Muon colliders e ... molto altro

M. Bonesini Sezione INFN Milano Bicocca Dipartimento di Fisica G. Occhialini

Why muon beams

• Muon beams have potential to :

- Serve neutrino physics with intense beams $(\mu^+ -> e^+ v_e v_{\mu})$ that have equal fractions of electron and muon neutrinos at high intensity with a precisely known energy spectrum - the Neutrino Factory (NF) concept
- Muon collisions offer a large coupling to the "Higgs mechanism" (Higgs factory)
- As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider would offer a precision probe of fundamental interactions
 - With extremely small energy spread;
 - Most effective way to achieve $E_{cm} > 1 \text{ TeV}$
 - Small footprint to fit inside existing HEP labs

Potential applications outside HEP

- Muon radiography
- Muon capture studies of archelogical materials (CHNET)
- Study of fundamental physics (proton radius puzzle, QED ... FAMU at RIKEN-RAL)

v beams: conventional and NF beams

Fiducial area 2.6m x 2.6m

NUFACT

beam

- Problem in conventional v beams: a lot of minority components (beam understanding)
- Following muon collider studies, accelerated muons are ALSO an intense source of "high energy" v

$$\mu^- \rightarrow e^- v_\mu \overline{v}_e \quad \mu^+ \rightarrow e^+ \overline{v}_\mu v_e$$

- Crucial features:
- high intensity (x 100 conventional beams)
- known beam composition (50% $\nu_{\mu}\,$ 50% $\nu_{e})$
- Possibility to have an intense v_e beam
- Essential detector capabilities: detect μ and determine their sign

Key points

- μ an elementary charged lepton:
 - 200 times heavier than the electron
 - 2.2 μ s lifetime at rest
- The large muon mass strongly suppresses synchrotron radiation
 - Muons can be accelerated and stored using rings at much higher energy than electrons
 - Colliding beams can be of higher quality with reduced beamstrahlung

M. Bonesini - 20/5/21

The Muon Accelerator Program (MAP)

An entry level NF ? NuSTORM (demonstrator for muon collider ?)

Neutrino Factory Light: conventional target + horn, pion capture & then injection into a ring Annual Reviews of Nuclear and Particle Science, Volume 65, Adey et al. DOES NOT Require the Development of ANY New Technology

ν **STORM**

Low energy, low luminosity muon storage ring. Provides with $1.7\times10^{18}~\mu^+$ stored, the following oscillated event numbers

 $\nu_{e} \rightarrow \nu_{\mu} \text{ CC} \quad 330$ $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \text{ NC} \quad 47000$ $\nu_{e} \rightarrow \nu_{e} \text{ NC} \quad 74000$ $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \text{ CC} \quad 122000$ $\nu_{e} \rightarrow \nu_{e} \text{ CC} \quad 217000$

and each of these channels has a more than $10\,\sigma$ difference from no oscillations

With more than 200 000 ν_e CC events a %-level ν_e cross section measurement should be possible

NuSTORM physics reach

Sterile v search

Data for v_{μ} and v_{e} interactions

1.5

HiflesMr © 10% unc. fk UliniRoaNE AM, GGM GGM Si IP

SIKAT

2 2.5 3 3.5 4 4.5 5

E, (GeV)

 σ_{ccoe} (10⁻³⁸ cm²/nucleon)

>[≓]

0 0.5

nuSTORM & ENUBET			protons	→ (K⁺, π⁺)→ K dec	ays <mark>€ ½,/½,</mark> ►e⁺/µ⁺	neutrino detector
			protons \rightarrow (K ⁺ , π^+) \rightarrow μ decays \rightarrow $v_e / v_{\mu} \rightarrow$ heutrino detector			
	Decay region	Hadron dump		Proton extraction	Target, sec. transfer line, p-dump	Neutrino detector
ENUBET	~40 m. Instrumented.	Yes. Dumps muons in addition preventing a (small) v _e pollution to K _{e3} - v _e		Slow, 400 GeV (flexible)	Yes, similar	~100 m (some flexibility)
nuSTORM	Replaced by straight section of the ring (180 m).	No. Muons are kept: the most interesting flux parents.		Fast, 100 GeV	Yes, similar	> 300 m from target (ring straight section)

 Main synergy: target facility, 1st stage of meson focusing, proton dump.

Technical challenges for MC and NF: a long list

- 1. High-power (multi-MW) p beam (e'g. SNS, ESS, ... proton driver)
- Suitable targetry (MERIT @CERN, 2007 demonstrated that a > 4 MW Hg jet target is feasible)
- 3. Muon cooling (small 4D cooling (transverse) sufficient for NF, final 6D cooling essential for MC)
 - μ unstable -> must cool quickly [MICE]
 - Requires high-gradient RF cavities in B > 1 T fields [FNAL MTA]
- 4. Rapid acceleration
 - Linac-RLAs-(FFAGs)-RCS [EMMA@DL, 2011 proved principle of non-scaling FFAG technique]
- 5. High storage-ring bending field (to maximize # of cycles before decay and small β _|_ for high ∠
 [solution devised @ FNAL B~10 T, β ~1 cm]

Key Technologies – Target

- The MERIT Experiment at the CERN
 - Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid and hit with a 115 KJ/pulse beam!
 - ⇒ Jets could operate with beam powers up to 8
 MW with a repetition rate of 70 Hz

Hg jet in a 15 T solenoid with measured disruption length ~ 28 cm

The muon beam emittance must be reduced for injection into the acceleration system

- Energy spread > phase rotation
- Transverse emittance ► cooling

Muon ionization cooling

Stochastic cooling is too slow.

A novel method for μ + and μ - is needed: ionization cooling

principle reduce p_t and p dE/dxheating multiple scattering re-acceleration increase p₁ p_t p_l

reality including beam diagnostics(MICE)

- Build a section of cooling channel long enough to provide measurable cooling (10%) and short enough to be affordable and flexible
- Wish to measure this change to 1%
- Requires measurement of emittance of beams into and out of cooling channel to 0.1% !
- Cannot be done with conventional beam monitoring device
- Instead perform a single particle experiment:
 - High precision measurement of each track (x,y,z,px,py,pz,t,E)
 - Build up a virtual bunch offline
 - Analyse effect of cooling channel with bunches of different emittances
 - Study cooling channels parameters over a range of initial beam momenta and emittances M. Bonesini - 20/5/21

Possible thesis arguments

□ Inside the International Muon Collider collaboration (CERN based)

- Study of new targets (with Roma 3, LNL, ...)
- Application of the cooling techniques (follow up of MICE, with STFC,...)
- Contribution to the design of a demonstrator (see NuStorm)

For more details:

- https://muoncollider.web.cern.ch/welcome-page-muon-collider-website
- https://indico.cern.ch/event/1030726/
- http://mice.iit.edu/

For infos:

- Maurizio.bonesini@mib.infn.it