virgo and Einstein Telescope experiments

Davide Rozza University of Sassari & INFN-LNS <u>drozza@uniss.it</u>

+++++

GW: a long history...

Scale of Effect Vastly Exaggerated

How small is «small»?

Let's suppose you pour a glass of beer into the ocean...

What is the rise of the sea-level you get?

That's the order of magnitude of effect we want to detect!

The effect of GW on free-falling masses

The distance between two free-falling masses separated by a km will change by $\delta L \approx 10^{-18} km$

Gravitational wave interferometers

Virgo Collaboration

- ~770 members, ~450 authors, 131 institutions from 15 countries
- 34 Groups:
 - 32 full members
 - 2 in the first year (L2I Toulouse, KU Leuven)
- 9 countries represented in the VSC

GW DATA ANALYSIS

We need to enhance the signal and reduce the noise

Advanced Virgo Noise Curve: P_{in} = 125.0 W

ground motion: 10⁻⁸ m (10¹⁰ × bigger) (10⁶ × bigger) (10⁶ × bigger)

laser wavelength: 10⁻⁶ m (10¹² × bigger)

gravitational wave: 10⁻¹⁸ m

Credits: S. Fairhurst

Reducing seismic noise:

- Choose a good location
- Superattenuator to reduce seismic vibration: reduces mirrors seismic vibration by a factor 10¹²

Reducing seismic noise:

 Ultra high vacuum: 7000 m³ @ pressure of 10⁻⁹ mbar The biggest ultra-high-vacuum system in Europe

20

A-Constant of the second

......

A state

TIL

11

.

Reducing thermal noise:

- Beam size as large as possible
- Coating techniques to reduce the losses
- SiO₂ monolithic suspensions 400 μ m
- Mirrors of 42 kg in weight to reduce the effect of the radiation pressure
- SiO₂ mirrors with a residual roughness < 0.5 nm

Test mass mirrors

Beam splitter mirror

Reducing quantum noise:

- Increased finesse of arm cavity
- High power laser
- Squeezing technique

Shot noise: photon counting noise

Radiation pressure noise: Photons fluctuations translate in radiation pressure fluctuations, giving rise to random motion of the mirrors

Gravitational wave events

- Advanced LIGO and Advanced Virgo have completed the third observing run and are being upgraded toward LIGO A+ and AdV+ operations (O4: 2023-2024 – O5: 2026-2028)
- Further upgrades are being planned for post-O5

	<u> </u>		N151006
GW170608	GW170729 CW170900		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GW170817	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	GW190403_051519GW190408_181802		
	GW190413_GW190413_052954	* GW190412	
GW190425W190426	<u>190642</u> 190642 190642		
	GW190514_06GW190513_205428 GW1905	512_180714	
	90519_153544		
GW19	GW190521_074359 GW190527_GW190527_092055		
	W190620_030421 W190701_203306		
GW190707_093326	<u>GW190719_215514</u>		
GW190725_174728 GW190728_064510			v190720_000830
<u>aw190728_004310</u>	CW190731a140936 CW1908057918037022701		
GW190814	GW190828_063405	GW190828_065509	
GW190924_021846		345	
GW180939_133541	<u>GW190929_012149</u>		
GW191105_143521	91109_010717		
GW191126_115259 GW191129_134029	GW191127_050227		
GW191204_171526	<u> </u>		
GW191219_163120	~GW191222_Q32537		
GW200115_042309	- 0.00128 0.02011		
GW200202_154313	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	,,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.
GW200210 092254	GW200209_085452		
GW20022	C001928 W200219_094415		
		200225_060421	
GW200316 215756		15	29

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Sudarshan Ghonge | Karan Jani

VANDERBILT UNIVERSITY®

Georgia Tech 🛛

01 2015 - 2016	G N		02 2016 - 2017			de.		and a			03a+b 2019 - 2020	
• • • • • • • • • • • • • • • • • • •	23 14	14 7.7 21	31 20	11 7.6	50 34	35 24	31 25	1.5 1.3	35 27	40 29	88 • ²²	25 18
GW150914	GW151012	GW151226	49 GW170104	GW170608	GW170729	GW170809	GW170814	= 2.0 GW170817	GW170818	GW170823	GW190403_051519	GW190408_181802
• · 30 8.3	• • 35 24	• • 48 • 32	41 32	2 1.4	107 77	43 28	23 13	• • 36 18	39 28	• • • • • • • • • • • • • • • • • • •	66 • ⁴ 1	95 69
37 GW190412	56 GW190413_052954	76 GW190413_134308	70 GW190421_213856	3.2 GW190425	175 GW190426_190642	69 GW190503_185404	35 GW190512_180714	52 GW190513_205428	65 GW190514_065416	59 GW190517_055101	101 GW190519_153544	156 GW190521
42 3 3	• • 37 23	69 4 8	57 36	• • 35 24	54 41	67 38	12 8.4	18 13	• • 37 21	13 7.8	12 6.4	* * 38 29
71 GW190521_074359	56 GW190527_092055	111 GW190602_175927	87 GW190620_030421	56 GW190630_185205	90 GW190701_203306	99 GW190706_222641	19 GW190707_093326	30 GW190708_232457	55 GW190719_215514	20 GW190720_000836	17 GW190725_174728	64 GW190727_060333
12 8.1	• • 42 29	• • 37 27	48 32	23 2.6	• • 32 26	24 10	• • • • • • • • • • • • • • • • • • •	• • 35 24	44 24	9.3 2.1	8.9 5	• • 21 16
20 GW190728_064510	67 GW190731_140936	62 GW190803_022701	76 GW190805_211137	26 GW190814	55 GW190828_063405	33 GW190828_065509	76 GW190910_112807	57 GW190915_235702	66 CW190916_200658	11 GW190917_114630	13 GW190924_021846	35 GW190925_232845
40 23 6]	⁸¹ ²⁴ 102	12 7.8 19	12 7.9 19	11 7.7 18	65 47 107	29 5.9 34	12 8.3 20	53 24 76	11 6.7 17	27 19 45	12 8.2 19	25 18 41
GW190926_050336	GW190929_012149	GW190930_133541	GW191103_012549	GW191105_143521	GW191109_010717	GW191113_071753	GW191126_115259	GW191127_050227	GW191129_134029	GW191204_110529	GW191204_171526	GW191215_223052
12 7.7	31 1.2	45 35	49 • 37	• 9 1.9	36 28	• 5.9 1.4	42 3 3	34 29	10 7.3	• • 38 27	51 12	36 27
19 GW191216_213338	32 GW191219_163120	76 GW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 GW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 GW200209_085452
0 24 2.8 27	⁵¹ ³⁰ 78 –	³⁸ ²⁸	87 61 141	³⁹ ²⁸	40 33 69	19 14 32	³⁸ ²⁰	28 15 42	• • • • • • • • • • • • • • • • • • •	34 28	13 7.8 20 —	• • • • • • • • • • • • • • • • • • •
GW200210_092254	GW200216_220804	GW200219_094415	GW200220_061928	GW200220_124850	GW200224_222234	GW200225_060421	GW200302_015811	GW200306_093714	GW200308_173609	GW200311_115853	GW200316_215756	GW200322_091133

GRAVITATIONAL WAVE MERGER DETECTIONS SINCE 2015

ARC Centre of Excellence for Gravitational Wave Discovery

UNITS ARE SOLAR MASSES 1 SOLAR MASS = 1.989 x 10³⁰kg

VIRGO KAGRA

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

Credits to E. Cuoco et al.

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

How we detect transient signals: modelled search

Matched-filter

Third generation interferometer requirements

3rd generation GW observatory. Sensitivity aims at least one order of magnitude better with respect to the nominal sensitivity of advanced detectors in all the detection frequency band

Precision measurement and a new discovery project. A wide frequency band observatory

Special focus on massive (or intermediate mass) black holes. Extraordinary sensitivity at low frequency (few Hz)

High reliability. High observation duty cycle

Lifetime of several decades. Capable to host the evolution of the detectors, without limiting their sensitivity

Einstein Telescope detector

ET EINSTEIN TELESCOPE

Requirements

- Wide frequency range
- Massive black holes (LF focus)
- Localisation capability
- (more) Uniform sky coverage
- Polarisation disentanglement
- High Reliability (high duty cycle)
- High SNR

Design Specifications

- Xylophone (multiinterferometer)
 Design
- Underground
- Cryogenic
- Triangular shape
- Multi-detector design
- Longer arms

Einstein Telescope science

<u>ET will be a new discovery machine</u>: ET will explore almost the entire Universe listening the gravitational waves emitted by black hole, back to the dark ages after the Big Bang

<u>ET will be a precision measurement observatory</u>: ET will detect, with high SNR, hundreds of thousands coalescences of binary systems of Neutron Stars per year, revealing the most intimate structure of the nuclear matter in their nuclei

Einstein Telescope science

ET will be a new discovery machine: ET will explore almost the entire Universe listening the gravitational waves emitted by black hole, back to the dark ages after the Big Bang

<u>ET will be a precision measurement observatory</u>: ET will detect, with high SNR, hundreds of thousands coalescences of binary systems of Neutron Stars per year, revealing the most intimate structure of the nuclear matter in their nuclei

Below 10 Hz the main noise source are due to seismic noise and Newtonian noise

We need to find a place characterized by a low environmental noise

Where we are

The region under analysis is the Sos Enattos former mine, close to the town of Lula (Sardinia, Italy); but the characterization studies regards also other town like Bitti and Onanì.

Credits to D. Rozza

Located in Sardinia (Italy) close to Lula (Nuoro)

- Very low noise infrastructures, designed to host low seismic noise experiments, cryogenic payloads, low frequency and cryogenic sensor development (as confirmed by already published data)
- Large area on surface available for experiments (\sim 900 m²). Additional facilities will be added in the forthcoming months.
- Several underground stations available for site monitoring. Small underground area available for experiments. Plan to realize a large underground lab (250 m²), feasibility study completed.

ET noise budget

ET-HF

Sardinia Site Long-term measurements

Characterization of the Bitti and Onani corners: Surface and underground seismic and environmental measurements

Sos Enattos measurement stations (since Aug. 2020)

SoE0 (surface) SoE2 / SENA SoE0 (surf.) SoE1, SoE2, SoE3 (-84m, -111m, -160m)

4 broadband seismometers, 3 short-period seismometers, 2 magnetometers, 1 microphone+microbarometer and 1 tiltmeter distributed over underground and surface stations

30

25

20

10

5

CAVERN A3

Ormini

CAVERN A1

10

15 家

P2 Borehole vertical

0.1

Frequenc

Hz1

CAVE N A2

-100

-120

-140

-180

-200↓ 0.01

[dB]

P2 (-264m) : 2021/10/01-2021/03/20

Rampa Tupeddu entrance

Control Room + Surface Lab

SOE1 (-84m)

2.78

SarGray Con rol Room (340 m asl)

SOEZ (-111m)

SOE0 (400m asl)

Short term analysis

What can we learn?

- Seismic noise analysis due to Ocean and Mediterranean sea
- Local noise sources: weather, rain, wind...
- Anthropic noise

Vehicle speed...

Vehicle Tracking close to the site

Time evolution of azimuth compatible with a vehicle traveling at 60 km/h southward along road SP73.

Largest signal amplitude is NOT associated when the vehicle is closest to the array, but when it traverses bridge B2

Credits to L. Naticchioni

Bitti and Onanì corners

Bitti and Onanì corners

Bitti corner, borehole area

SarGrav area

SarGrav control room

The first experiment hosted: **ARCHIMEDES**

<u>Experimental Goal</u>: measurement of the interaction between vacuum fluctuations with gravity weighting a Casimir multi-cavity while changing the reflectivity of its layers. A change in the reflectivity corresponds into a variation of the internal vacuum state energy.

<u>Apparatus</u>: high sensitivity balance working in cryogenic conditions (\sim 90 °K).

The first experiment hosted: **ARCHIMEDES**

ET - suspensions

Sar-Grav may host ET technology prototypes to test them in the ET expected noise conditions.

- L. Naticchioni et al., Characterization of the Sos Enattos site for the Einstein Telescope, JPCS 1468, 2020, <u>https://doi.org/10.1088/1742-6596/1468/1/012242</u>
- M. Di Giovanni et al., A seismological study of the Sos Enattos Area the Sardinia Candidate Site for the Einstein Telescope, SRL, 2020, <u>https://doi.org/10.1785/0220200186</u>
- A. Allocca et al., Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency, EPJP, 2021, https://doi.org/10.1140/epip/s13360-021-01450-8
- Others in preparation...

Thanks for the attention!!!

