

Fisica del sapore a LHCb

14 Gennaio 2025

Presentazione delle attività di tesi triennali

martino.borsato@unimib.it

Il Modello Standard

Il Modello Standard

Martino Borsato - Milano-Bicocca U.

Il mistero del sapore

i 13 parametri del sapore hanno un pattern suggestivo

Masse dei fermioni

Mixing dei quark

Qual è l'origine del sapore fermionico?

Il sapore della nuova fisica

La nuova fisica ad alta energia ha lo stesso sapore?

Fisica del sapore a LHC

- Collisioni di protoni con energia 13 TeV a 40 MHz
- Quark *b* pesa solo 5 GeV \rightarrow 10 milioni al secondo
- Molto difficili da identificare e misurare con precisione
- Uno dei 4 grandi detector di LHC ha un design dedicato: LHCb

Martino Borsato - Milano-Bicocca U.

L'esperimento LHCb

design dedicato alla fisica del sapore

 \rightarrow Dataset gigantesco di adroni beauty e charm

Martino Borsato - Milano-Bicocca U.

La fisica dei quark beauty e charm

Decadimenti di quark pesanti beauty e charm

- Misura di parametri fondamentali del MS
- Test delle simmetrie della teoria
- Stress-test di consistenza della teoria
- Anomalie \rightarrow fisica oltre il Modello Standard?

Studio della composizione del campione Sottrazione statistica del fondo con fit

5. Asimmetrie tra materia e antimateria (violazione CP)

Violazione CP nel charm

1800

1900

2000

 $m(\phi \gamma)$ [MeV]

- Violazione CP nel quark charm scoperta da LHCb nel 2019
- Asimmetria di 0.1% → necessario dataset di milioni di decadimenti!
- Avviato ampio programma di analisi di precisione
- Gruppo di Bicocca in prima linea
- Attualmente attivi nelle analisi di:
 - Transizioni a 3 corpi $D^0 \to K_{\rm S} \pi \pi$
 - Transizioni radiative rare $D^0 \rightarrow V \gamma$

-1.0

-0.5

0.0

0.5

210

1.0

 $\cos(\theta_K)$

LHCb upgrade 2

- Scopo upgrade: collezionare dati più rapidamente e di qualità migliore
- Primo upgrade completato nel 2024
- Upgrade 2 per il 2033
 - Luminosità più alta di un fattore 10
 - Necessari più granularità, timing, resistenza alla radiazione, high-performance computing, tecniche di analisi avanzate

Upgrade hardware: calorimetro

- Nuova tecnologia necessaria
 - Resistenza alla radiazione, granularità, misura di tempo

Spaghetti Calorimeter (SPACAL)

- Test dei prototipi su fascio
- Ottimizzazione design con simulazione
- Studio delle performance di identificazione delle particelle

Prototipo di modulo SPACAL

Upgrade software: Machine Learning

- Studiando varie soluzioni di ML moderno
 - Convolutional Neural Networks
 - Graph Neural Networks
 - Tecniche di ML in real time (EdgeML)
- Progetti di ML avanzato di Bicocca@LHCb:
 - Ricostruzione globale dell'evento (DFEI)
 - Identificazione delle particelle cariche con gli anelli di luce Cherenkov

Graph Neural Network per Full Event Interpretation

Contatti: marta.calvi@unimib.it, maurizio.martinelli@unimib.it, martino.borsato@unimib.it

Perché fare una tesi in LHCb?

- Fisica delle interazioni fondamentali
- Fisica del sapore, fisica dei collider
- Analisi statistica e Machine Learning
- Programmazione in python e/o C++
- Sviluppo detector di ultima generazione
- Un gruppo che lavora in ambito internazionale ed è in crescita

Contatti:

i: <u>marta.calvi@unimib.it</u> <u>maurizio.martinelli@unimib.it</u> <u>martino.borsato@unimib.it</u> <u>marco.pizzichemi@unimib.it</u>