun}} dV \int_{m}^{\infty} d\omega \frac{dQ}{d\omega}$$

The fraction of the luminosity that will actually contribute to the basin between R and $R + \Delta R$ is then just

$$L_{bound} = \int_{Sun} dV \int_{m(1 + \frac{GM}{R + \Delta R})}^{m(1 + \frac{GM}{R})} d\omega \frac{dQ}{d\omega}$$

We can evaluate the integral by assuming $dQ/d\omega$ is approximately constant in this narrow window of energy and then just multiplying the integrand by the energy difference

$$L_{bound} \approx \int_{\text{Sun}} dV \left[m(1 + \frac{GM}{R}) - m(1 + \frac{GM}{R + \Delta R}) \right] \frac{dN}{dV dt}$$

We can integrate over the Sun's volume and are left with

$$L_{bound} \approx \left[\frac{GM}{R} - \frac{GM}{R + \Delta R} \right] \frac{m \ dN}{dt}$$

where dN/dt is the total number of particles of all energies being produced by the Sun per unit time.

Expanding in small ΔR gives

$$L_{bound} \approx \left[\frac{GM}{R} - \frac{GM}{R} (1 + \frac{\Delta R}{R})^{-1} \right] \frac{m \ dN}{dt}$$

$$\approx \left[\frac{GM}{R} - \frac{GM}{R} (1 - \frac{\Delta R}{R}) \right] \frac{m \ dN}{dt}$$

$$\approx \left[\frac{GM\Delta R}{R^2} \right] \frac{m \ dN}{dt}$$
(1)

The flux of relevant bound particles through R is $F_{bound} = L_{bound}/(4\pi R^2)$, so the energy injection rate is

$$\dot{\rho}_b = \lim_{\Delta R \to 0} \frac{\Delta F}{\Delta R} \approx \frac{m}{4\pi R^2} \left[\frac{GM}{R^2} \right] \frac{dN}{dt} \propto \frac{1}{R^4}$$

as expected.

Stellar basin

Long accumulation time!

$$\rho_b(r) \sim \dot{\rho_b}(r)\tau$$

$$\Rightarrow \rho_b(r) \gg \rho_{DM}$$

• Even for kyr accumulation times, this region in parameter space exceeds ρ_{DM}

Production rate

Falloff at low mass due to phase space of NR brem

$$\tilde{\omega}_k \equiv (\omega - m)/m \simeq \mathbf{k}^2/2m^2$$
, one finds in general that
$$\frac{\mathrm{d}Q}{\mathrm{d}\tilde{\omega}_k} \simeq \sum_p \tilde{Q}_p(R')\tilde{\omega}_k^{n_p/2} + \dots$$

$$\dot{\rho}_{\rm b}(R) = \frac{7}{32\pi} \frac{G_N M_*}{R^4} \int d^3 R' \sum_p \tilde{Q}_p(R') \left| \Phi(R') \right|^{\frac{n_p}{2}}.$$

$$ilde{Q}_{\mathrm{B}}^{\mathrm{ND}} \simeq rac{lpha^2 g_{aee}^2}{2\pi^{3/2}} rac{\overline{n}_N n_e m^3}{m_e^{7/2} T^{1/2}} \int_0^1 \mathrm{d}\epsilon \, rac{\ln rac{2+2\sqrt{1-\epsilon-\epsilon+\xi}}{\epsilon+\xi}}{\exp\{rac{m}{\epsilon T}\}}.$$

The screening measure ξ is quite small in practice.