

Misure del Modello Standard e ricerche di nuova fisica

Raffaele Gerosa

Università degli Studi di Milano Bicocca e INFN (sezione MIB)

Lo Standard Model e LHC

Raffaele Gerosa

 Lo Standard Model (SM) é la teoria più completa che spiega la dinamica dei costituenti ultimi della materia

• **Costituenti:** particelle di spin semi-intero detti fermioni

• Interazioni: mediate da particelle a spin intero detti bosoni

- Lo Standard Model é sperimentalmente verificato fino alle scale di energia accessibili ad LHC O(TeV)
 - I dati osservati sono in accordo con le sue previsioni entro le incertezze teoriche e sperimentali
 - ATLAS e CMS hanno scoperto il bosone di Higgs → 2012
 - Non sono state osservate nuove particelle in s-channel

Gauge & Higgs Bosons	reviews Leptons
	e
gluon	μ
W	Heavy Charged Le
Z	Neutrino Properti
H^0	Number of Neutri
Neutral Higgs Bosons, Searches for	Double β -Decay
Charged Higgs Bosons (H^{\pm} , $H^{\pm\pm}$)	Neutrino Mixing
Axions	Heavy Neutral Le
Mesons	reviews) Baryons
Light Unflavored	N Barvons
Strange	Δ Baryons
Charmed	∕ A Baryons
Charmed, Strange (incl. possibly non- $q \bar q$	states) Σ Baryons
Bottom	🖅 Baryons
Bottom, Strange	Ω Baryons
Bottom, Charmed	Charmed Baryons
\overline{cc} (incl. possibly non- \overline{qq} states)	Bottom Baryons

2

Lo Standard Model e LHC

• Lo Standard Model (SM) é la teoria più completa che spiega la dinamica dei costituenti ultimi della materia

• **Costituenti:** particelle di spin semi-intero detti fermioni

- Interazioni: mediate da particelle a spin intero detti bosoni
- Lo Standard Model é sperimentalmente verificato fino alle accessibili ad LHC O(TeV)
 - I dati osservati sono in accordo con le sue presi incertezze teoriche e sperimentali
 - ATLAS e CMS hanno scoperto il
 - Non sono state osservate pr

ie Rovie	ew of I	Particle	e Phys
R.L. Workman <i>et a</i>	/. (Particle Data G	roup), Prog. Theor.	Exp. Phys. 202
Lentens			roviour

7 guan gravitor H^0 Neutral Higgs Bosons, Searches for Charged Higgs Bosons (H^{\pm} , $H^{\pm\pm}$) Heavy Bosons Axions	e μ τ Heavy Charged Lepton Neutrino Properties Number of Neutrino Types Double β-Decay Neutrino Mixing Heavy Neutral Leptons	Light qu c b ť ť ť Free qu
Mesons reviews	Baryons reviews	Other Se
Light Unflavored	N Baryons	Magneti
Strange	Δ Baryons	Supersy
Charmed	arLambda Baryons	Technic
Charmed, Strange (incl. possibly non- $q\overline{q}$ states)	Σ Baryons	Quark a
Bottom	🖅 Baryons	Extra Di
Bottom, Strange	arOmega Baryons	WIMPs
Bottom, Charmed $c\overline{c}$ (incl. possibly non- $q\overline{q}$ states)	Charmed Baryons Doubly-Charmed	Other P
$b\overline{b}$ (incl. possibly non- $q\overline{q}$ states)	Bottom Baryons Exotic Baryons	Conserve
		Discrete
		Missing la su

Raffaele Gerosa

2

Prima risposta: la fisica di LHC é di frontiera

Motivi "teorici"

- Non spiega la gerarchia di massa osservata nelle diverse famiglie di leptoni e quarks
- Non spiega dove sia finita anti-materia \rightarrow violazione di CP é "piccola" nello SM
- Non contiene la gravità al suo interno

Motivi "sperimentali"

- Non contiene candidati di materia oscura e di energia oscura
- Produzione diretta di nuove particelle (materia oscura, SUSY, etc) non osservata entro le precisioni sperimentali \rightarrow nessuno vieta che sia weakly coupled
- Ricerche indirette: nuove particelle possono modificare la dinamica di processi noti attraverso correzioni d'ordine superiore
 - o Discrepanze dalle predizioni dello SM in alcune misure da alcuni esperimenti

Lo SM è una "teoria efficace" che descrive bene la dinamica alle energie di LHC ma non é del tutto soddisfacente

Raffaele Gerosa

beyond SM

March 2023	
11.05947 (2)) 24= 1 Y (2) + 1 Y () 6.0599 (1) + 1 Y () 6.03947 (2))	137 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 37 fb ⁻¹
<24 TeV[2103.02708 (2/) <36 TeV[2103.02708 (2/) (2e+2j) (2µ+2j)	140 fb ⁻¹ 140 fb ⁻¹ 77 fb ⁻¹ 77 fb ⁻¹
μ) + μ ^{γψ})	$\begin{array}{c} 18 \ fb^{-1} \\ 140 \ fb^{-1} \\ 137 \ fb^{-1} \\ 101 \ fb^{-1} \\ 140 \ fb^{-1} \\ 36 \ fb^{-1} \\ 101 \ fb^{-1} \\ 101 \ fb^{-1} \\ 137 \ fb^{-1} \\ 137 \ fb^{-1} \\ 136 \ fb^{-1} \\ 138 \ fb^{-1} \\ 36 \ fb^{-1} \\ 138 \ fb^{-1} \\ 137 \ fb^{$
	36 fb ⁻¹ 38 fb ⁻¹ 38 fb ⁻¹ 36 fb ⁻¹
an mg (un) 0.0000 (2) (mg (y - 2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	$\begin{array}{c} 36 \ tb^{-1} \\ 36 \ tb^{-1} \\ 101 \ tb^{-1} \\ 36 \ tb^{-1} \\ 137 \ tb^{-1} \\ 36 \ tb^{-1} \\ 137 \ tb^{-1} \\ 36 \ tb^{-1} \\ 137 \ tb^{-1$
47 (2)) X0-20-012 (y + j)	137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹
10) + 11)	36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹
n, 2(µ) (µ) (µ + p ⁻⁽ⁿ⁾) + 2() p ⁽ⁿ⁾ -2() -2() -2() -0.000	$\begin{array}{c} 137 \ \text{fb}^{-1} \\ 137 \ \text{fb}^{-1} \\ 97 \ \text{fb}^{-1} \\ 97 \ \text{fb}^{-1} \\ 140 \ \text{fb}^{-1} \\ 137 \ \text{fb}^{-1} \end{array}$

Prima risposta: la fisica di LHC é di frontiera

Motivi "teorici"

- Non spiega la gerarchia di massa osservata nelle diverse famiglie di leptoni e quarks
- Non spiega dove sia finita anti-materia \rightarrow violazione di CP é "piccola" nello SM
- Non contiene la gravità al suo interno

Motivi "sperimentali"

- Non contiene candidati di materia oscura e di energia oscura
- Produzione diretta di nuove particelle (materia oscura, SUSY, etc) non osservata entro le precisioni sperimentali \rightarrow nessuno vieta che sia weakly coupled
- **Ricerche indirette:** nuove particelle possono modificare la dinamica di processi noti attraverso correzioni d'ordine superiore
 - o Discrepanze dalle predizioni dello SM in alcune misure da alcuni esperimenti

Lo SM è una "teoria efficace" che descrive bene la dinamica alle energie di LHC ma non é del tutto soddisfacente

La fisica di LHC non ha competitors

- LHC è l'unica Higgs-factory
 - Misure sperimentali: accoppiamenti, mass, spin e CP, larghezza, distribuzioni differenziali, self-coupling
 - Misure chiave per comprendere fisica elettro-debole e la sua rottura spontanea di simmetria
- LHC è una weak boson (W,Z) e top-quark factory
 - Studiare interazioni multiple (trilineari e quartiche) tra bosoni vettori
 - Studiare proprietà del top, produzione t + bosoni vettori, spin-polarization t \rightarrow Wb, etc...
- LHC è una meson e hadron factory
 - Misure di precisione in **fisica** di **beauty** e **charm** quark
 - Decadimenti rari di mesoni B, D, K ...
 - Violazione di simmetria CP
 - Spettroscopia di adroni esotici

Seconda risposta: la fisica di LHC é unica

CMS

Seconda risposta: la fisica di LHC é unica

La fisica di LHC non ha competitors

4

Terza risposta: sviluppo di competenze "strategiche"

Simulazioni e ricostruzione

- Usare software per il **calcolo di** elementi di matrice e di parton shower
- Usare e/o sviluppare software per la simulazione della **risposta del rivelatore** alla particelle prodotte
- Usare e/o sviluppare di **algoritmi per** la ricostruzione dell'evento

Computing e statistics

- Gestire e manipolare una grande mole di dati (big data) attraverso linguaggi di programmazione moderni (C++, python), software avanzati (ROOT, pandas, scipy ...etc) e utilizzo di calcolo scientifico distribuito
- Metodi statistici avanzati per stima di parametri, test d'ipotesi, unfolding .. etc ...

**** Presentazione di Martina Malberti:** [Link alle slide]

Raffaele Gerosa

Lavorando in uno dei grandi esperimenti di LHC (analisi dati o R&D di detector **) si costruisce un curriculum scientifico di ricerca completo e si sviluppano competenze trasversali

- Ampiamente usato nelle misure compiute ad LHC per risolvere diversi tipi di problemi
 - Classificazione di eventi
 - Identificazione di particelle
 - Sviluppo di trigger
 - Calibrazione di oggetti
 - Ricerca di segnali anomali
 - Simulazione risposta del detector
 - Unfolding

Machine learning (ML)

17/04/23

Introduzione a CMS

CMS in a nutshell

- CMS é un esperimento "general purpose"
- In grado di **misurare pressoché ermeticamente** tutte le particelle prodotte dalle collisioni di protoni
- Composto da 4 rivelatori: tracciatore pixel+strip, calorimetro elettromagnetico omogeneo, calorimetro adronico a "sampling" e camere a muoni
- Cuore centrale é un magnete superconduttore in grado di sviluppare B = 3.8 T
- In grado di misurare 40 MHz di collisioni
- In grado di **salvare su disco 5 kHz** di eventi RAW

Produzione di coppie di bosoni di Higgs

- Simone Gennai: <u>simone.gennai@mib.infn.it</u>
- Raffaele Gerosa: <u>raffaele.gerosa@unimib.it</u>
- Mauro Dinardo: <u>mauro.dinardo@unimib.it</u>
- Martina Malberti: <u>martina.malberti@mib.infn.it</u>

Misure differenziali processi EW: WW e VBF-Z

- Pietro Govoni: <u>pietro.govoni@unimib.it</u>
- Raffaele Gerosa: <u>raffaele.gerosa@unimib.it</u>
- Marco Paganoni: <u>marco.paganoni@unimib.it</u>
- Andrea Massironi: <u>andrea.massironi@mib.infn.it</u>
- Simone Gennai: <u>simone.gennai@mib.infn.it</u>

Overview dei progetti di tesi

Vector Boson Scattering

- Pietro Govoni: <u>pietro.govoni@unimib.it</u>
- Raffaele Gerosa: <u>raffaele.gerosa@unimib.it</u>
- Marco Paganoni: <u>marco.paganoni@unimib.it</u>
- Andrea Massironi: <u>andrea.massironi@mib.infn.it</u>
- Simone Gennai: <u>simone.gennai@mib.infn.it</u>

B-physics

- Mauro Dinardo: <u>mauro.dinardo@unimib.it</u>
- Paolo Dini: <u>paolo.dini@mib.infn.it</u>
- Sandra Malvezzi: <u>sandra.malvezzi@mib.infn.it</u>

Produzione di coppie di Higgs: HH \rightarrow **bb** $\tau^{+}\tau^{-}$

Analisi condotte

- Lavoriamo su due analisi indipendenti
 - Produzione risonante di coppie di Higgs
 - Produzione non-risonante di coppie di Higgs
- Il canale di decadimento $H \rightarrow bb$, $H \rightarrow \tau \tau$ miglior compromesso per avere alto S/B

Simone Gennai Mauro Dinardo **Raffaele Gerosa** Martina Malberti

- Nuove particelle ad alta massa strongly coupled con bosoni di Higgs boson
- Unico processo che permette la misura dell'**Higgs self coupling k(λ)**

** Accesso alla forma del potenziale di Higgs e dunque alla natura dell'EWSB

• HH risonante: uso di ML per classificazione di eventi e ricostruzione di m_{HH} (stima 4V dei neutrini da τ -decay)

• HH non-risonante: sviluppo analisi esclusiva per eventi in cui almeno uno dei due Higgs ha alto $p_T \rightarrow$ aumentare sensibilità per k(λ) ~ 1

• HH non-risonante: sviluppo di nuova strategia di trigger per Run3 per migliorare efficienza nel canale con due τ -adronici

Produzione di coppie di Higgs: HH \rightarrow **bb** $\tau^{+}\tau^{-}$

Analisi condotte

- Lavoriamo su due analisi indipendenti
 - Produzione risonante di coppie di Higgs
 - Produzione non-risonante di coppie di Higgs
- Il canale di decadimento $H \rightarrow bb$, $H \rightarrow \tau\tau$ miglior compromesso per avere alto S/B

Simone Gennai

Mauro Dinardo

Raffaele Gerosa

Martina Malberti

Interessanti perché?

- Nuove particelle ad alta massa strongly coupled con bosoni di Higgs boson
- Unico processo che permette la misura dell'**Higgs self coupling k(λ)**

** Accesso alla forma del potenziale di Higgs e dunque alla natura dell'EWSB

• HH risonante: uso di ML per classificazione di eventi e ricostruzione di m_{HH} (stima 4V dei neutrini da τ -decay)

• HH non-risonante: sviluppo analisi esclusiva per eventi in cui almeno uno dei due Higgs ha alto $p_T \rightarrow$ aumentare sensibilità per k(λ) ~ 1

• HH non-risonante: sviluppo di nuova strategia di trigger per Run3 per migliorare efficienza nel canale con due τ -adronici

Produzione di coppie di Higgs: HH \rightarrow bb $\tau^+\tau^-$

Analisi condotte

- Lavoriamo su due analisi indipendenti
 - Produzione risonante di coppie di Higgs
 - Produzione non-risonante di coppie di Higgs
- Il canale di decadimento $H \rightarrow bb$, $H \rightarrow \tau \tau$ miglior compromesso per avere alto S/B

Tesi proposte

Simone Gennai

Mauro Dinardo

Raffaele Gerosa

Martina Malberti

Interessanti perché?

- Nuove particelle ad alta massa strongly coupled con bosoni di Higgs boson
- Unico processo che permette la misura dell'**Higgs self coupling k(λ)**

** Accesso alla forma del potenziale di Higgs e dunque alla natura dell'EWSB

• HH risonante: uso di ML per classificazione di eventi e ricostruzione di m_{HH} (stima 4V dei neutrini da τ -decay)

• HH non-risonante: sviluppo analisi esclusiva per eventi in cui almeno uno dei due Higgs ha alto $p_T \rightarrow$ aumentare sensibilità per k(λ) ~ 1

• HH non-risonante: sviluppo di nuova strategia di trigger per Run3 per migliorare efficienza nel canale con due τ -adronici

Scattering di bosoni vettori

https://sites.google.com/unimib.it/govoni-tesi

Cosa è il vector boson scattering (VBS) ?

- Produzione elettrodebole di coppie di bosoni vettori (W,Z) + 2 jet adronici
- Molti diagrammi contribuiscono a questi processi •
- Unitarietà della sezione d'urto differenziale • garantita da mutua interferenza tra diagrammi
- Processi rari osservati per la prima volta ad LHC

- Gruppo attivo negli studi di scattering W±W±, W±W∓, WZ
- Proposta 1: ottimizzazione fit EFT dim-6 per i principali operatori
- Proposta 2: sviluppo di ML per distinguere i contributi degli operatori EFT dal continuo SM
- Proposta 3: sviluppo di ML per massimizzare la sensitività allo scattering longitudinale tra bosoni vettori

- Misure di precisione in VBS costituiscono straordinaria sonda del settore EW dello SM
- Nuova fisica (BSM) potrebbe manifestarsi indirettamente modificando processi di VBS
- **BSM** in **VBS** descrivibile in **teorie effettive di** campo (EFT) dove nuovi operatori efficaci vengono introdotti

Marco Paganoni Andrea Massironi **Raffaele Gerosa** Simone Gennai

EWK WZ
WZ -
77 —
2500 3000 m _{jj} [GeV]

Scattering di bosoni vettori

https://sites.google.com/unimib.it/govoni-tesi

Cosa è il vector boson scattering (VBS) ?

- Produzione elettrodebole di coppie di bosoni vettori (W,Z) + 2 jet adronici
 - Molti diagrammi contribuiscono a questi processi \bullet
 - Unitarietà della sezione d'urto differenziale \bullet garantita da mutua interferenza tra diagrammi
- Processi rari osservati per la prima volta ad LHC

- **Proposta 1**: ottimizzazione fit EFT dim-6 per i principali operatori
- Proposta 2: sviluppo di ML per distinguere i contributi degli operatori EFT dal continuo SM
- Proposta 3: sviluppo di ML per massimizzare la sensitività allo scattering longitudinale tra bosoni vettori

Nuova fisica in VBS

- Misure di precisione in VBS costituiscono straordinaria sonda del settore EW dello SM
- Nuova fisica (BSM) potrebbe manifestarsi indirettamente modificando processi di VBS
- **BSM** in **VBS** descrivibile in **teorie effettive di** campo (EFT) dove nuovi operatori efficaci vengono introdotti

GeV

Gruppo attivo negli studi di scattering W±W±, W±W∓, WZ

Raffaele Gerosa

Andrea Massironi **Raffaele Gerosa** Simone Gennai CMS

📒 Wrong sigr

2000

Pietro Govoni

Marco Paganoni

Scattering di bosoni vettori

https://sites.google.com/unimib.it/govoni-tesi

Cosa è il vector boson scattering (VBS) ?

Proposte di tesi

- Gruppo attivo negli studi di scattering W±W±, W±W∓, WZ
- **Proposta 1**: ottimizzazione fit EFT dim-6 per i principali operatori
- **Proposta 2**: sviluppo di ML per distinguere i contributi degli operatori EFT dal continuo SM
- Proposta 3: sviluppo di ML per massimizzare la sensitività allo scattering longitudinale tra bosoni vettori

Nuova fisica in VBS

- Misure di precisione in VBS costituiscono straordinaria sonda del settore EW dello SM
- Nuova fisica (BSM) potrebbe manifestarsi indirettamente modificando processi di VBS
- **BSM** in **VBS** descrivibile in **teorie effettive di** campo (EFT) dove nuovi operatori efficaci vengono introdotti

Perché sono interessanti?

17/04/23

- Possono essere isolati nei dati con buona purezza
- Sono sorgenti di fondo in molte importanti misure $(H \rightarrow WW, H \rightarrow \mu\mu, H \rightarrow inv, etc)$
- Sensibili a operatori EFT che non entrano nei processi VBS
- Sensibili a modelli di parton shower, correzioni EW .. etc

- Sviluppare analisi EFT: selezioni, stima delle sistematiche, sviluppo fit EFT principali operatori in previsione di una combinazione con VBS
- Uso di ML per separare segnale dal fondo e, simultaneamente, diagonalizzare la matrice di risposta per unfolding di misure

https://sites.google.com/unimib.it/govoni-tesi

Perché sono interessanti?

17/04/23

- Possono essere isolati nei dati con buona purezza
- Sono sorgenti di fondo in molte importanti misure $(H \rightarrow WW, H \rightarrow \mu\mu, H \rightarrow inv, etc)$
- Sensibili a operatori EFT che non entrano nei processi VBS
- Sensibili a modelli di parton shower, correzioni EW .. etc

Pietro Govoni Marco Paganoni Andrea Massironi **Raffaele Gerosa**

Proposte WW

- Sviluppare analisi EFT: selezioni, stima delle sistematiche, sviluppo fit EFT principali operatori in previsione di una combinazione con VBS
 - Sviluppare una stima più precisa del fondo da leptoni **non-prompt** (jet identificati come µ o e) basata su **ML**

- Sviluppare analisi EFT: selezioni, stima delle sistematiche, sviluppo fit EFT principali operatori in previsione di una combinazione con VBS
- Uso di ML per separare segnale dal fondo e, simultaneamente, diagonalizzare la matrice di risposta per unfolding di misure

Perché sono interessanti?

17/04/23

- Possono essere **isolati** nei dati con **buona purezza**
- Sono sorgenti di fondo in molte importanti misure $(H \rightarrow WW, H \rightarrow \mu\mu, H \rightarrow inv, etc)$
- Sensibili a operatori EFT che non entrano nei processi VBS
- Sensibili a modelli di parton shower, correzioni EW ... etc

Pietro Govoni Marco Paganoni Andrea Massironi **Raffaele Gerosa** Simone Gennai

- Sviluppare analisi EFT: selezioni, stima delle sistematiche, sviluppo fit EFT principali operatori in previsione di una combinazione con VBS
 - Sviluppare una stima più precisa del fondo da leptoni **non-prompt** (jet identificati come µ o e) basata su **ML**

Proposte VBF-Z

- Sviluppare analisi EFT: selezioni, stima delle sistematiche, sviluppo fit EFT principali operatori in previsione di una combinazione con VBS
- Uso di ML per separare segnale dal fondo e, simultaneamente, diagonalizzare la matrice di risposta per unfolding di misure differenziali

Perché é interessante?

- Il decadimento b \rightarrow sµ+µ- é un esempio di **flavour** changing neutral current (FCNC)
- Processo soppresso a tree-level nello SM
- Processo raro → terreno ideale per ricerca indiretta di nuova fisica

Metodo di analisi

- Analisi angolare sui prodotti di decadimento ricostruiti in CMS
- Misurare osservabili con ridotte incertezze teoriche

Proposte di tesi

- Finalizzare analisi con tutti i dati del Run2 di LHC
- Sviluppare tecniche di ML per studio angolare eventi di fondo edi efficienza di ricostruzione del segnale

Decadimento debole $B_0 \rightarrow K^* \mu^+ \mu^-$

Raffaele Gerosa

11

Paolo Dini

Introduzione a LHCb

- LHCb é un esperimento specializzato in B e C physics e misure di violazione di simmetria CP
- Non é un detector ermetico ma uno spettrometro **in avanti** \rightarrow adroni con (b,c) prodotti ad alta rapidità
- **Dipolo magnetico (4 T/m)** usato per curvare le particelle cariche all'interno del tracciatore
- Punti di forza: elevata efficienza di traccia (>98%), elevata risoluzione in p_T (0.5%) e di identificazione (>90%) di K/ μ / π /p/e, elevata risoluzione sul tempo di volo (45 fs)
- In grado di salvare su disco 12 kHz di eventi pronti per essere analizzati (trigger puramente software)

https://sites.google.com/unimib.it/lhcbbicocca/home

Introduzione a LHCb

- LHCb é un esperimento specializzato in B e C physics e misure di violazione di simmetria CP
- Non é un detector ermetico ma uno spettrometro **in avanti** \rightarrow adroni con (b,c) prodotti ad alta rapidità
- **Dipolo magnetico (4 T/m)** usato per curvare le particelle cariche all'interno del tracciatore
- Punti di forza: elevata efficienza di traceio (>98%), elevata risoluzione in p_T (0.5%) e d identificazione (>90%) di K/ μ/π /p/e, eleva risoluzione sul tempo di volo (45 fs)
- In grado di salvare su disco 12 kHz di eventi orozati per essere analizzati (trigger puramente software)

https://sites.google.com/unimib.it/lhcbbicocca/home

Perché è importante?

17/04/23

- Interazioni deboli "violano" la simmetria di **flavour** dello SM \rightarrow matrice di mixing CKM
- Termini off-diagonali sono tanto più piccoli tanto ci si allontana dalla diagonale
- V_{ub} é il termine meno conosciuto
- V_{ub} si misura ad LHCb cone elevata precisione grazie all'enorme sample di mesoni B collezionato

Marta Calvi Maurizio Martinelli **Martino Borsato**

Come lo si misura

- Canale sensibile é il decadimento debole di $B_s \rightarrow K^{\pm}\mu^{\mp}\nu$
- Da questo canale si può estrarre IV_{ub}I/IV_{cb}I utilizzando $B_s \rightarrow D_s \mu^{\mp} \nu$ come canale di normalizzazione

Proposta di tesi

- Misura di V_{ub} utilizzando tutti i dati raccolti nel Run2 di LHC
- Aggiornare e misurare **selezione** dei **candidati**
- Rejezione del fondo attraverso uso di ML
- Fit di estrazione del segnale in bins di q² per determinare fattori di forma legati a QCD non-perturbativa

Perché è importante?

- Lo SM prevede accoppiamenti di gauge EW identici per le diverse famiglie leptoniche (LFU)
- LFU può essere violata in modelli di nuova fisica: accoppiamenti dipendenti dalla massa, nuove particelle dette leptoquarks, etc
- Misure di LFU con D-mesons deviano dallo SM a 3σ

Test universalità leptonica: misura di R(D*)

Come lo si misura

- Si studiano le **transizioni b→clv**
- Si misurano i rapporto R(D) e R(D*) che ci sia aspettano essere ~0.25 nello SM
- Analisi complessa: ricostruzione del sistema decadine to dei τ , fit simultanei multi-dimensionali per stimare diverse sorgenti di fondo dai dati

Proposte di tesi

- Misura simultanea di R(D) e R(D*) usando i dati del Run2, aggiornando selezioni del campione e fit di estrazione del **segnale** usando nuove variabili (output di neural-networks)
- Misura dei coupling di operatori effettivi (EFT) di dimensione 6 che potrebbero alterare il rapporto R(D) o R(D*)

$$H_{EFT} = \frac{4G_F}{\sqrt{2}} V_{cb} \sum_i c_i O_i$$

Raffaele Gerosa

Maurizio

Violazione di simmetria CP in mesoni D

Perché fisica del charm e CP-violation?

- Studi di mixing e violazione CP in mesoni D rappresenta una nuova frontiera ancora poco esplorata i

Proposta di tesi: CP-violation in D⁰ \rightarrow **K**_S⁰ $\pi^+\pi^-$

- Sviluppo tecnica per correggere accettanza dello spazio fasi al variare del tempo di decadimento usando ML allenato sia sui dati (D⁰→π⁺π⁻) che su eventi simulati
- II ML fornisce un set di pesi usati per correggere la simulazione in modo che rispecchi i dati
- Validazione: si ripete la misura di differenza tra gli autostati di massa del mesone D^o con i dati del Run2
- Se validata, la tecnica potrà essere usata come metodo di base per l'analisi coi dati del Run3

Raffaele Gerosa

Marta Calvi

Maurizio Martinelli

Martino Borsato

Violazione di simmetria CP in mesoni D

Perché fisica del charm e CP-violation?

- LHCb ha osservato per la prima volta mixing D⁰-D⁰, violazione CP in D⁰ decays, differenza tra autostati di massa di D⁰
- Studi di mixing e violazione CP in mesoni D rappresenta una nuova frontiera ancora poco esplorata

Proposta di tesi: CP-violation in D⁰ \rightarrow **K**[±] π ⁺ π [±] π ⁺

- **Complessità:** il segnale è doppio Cabibbo soppresso (DCS) e la contaminazione dal processo Cabibbo favorito (x400) può introdurre bias nella misura
- Usare tecnica dei tripli prodotti sviluppata a Milano
- Tecniche di analisi pronte \rightarrow vantaggio è che permetterebbe di completare l'intera analisi nell'arco di tempo della tesi
- Misura non ancora effettuata ed é anche ricerca di nuova fisica (CPV = 0 nei DCS del D0 nello SM)

Marta Calvi

Maurizio Martinelli

Proposta di tesi: CP-violation in $D^0 \rightarrow K^{\pm}\mu^{\mp}\nu$

- **Complessità:** non si può ricostruire il sistema di decadimento del D⁰ causa dell'energia mancante del neutrino (sfugge)
- Usare ML (GAN) per ricostruire il momento del D^o
- Studiare i fondi dovuti a mesoni K*
- **Risultato finale:** misurare del mixing integrato nel tempo e misura di CP separando D⁰ da $\overline{\mathbf{D}}^{\mathbf{0}}$

Perché sono interessanti?

- Decadimento radiativo c→uγ è concesso a loop-level ma soppresso dal meccanismo GIM
- Essendo processi a one-loop sono sensibili a nuova fisica oltre allo SM

• Ricerca di $D^0 \rightarrow V^0 \gamma$:

- Modificare analisi utilizzando anche le **conversioni** $\gamma \rightarrow ee$
- Sviluppare **ML** supervised per **sopprimere** il fondo da π^{0}
- Sviluppare nuovo fit per sottrarre fondo residuo

17/04/23

Raffaele Gerosa

Conclusioni

