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Outline for Lectures 3+4

The Homogeneity theorem for N > 16 solutions in D=11 and type
II D=10 supergravity [arXiv:1208.0553]

N = 29, 30, 31 solutions in IIB supergravity [arXiv:0710.1829]

Global properties of horizons/AdS [arXiv:1303.0869]



The Homogeneity Theorem [Hustler, O’Farrill]

Let S be the space of D=11, IIB/A spinors. Given ε1, ε2 ∈ S, let

ϕ(ε1, ε2) = D(ε1,Γ
Mε2)∂M

D is a non-degenerate gauge-invariant inner product,

D : S × S → R

In IIB supergravity

D(ε1, ε2) = Re〈ε1,Γ0ε2〉

ϕ is a squaring operator, which associates to every pair of spinors a
tangent vector, pointwise on the spacetime.



ϕ is:

Symmetric: ϕ(ε1, ε2) = ϕ(ε2, ε1).
This implies

ϕ(ε1, ε2) =
1

2

(
ϕ(ε1 + ε2, ε1 + ε2)− ϕ(ε1, ε1)− ϕ(ε2, ε2)

)
so ϕ is fixed by its diagonal values.

ϕ(ε, ε) is either timelike or null [JG, Papadopoulos]

Suppose W is the space of Killing spinors, and dim(W ) > 16.

If M is the spacetime, and p ∈M , the map

ϕ|W : W ×W → Tp(M)

is surjective iff the perpendicular component of its image is trivial.



Equivalently,

ϕ|W : W ×W → Tp(M)

is surjective iff the only tangent vector V such that

V Mϕ(ε1, ε2)M = 0, ∀ε1, ε2 ∈W

is V = 0.

Suppose that

V Mϕ(ε1, ε2)M = 0, ∀ε1, ε2 ∈W

Then such V must be null. To prove this, the above condition is
equivalent to requiring

ΓMVM : W →W⊥

where

W⊥ = {ε ∈ S : D(ε, χ) = 0,∀χ ∈W}



We know that dim(W ) + dim(W⊥) = 32 and dim(W ) > 16.

This implies that dim(W⊥) < 16. As we have

ΓMVM : W →W⊥

this implies by the rank-nullity theorem that Ker(ΓMVM) 6= {0}.

However (
ΓMVM

)2

= V MVM

so in order to have Ker(ΓMVM) 6= {0} we must have V 2 = 0.

If the spacetime were Euclidean, this would imply V = 0 and so ϕ|W
maps surjectively pointwise onto the tangent space.



But the supergravity is Lorentzian, so if V is nonzero, it must be null.

Choose a basis for the tangent space

{e+, e−, ei}

with V ∝ e+.

We need ϕ(ε, ε) to be both orthogonal to e+ and be non-spacelike.

Hence

ϕ(ε, ε) = λ(ε)e+

for some function λ : W → R, and so

ϕ(ε1, ε2) =
1

2

(
ϕ(ε1 + ε2, ε1 + ε2)− ϕ(ε1, ε1)− ϕ(ε2, ε2)

)
=

1

2

(
λ(ε1 + ε2)− λ(ε1)− λ(ε2)

)
e+



It follows that both the image of ϕ|W and the perpendicular component
of the image of ϕ|W are spanned by e+.

This is impossible, so we must have V = 0, i.e. ϕ|W is surjective.

Note: in D = 10, D = 11 supergravity theories, if ε1, ε2 are Killing
spinors, then the KSEs imply that ϕ(ε1, ε2) is an isometry which
preserves all the bosonic fields of the theory.

So N > 16 supergravity solutions are all locally transitive - at every point
there is a local frame consisting of Killing vectors which preserve all the
supergravity fields.



Application to Warped Product AdS Solutions

Consider N > 16 warped product solutions AdSn ×w M in D=10 type II
or D=11 supergravity.

M is some compact and smooth Euclidean internal space.

The spacetime spinors can always be written in terms of spinors σ+

defined on M

These spinors satisfy generalized Lichnerowicz theorems on M

For N > 16 solutions, there are sufficiently many σ+ spinors in order
for the homogeneity theorem to apply for M .

In all cases, the warp factor is constant, and M must be a
homogeneous manifold.

All such M have been fully classified (at least for dim(M) ≤ 9) by
S. Klaus: (Einfachzusammenh angende kompakte homogene Raume
bis zur Dimension 9).



IIB Supergravity and Killing Spinors

The bosonic fields of IIB supergravity are the spacetime metric g, the
axion σ and dilaton φ , two three-form field strengths Gα = dAα

(α = 1, 2), and a self-dual five-form field strength F

The axion and dilaton give rise to a complex 1-form P [Schwarz, West].

The 3-forms are combined to give a complex 3-form G.

To achieve this, introduce a SU(1, 1) matrix U = (V α+ , V
α
− ), α = 1, 2

such that

V α−V
β
+ − V

β
−V

α
+ = εαβ , (V 1

−)∗ = V 2
+, (V 2

−)∗ = V 1
+

ε12 = 1 = ε12.



The V α± are related to the axion and dilaton by

V 2
−
V 1
−

=
1 + i(σ + ie−φ)

1− i(σ + ie−φ)
.

Then P and G are defined by

PM = −εαβV α+ ∂MV
β
+ , GMNR = −εαβV α+G

β
MNR



The gravitino Killing spinor equation is

∇̃M ε+
i

48
ΓN1...N4εFN1...N4M −

1

96
(ΓM

N1N2N3GN1N2N3

−9ΓN1N2GMN1N2
)(C ∗ ε) = 0

where

∇̃M = ∂M −
i

2
QM +

1

4
ΩM,ABΓAB

is the standard covariant derivative twisted with U(1) connection QM ,
given in terms of the SU(1, 1) scalars by

QM = −iεαβV α− ∂MV
β
+

and Ω is the spin connection.



There is also an algebraic condition

PMΓM (C ∗ ε) +
1

24
GN1N2N3ΓN1N2N3ε = 0

The Killing spinor ε is a complex Weyl spinor constructed from two
copies of the same Majorana-Weyl representation ∆+

16:

ε = ψ1 + iψ2

Majorana-Weyl spinors ψ satisfy

ψ = C ∗ ψ

C is the charge conjugation matrix with the property that

C ∗ ΓM = ΓMC∗

A basis can be chosen in which C = Γ6789.



Spinors as Forms

Let e1, . . . , e5 be a locally defined orthonormal basis of R5
.

Take U to be the span over R of e1, . . . , e5.

The space of Dirac spinors is c∆ = Λ∗(U ⊗C) (the complexified
space of all forms on U).
c∆ decomposes into even forms c∆+ and odd forms c∆−, which are
the complex Weyl representations of Spin(9, 1).



The gamma matrices are represented on c∆ as

Γ0η = −e5 ∧ η + e5yη
Γ5η = e5 ∧ η + e5yη
Γiη = ei ∧ η + eiyη i = 1, . . . , 4

Γ5+iη = iei ∧ η − ieiyη i = 1, . . . , 4

These gamma matrices are chosen so that Γj for j = 1, . . . , 9 are
hermitian and Γ0 is anti-hermitian with respect to the inner product

< zaea, w
beb >=

5∑
a=1

(za)∗wa ,

This inner product can be extended from U ⊗C to c∆.



We take Majorana-Weyl spinors ψ ∈ ∆+
16 fixed by ψ = C ∗ ψ.

A basis (over R) of ∆+
16 is given by

{1 + e1234, i
(
1− e1234

)
, eij −

1

2
εijpqepq, i

(
eij +

1

2
εijpqepq

)
ej5 +

1

6
εjmnpemnp5, i

(
ej5 −

1

6
εjmnpemnp5

)
}

for i, j, p, q,m, n = 1, 2, 3, 4.

A IIB Killing spinor ε ∈ c∆+ is given by

ε = ψ1 + iψ2

for ψ1, ψ2 ∈ ∆+
16.



There is a Spin(9, 1) invariant inner product defined on c∆ defined
by

B(ε1, ε2) =< Γ0C ∗ ε1, ε2 >

B is skew-symmetric in ε1, ε2.

B vanishes when restricted to c∆+ or c∆−.

This defines a non-degenerate pairing B : c∆+ ⊗ c∆− → R given by

B(ε, ξ) = Re B(ε, ξ)



Canonical forms of spinors

Spin(9, 1) has one type of orbit with stability subgroup Spin(7) nR8
in

∆+
16 [Figueroa-O’Farrill, Bryant].

To see this, decompose ∆+
16 as

∆+
16 = R < 1 + e1234 > +Λ1(R7

) + ∆8 ,

R < 1 + e1234 > is the singlet generated by 1 + e1234

Λ1(R7
) is the vector representation of Spin(7) spanned by Majorana

spinors associated with 2-forms in the directions e1, e2, e3, e4 and by
i(1− e1234).

∆8 is the spin representation of Spin(7) spanned by the remaining
Majorana spinors of type e5 ∧ η′ where η′ is generated by odd forms in
the directions e1, e2, e3, e4.



Spin(7) acts transitively on the S7 in ∆8, with stability subgroup G2,

and G2 acts transitively on the S6 in Λ1(R7
) with stability subgroup

SU(3) [Salamon]

Using these transitive actions, one can show that a single Majorana-Weyl
spinor lies in the orbit of 1 + e1234. This spinor is Spin(7)nR8

invariant.

To see this, write the spinor ψ1 as

ψ1 = a(1 + e1234) + θ1 + θ2 ,

with a ∈ R, θ1 ∈ Λ1(R7
) and θ2 ∈ ∆8



There are several cases to consider.

If a 6= 0, θ2 = 0, using the transitive action of G2 ⊂ Spin(7) on the S6

in Λ1(R7
), make a gauge transformation so that θ1 = ib(1− e1234), and

hence

ψ1 = a(1 + e1234) + ib(1− e1234) =
√
a2 + b2earctan( ba )Γ16(1 + e1234)

So ψ1 lies in the same orbit as 1 + e1234.

The other cases, for which a 6= 0 and θ2 6= 0; and a = 0 can be dealt
with similarly.

Having fixed ψ1 to be proportional to 1 + e1234 using Spin(9, 1) gauge
transformations, it remains to consider ψ2.



By using Spin(7) gauge transformations, which leave ψ1 invariant, one
can write

ψ2 = b1(1 + e1234) + ib2(1− e1234) + b3(e15 + e2345)

There are various cases

i) b3 6= 0. Then we have (taking Γ+ = 1√
2
(Γ5 + Γ0)):

ψ2 = e−
b1
2b3

Γ+Γ6+
b2
2b3

Γ+Γ1b3(e15 + e2345)

so using a R8 ∈ Spin(7) nR8
gauge transformation one can take

ψ2 = g(e15 + e2345)

The stability subgroup of Spin(9, 1) which leaves ψ1 and ψ2

invariant is G2.



ii) If b3 = 0 then

ψ2 = g1(1 + e1234) + ig2(1− e1234)

and the stability subgroup is SU(4) nR8

iii) If b2 = b3 = 0 then
ψ2 = g(1 + e1234)

and the stability subgroup is Spin(7) nR8
.



N = 31 Solutions: Algebraic Conditions

Suppose that there exists a solution with exactly (and no more than) 31
linearly independent Killing spinors over R.

Consider the algebraic condition

PMΓM (C ∗ εr) +
1

24
GN1N2N3

ΓN1N2N3εr = 0

where εr are Killing spinors for r = 1, . . . , 31.

The space of Killing spinors is orthogonal to a single normal spinor,
ν ∈ ∆−c with respect to the Spin(9, 1) invariant inner product B.
Using Spin(9, 1) gauge transformations, this normal spinor can be
brought into one of 3 canonical forms:

Spin(7) nR8
: ν = (n+ im)(e5 + e12345) ,

SU(4) nR8
: ν = (n− `+ im)e5 + (n+ `+ im)e12345 ,

G2 : ν = n(e5 + e12345) + im(e1 + e234) ,



In general, one can write

εr =

32∑
i=1

friη
i

where fri are real, ηp for p = 1, . . . , 16 is a basis for ∆+
16 and

η16+p = iηp.

The matrix with components fri is of rank 31.

The functions fri are related by the orthogonality condition B(εr, ν) = 0

For example, take the case for which ν = (n+ im)(e5 + e12345): set

εr = fr1(1 + e1234) + fr17i(1 + e1234) + frkη
k

where ηk the remaining (even form spinor) basis elements orthogonal
(w.r.t the Dirac inner product 〈, 〉) to 1 + e1234, i(1 + e1234).



Then the orthogonality relation B(εr, ν) = 0 implies

nfr1 −mfr17 = 0

and so, taking without loss of generality n 6= 0; one finds

εr =
fr17

n
(m+ in)(1 + e1234) + frkη

k

Substituting this back into the algebraic Killing spinor equation gives

PMΓMC∗[(m+in)(1+e1234)]+
1

24
GM1M2M3

ΓM1M2M3(m+in)(1+e1234) = 0

and

PMΓMηp = 0, GM1M2M3
ΓM1M2M3ηp = 0, p = 2, . . . , 16



Analogous equations are obtained for SU(4) nR8
and G2 invariant

normals.

In all cases, the conditions PMΓMηp = 0 fix P = 0.

This means that the algebraic Killing spinor equation is linear over C, so
if there is a background with N = 31 linearly independent solutions of
the algebraic Killing spinor equation, then this equation must have 32
linearly independent solutions.

This in turn fixes G = 0. However, if G = 0 then the gravitino Killing
spinor equation also becomes linear over C.

In this case, if the gravitino Killing spinor equation has 31 linearly
independent solutions, it must have 32 solutions also. So the background
is maximally supersymmetric.



N = 30 Solutions: Algebraic Conditions

Having excluded N = 31 solutions, consider N = 30.

To simplify the analysis, we use the homogeneity theorem of Figueroa
O’Farrill, Hackett-Jones and Moutsopoulos.

This states that all solutions with N > 16 linearly independent Killing
spinors are homogeneous, and hence have P = 0.

So, for N = 30 solutions, the algebraic Killing spinor equation becomes
linear over C:

1

24
GN1N2N3

ΓN1N2N3ε = 0



To analyse the case of N = 30 solutions, note that the spinors satisfying
the algebraic KSE are all orthogonal to a normal spinor ν ∈ ∆−c with
respect to the inner product B.

This can be brought into canonical form using gauge transformations.

Spin(7) nR8
: ν = (n+ im)(e5 + e12345) ,

SU(4) nR8
: ν = (n− `+ im)e5 + (n+ `+ im)e12345 ,

G2 : ν = n(e5 + e12345) + im(e1 + e234) ,

The solutions to the algebraic Killing spinor equation are

εr =

15∑
s=1

zrsη
s ,

where {ηi} is a basis of ∆+
c normal to ν (with respect to B), and z is an

invertible 15× 15 matrix of spacetime dependent complex functions.



There are three cases to consider, corresponding to the types of normal
spinor ν.

In all cases, one can choose the basis {ηi} to have 13 (very simple)
common elements, which are orthogonal to ν: epq, e15pq, e1p, e1q for
p = 2, 3, 4 and e15 − e2345.
The remaining two basis elements are case-dependent

Spin(7) nR8
: 1− e1234, e15 + e2345 ,

SU(4) nR8
: e15 + e2345, (n− `+ im)1− (n+ `+ im)e1234 ,

G2 : 1− e1234,m(1 + e1234) + in(e15 + e2345)

In all cases, evaluating the algebraic Killing spinor equation on the basis
{ηi} produces sufficient conditions to fix G = 0.



Integrability Conditions for N=30 Solutions

It remains to consider the integrability conditions of the Killing spinor
equations for solutions with G = P = 0.

The curvature R = [D,D] of the covariant connection D of IIB
supergravity can be expanded as

RMN =
1

2
(T 2
MN )PQΓPQ +

1

4!
(T 4
MN )Q1...Q4

ΓQ1...Q4 ,

where

(T 2
MN )P1P2

= 1
4RMN,P1P2

− 1
12FM [P1

Q1Q2Q3F|N |P2]Q1Q2Q3
,

(T 4
MN )P1...P4

= i
2D[MFN ]P1...P4

+ 1
2FMNQ1Q2[P1

FP2P3P4]
Q1Q2



The T 2 and T 4 tensors satisfy various algebraic conditions, following
from the Bianchi identities and field equations:

(T 2
MN )P1P2 = (T 2

P1P2
)MN ,

(T 2
M [P1

)P2P3] = 0 ,

(T 2
MN )P

N = 0 ,

(T 4
[P1P2

)P3P4P5P6] = 0

(T 4
MN )P1P2P3

N = 0 ,

(T 4
M [P1

)P2P3P4P5] = − 1

5!
εP1P2P3P4P5

Q1Q2Q3Q4Q5(T 4
M [Q1

)Q2Q3Q4Q5] .

And (T 4
P1(M )N)P2P3P4

is totally antisymmetric in P1, P2, P3, P4.



Analysis of Conditions

The integrability conditions of the gravitino Killing spinor equations

Rεr = 0

To analyse this condition, note that Rεr = 0, implies

RMN,ab′ = uMN,rη
r
aνb′ + uMNχaνb′

where u are complex valued, and {ηr, χ} is a basis for ∆+
c in which {ηr}

is a basis for the space of Killing spinors.

a are indices on even Weyl spinors, b′ are indices on odd Weyl spinors.

Indices on (even products) of Gamma matrices are lowered as

(ΓA1A2...A2k)ab′ = −i(Γ06789)cb′(Γ
A1A2...A2k)a

c



We also have the formula

ψaνb′ = − 1

16

2∑
k=0

1

(2k)!
B(ψ,ΓA1A2...A2k

ν)(ΓA1A2...A2k)ab′ ,

for any positive chirality spinor ψ.

Note that RMN consists of 2-Γ and 4-Γ terms whose trace over the even
Weyl spinor indices vanishes,

(ΓMN )a
a, (ΓMNPQ)a

a

Requiring that RMN,a
a = 0 imposes

uMNB(χ, ν) = 0

which eliminates the contribution to RMN,ab′ from uMN .



Hence we are left with

RMN,ab′ = uMN,rη
r
aνb′

= − 1

16
uMN,r

2∑
k=1

1

(2k)!
B(ηr,ΓA1A2...A2k

ν)(ΓA1A2...A2k)ab′

which in turn relates T 2, T 4 to uMN,r via

(T 2
MN )A1A2

= − 1

16
uMN,rB(ηr,ΓA1A2

ν)

(T 4
MN )A1A2A3A4 = − 1

16
uMN,rB(ηr,ΓA1A2A3A4ν)



The method is then as follows

Determine all components of T 2 and T 4 in terms of uMN,r

Translate the T 2 and T 4 conditions into conditions on u

After some moderately unpleasant linear algebra, one finds that
these are sufficient to fix uMN,r = 0.

This then implies that T 2 = 0, T 4 = 0.

However these are equivalent (together with P = 0, G = 0) to the
conditions on maximally supersymmetric backgrounds.

So all N = 30 solutions are (locally) maximally supersymmetric.



N = 29 Solutions

Solutions with exactly N = 29 linearly independent Killing spinors are
excluded as follows:

As P = 0, the algebraic Killing spinor eqns are linear over C.

So a background with N = 29 linearly independent solutions to the
algebraic Killing spinor equation must have at least 30 solutions to
this equation.

By the N = 30 analysis, this is sufficient to fix G = 0

As G = 0, the gravitino Killing spinor equation is linear over C, and
so an exactly N = 29 solution is excluded.



Conclusions

There are no solutions of IIB supergravity with exactly N = 29, N = 30
or N = 31 linearly independent Killing spinors

What about solutions with N = 28 supersymmetries? A non-trivial
example is known - the plane wave geometry of Bena and Roiban.

In fact in order to have a solution with exactly 28 linearly independent
Killing spinors, one is forced to take G 6= 0.

Analysis of the Killing spinor equation integrability conditions with G 6= 0
is much more complicated!



The gravitino integrability conditions are

Sε+ T (Cε)∗ = 0

where

T = −
κ

96
(Γ[N

L1L2L3DM]GL1L2L3
+ 9Γ

L1L2D[NGM]L1L2
)

+
iκ2

32
(
1

3
FNM

L1L2L3GL1L2L3
+ Γ

L1L2F[N|L1L2
Q1Q2G|M]Q1Q2

+
1

3
Γ[N

Q
FM]Q

L1L2L3GL1L2L3
−

1

2
Γ
L1...L4FNML1L2

Q
GL3L4Q

+
1

2
Γ[N

L1L2L3FM]L1L2
Q1Q2GL3Q1Q2

+
1

4
Γ
L1...L4FL1...L4

Q
GNMQ

−
1

2
Γ[N|

L1L2L3FL1L2L3
Q1Q2G|M]Q1Q2

) .



S =
1

8
RNM

L1L2ΓL1L2
−

1

2
P[NP

?
M] +

iκ

48
Γ
L1...L4D[NFM]L1...L4

+
κ2

24
(−Γ

L1L2F[N|L1
Q1Q2Q3F|M]L2Q1Q2Q3

+
1

2
Γ
L1...L4FNML1

Q1Q2FL2L3L4Q1Q2

+
1

2
Γ[N

L1L2L3FM]L1
Q1Q2Q3FL2L3Q1Q2Q3

)

+
κ2

32
(−

1

2
G[N

L1L2G
?
M]L1L2

+
1

48
ΓNMG

L1L2L3G
?
L1L2L3

−
1

4
Γ[N

L1GM]
L2L3G

?
L1L2L3

+
1

8
Γ[N|

Q
GQ

L1L2G
?
|M]L1L2

+
3

16
Γ
L1L2GNM

L3G
?
L1L2L3

− Γ
L1L2G[N|L1

Q
G
?
|M]L2Q

−
3

16
Γ
L1L2GL1L2

Q
G
?
NMQ +

1

16
ΓNM

L1L2GL1
Q1Q2G

?
L2Q1Q2

−
1

16
Γ
L1...L4GL1L2L3

G
?
NML4

+
1

8
Γ[N|

L1L2L3GL1L2
Q
G
?
|M]L3Q

+
1

4
Γ
L1...L4G[N|L1L2

G
?
|M]L3L4

+
1

16
Γ
L1...L4GNML1

G
?
L2L3L4

+
1

4
Γ[N|

L1L2L3G|M]L1
Q
G
?
L2L3Q

+
1

24
Γ[N|

L1...L5G|M]L1L2
G
?
L3L4L5

−
1

48
Γ[N|

L1...L5GL1L2L3
G
?
|M]L4L5

−
1

32
ΓNM

L1...L4GL1L2
Q
G
?
L3L4Q

−
1

288
ΓNM

L1...L6GL1L2L3
G
?
L4L5L6

)



One can show that the Bena and Roiban plane wave is the unique
solution with N = 28 supersymmetries:

ds2 = 2dw(dv − (
9

8
+ 2h2)δijx

ixjdw) + δijdx
idxj

G = −2
√

2ieiφdw ∧ (dx15 + dx26 + dx37 + dx48)

F = 2hdw ∧ (dx1256 − dx3478)

All homogeneous solutions with N > 16 linearly independent Killing
vectors could (in principle) be classified using similar methods.

N.B. It has also been shown [Gran, JG, Papadopoulos, Roest], that there
are no N = 31 or N = 30 solutions in D=11 supergravity.



Global Properties of Supergravity Solutions

The Classical Lichnerowicz Theorem

Suppose that N is a spin compact manifold. Then the following identity
holds: ∫

N

〈Γi∇iε,Γj∇jε〉 =

∫
N

〈∇iε,∇iε〉+
1

4

∫
N

R〈ε, ε〉

where ∇ is the Levi-Civita connection, 〈, 〉 is the Dirac inner product, R
is the Ricci scalar.

Note: this uses Γi = (Γi)
†, and also

Γij∇i∇jε = −1

4
Rε



An alternative approach: if ε satisfies the Dirac equation Γi∇iε = 0 then

∇i∇i ‖ ε ‖2=
1

2
R ‖ ε ‖2 +2〈∇iε,∇iε〉

Consequences:

If R > 0 then the Dirac operator has no zero modes.

If R = 0 then the zero modes of the Dirac operator are also parallel.

Question: can we generalize the classical Lichnerowicz theorem to
supergravity backgrounds with flux?



Gaussian Null Co-ordinates

We consider the event horizon of a supersymmetric extremal D=11 BH

We assume that the spacetime is stationary, and contains a regular black
hole event horizon, which is a Killing horizon of a Killing vector W .

To analyse the near-horizon geometry, we introduce a co-odinate system
adapted to the horizon.

These Gaussian null co-ordinates are higher dimensional generalization of
the Eddington-Finkelstein co-ordinates

We assume the future event horizon H+ has a single connected
component.

Let Σ be a Cauchy surface for the exterior of the black hole, with a
boundary S on the future event horizon.



The Gaussian null co-ordinates are {u, r, yI}.

[Isenberg & Moncrief, Friedrich, Racz, Wald]

Here W = ∂
∂u is the black hole Killing vector.

As W is an isometry, there is no dependence on u in the metric.

r denotes the radial distance away from the event horizon.

The event horizon is at r = 0, which is a null hypersurface.

The {yI}, I = 1, . . . , 9 are local co-ordinates on S.



In the Guassian null co-ordinates the metric is

ds2 = 2e+e− + δije
iej = 2du(dr + rh− 1

2
r2∆du) + γIJdy

IdyJ

e+ = du, e− = dr + rh− 1

2
r2∆du, ei = eiJdy

J

Here

h = hI(r, y)dyI , ∆ = ∆(r, y), γIJ = γIJ(r, y)

are u-independent 1-form, scalar, and metric, on S which depend
analytically on r.



The Near-Horizon Limit

Having obtained the metric

ds2 = 2du(dr + rh− 1

2
r2∆du) + γIJdy

IdyJ

with near horizon data {∆, hI , γIJ}, which are u-independent and
analytic in r, we can take the near-horizon limit [Reall et al.] by setting

r → `r, u→ `−1u

and then taking the limit `→ 0.

In this limit, the form of the metric is preserved, but now the
near-horizon data depend only on y, and not on r.

The limit exists only for extremal black holes.

The limit decouples the bulk geometry from the near-horizon region.

The spatial cross-sections of the horizon S, equipped with metric γIJ ,
are assumed to be smooth and compact without boundary.



Example: Warped Product AdS2 Geometries

Take the near-horizon limit metric:

ds2 = 2du(dr + rh− 1

2
r2∆du) + ds2(S)

Choose the following near-horizon data:

h = dΦ, ∆ = eΦL

for constant L, where Φ is a smooth function on S, and make the
co-ordinate transformation

r = e−Φρ

The metric is then

ds2 = 2e−Φdu(dρ− 1

2
L2ρ2du) + ds2(S)

where

ds2
2 = 2du(dρ− 1

2
L2ρ2du)

is the metric on AdS2. So AdS2 ×w S is a near-horizon geometry.



D = 11 Supergravity

It is expected that there are many black hole solutions in M-Theory

The IIA Newton constant increases quadratically with string coupling.

As the IIA string coupling becomes large, the strength of the
gravitational force increases and IIA matter collapses to black holes.

But the strong coupling limit of IIA string theory is conjectured to be
M-Theory, which has as an effective theory D=11 supergravity.

The bosonic content of D=11 supergravity is the metric g and 4-form F .

We assume that all the components of F are independent of u and are
analytic in r in the Gaussian null co-ordinates.



Then, on taking the near-horizon limit and imposing the Bianchi identity

dF = 0

one finds that

F = e+ ∧ e− ∧ Y + re+ ∧ (dY − h ∧ Y ) +X

where Y ∈ Λ2(S) and X ∈ Λ4(S) are u, r-independent 2 and 4-forms on
the horizon sections.

The 4-form X must be closed as a consequence of the Bianchi identity:

dX = 0



The Field Equations

Before analyzing the conditions imposed by supersymmetry, we consider
the gauge and Einstein field equations.

The D=11 gauge field equations are

d ?11 F −
1

2
F ∧ F = 0

These decompose into the following conditions on the 2-form Y and
4-form X on S:

∇̃iXi`1`2`3 + 3∇̃[`1Y`2`3] = 3h[`1Y`2`3] + hiXi`1`2`3

− 1

48
ε`1`2`3

q1q2q3q4q5q6Yq1q2Xq3q4q5q6

and and

∇̃jYji −
1

1152
εi
q1q2q3q4q5q6q7q8Xq1q2q3q4Xq5q6q7q8 = 0

Here ∇̃ is the Levi-Civita connection of the metric on S.



The D=11 Einstein equations are:

RMN =
1

12
FML1L2L3

FN
L1L2L3 − 1

144
gMNFL1L2L3L4

FL1L2L3L4 .

From the i, j frame component of the Einstein equations:

R̃ij + ∇̃(ihj) −
1

2
hihj = −1

2
Yi`Yj

` +
1

12
Xi`1`2`3Xj

`1`2`3

+ δij

(
1

12
Y`1`2Y

`1`2 − 1

144
X`1`2`3`4X

`1`2`3`4

)
,

where R̃ij is the Ricci tensor of S.

From the +− component of the Einstein equations:

∇̃ihi = 2∆ + h2 − 1

3
Y`1`2Y

`1`2 − 1

72
X`1`2`3`4X

`1`2`3`4

The ++, +i components of the Einstein equations are implied by these
conditions.



Supersymmetric Near-Horizons

The Killing spinor equations of D = 11 supergravity are:

∇M ε+

(
− 1

288
ΓM

L1L2L3L4FL1L2L3L4
+

1

36
FML1L2L3

ΓL1L2L3

)
ε = 0

ε is a Majorana spinor

We solve the KSE first by integrating up the components in the
light-cone directions + and −.

This is possible, because all of the bosonic fields are u-independent and
the dependence on r is explicit.

Having done this, we evaluate the remaining components of the KSE
along the horizon section directions.



To solve the KSE along the light-cone directions, decompose the Killing
spinor into positive and negative (light-cone) chirality parts:

ε = ε+ + ε− , Γ±ε± = 0

On integrating up the light-cone components of the KSE, this gives

ε+ = η+, ε− = η− + rΓ−Θ+η+

and

η+ = φ+ + uΓ+Θ−φ−, η− = φ−

where

Θ± =

(
1

4
hiΓ

i +
1

288
X`1`2`3`4Γ`1`2`3`4 ± 1

12
Y`1`2Γ`1`2

)
The spinors φ± = φ±(y) do not depend on u, r.



Some algebraic conditions are also imposed by the “+”, “-” KSE
components(

1

2
∆− 1

8
dhijΓ

ij +
1

72
dhY`1`2`3Γ`1`2`3

+ 2
(1

4
hiΓ

i − 1

288
X`1`2`3`4Γ`1`2`3`4 +

1

12
Y`1`2Γ`1`2

)
Θ+

)
η+ = 0

(
1

4
∆hiΓ

i − 1

4
∂i∆Γi +

(
− 1

8
dhijΓ

ij − 1

24
dhY`1`2`3Γ`1`2`3

)
Θ+

)
η+ = 0

(
− 1

2
∆− 1

8
dhijΓ

ij +
1

24
dhY`1`2`3Γ`1`2`3

+ 2
(
− 1

4
hnΓn +

1

288
Xn1n2n3n4Γn1n2n3n4 +

1

12
Yn1n2Γn1n2

)
Θ−

)
φ− = 0

However, these are actually redundant...!



The remaining “spatial” components of the KSE (i.e. along the
directions of S) imply

∇̃iη+ +

(
− 1

4
hi −

1

288
Γi
`1`2`3`4X`1`2`3`4 +

1

36
Xi`1`2`3Γ`1`2`3

+
1

24
Γi
`1`2Y`1`2 −

1

6
YijΓ

j

)
η+ = 0

and

∇̃iφ− +

(
1

4
hi −

1

288
Γi
`1`2`3`4X`1`2`3`4 +

1

36
Xi`1`2`3Γ`1`2`3

− 1

24
Γi
`1`2Y`1`2 +

1

6
YijΓ

j

)
φ− = 0

∇̃ is the supercovariant derivative on S.



There is also an additional condition:

∇̃i(Θ+η+) +

(
− 1

2
hi +

1

4
Γi
`h` −

1

24
Xi`1`2`3Γ`1`2`3 +

1

8
Γi
`1`2Y`1`2

)
(Θ+η+)

+

(
1

4
∆Γi −

1

16
Γi
`1`2dh`1`2 −

3

8
dhi`Γ

` − 1

48
dhY`1`2`3Γ`1`2`3Γi

)
η+ = 0 ,

Using the KSE for ∇̃η+, this can be rewritten as a purely algebraic
condition.



Simplifying the Killing Spinor Equations

Using purely local calculations, making extensive use of the field
equations, the Killing spinor equations can be reduced to:

∇(±)
i φ± ≡ ∇̃iφ± + Ψ

(±)
i φ± = 0

Note: the ± in ∇(±)
i corresponds to the lightcone chirality of the spinor

φ±, and is not a spacetime index on the covariant derivative.

The Ψ
(±)
i is an algebraic operator:

Ψ
(±)
i = ∓1

4
hi −

1

288
Γi
`1`2`3`4X`1`2`3`4 +

1

36
Xi`1`2`3Γ`1`2`3

± 1

24
Γi
`1`2Y`1`2 ∓

1

6
YijΓ

j .



Key property of solutions:

If φ− satisfies

∇(−)
i φ− = 0

Then φ′+ defined by

φ′+ ≡ Γ+Θ−φ−

automatically satisfies (again from a purely local analysis)

∇(+)
i φ′+ = 0

In principle, this provides a way to generate φ+ spinors from φ− solutions!

But: We need to know more about Ker(Θ−) to understand the counting
better...



Global Analysis I: Properties of Ker(Θ−)

Suppose that φ− 6≡ 0, and satisfies ∇(−)
i φ− = 0, Θ−φ− = 0.

Then one of the algebraic KSE conditions implies

〈φ−,
(
− 1

2
∆− 1

8
dhijΓ

ij +
1

24
dhY`1`2`3Γ`1`2`3

)
φ−〉 = 0

which then implies

∆ = 0

Next, the condition ∇(−)
i φ− = 0 implies

∇̃i〈φ−, φ−〉 = −1

2
hi〈φ−, φ−〉+ 〈φ−,

(
1

144
Γi
`1`2`3`4X`1`2`3`4 −

1

3
YijΓ

j

)
φ−〉



Using the condition Θ−φ− = 0, this simplifies further to

∇̃i〈φ−, φ−〉 = −hi〈φ−, φ−〉

As φ− 6≡ 0, this implies

dh = 0

The “++” component of the Einstein equation then implies

dY − h ∧ Y = 0



Returning to the condition:

d ‖ φ− ‖2= − ‖ φ− ‖2 h

Take the divergence of this and use the “+-” component of the Einstein
equations to eliminate the ∇̃ihi term:

∇̃2 ‖ φ− ‖2=

(
1

3
Y`1`2Y

`1`2 +
1

72
X`1`2`3`4X

`1`2`3`4

)
‖ φ− ‖2

On integrating both sides of this expression over S, the contribution from
the LHS vanishes, leaving∫

S

(
1

3
Y`1`2Y

`1`2 +
1

72
X`1`2`3`4X

`1`2`3`4

)
‖ φ− ‖2

So

Y = 0, X = 0



Finally, substitute Y = 0, X = 0 back into the “+-” component of the
Einstein equations:

∇̃ihi = h2

Again, integrating both sides of this expression over S implies

h = 0

We have therefore found that if there is a nonzero φ− spinor such that

∇(−)
i φ− = 0 with φ− ∈ Ker(Θ−), then

∆ = 0, h = 0, Y = 0, X = 0



In this case, the 4-form vanishes, and the non-zero vector field
Wi = 〈φ−,Γiφ−〉 is parallel.

The spacetime is R1,1 × S1 ×M where M is a compact Ricci-flat
8-manifold.

We will not consider this case any further...



Global Analysis II: Horizon Dirac Equations

Given KSE (on S) of the form ∇(±)
i φ± = 0, we define horizon Dirac

operators

D(±) = Γi∇(±)
i = Γi∇̃i + Ψ(±)

where

Ψ(±) = ΓiΨ
(±)
i = ∓1

4
h`Γ

` +
1

96
X`1`2`3`4Γ`1`2`3`4 ± 1

8
Y`1`2Γ`1`2 .

These Dirac operators, in addition to the Levi-Civita connection, also
depend on the fluxes of D = 11 supergravity restricted to the horizon
section S.



Generalized Lichnerowicz Theorem for φ+

Suppose that the spinor φ+ satisfies the horizon Dirac equation

D(+)φ+ = 0

On, making (extensive) use of the bosonic field equations, it follows that

∇̃2 ‖ φ+ ‖2 −hi∇̃i ‖ φ+ ‖2= 2〈∇(+)iφ+,∇(+)
i φ+〉

We do not assume that ∇(+)
i φ+ = 0, or any of the other algebraic

conditions on φ+ at any point in this analysis...

On applying the Hopf maximum principle, assuming that S is smooth
and compact without boundary, one finds

‖ φ+ ‖= const. ∇(+)
i φ+ = 0



Generalized Lichnerowicz Theorem for φ−

Suppose that the spinor φ− satisfies the horizon Dirac equation

D(−)φ− = 0

On making (extensive) use of the bosonic field equations, it follows that

∇̃2 ‖ φ− ‖2 +∇̃i
(
‖ φ− ‖2 hi

)
= 2〈∇(−)iφ−,∇(−)

i φ−〉

On integrating both sides over S, assuming that S is smooth and
compact without boundary, one finds

∇(−)
i φ− = 0

Note: in this case, ‖ φ− ‖ need not be constant...



Index Theory: Supersymmetries of M-Horizons

The generalized Lichnerowicz theorems imply

∇(±)
i φ± = 0⇐⇒ D(±)φ± = 0

We have decomposed the spin bundle S of D = 11 supergravity as

S = S+ + S−

using the projectors Γ±.

Note that

D+ : Γ(S+)→ Γ(S+)

D+† : Γ(S+)→ Γ(S+)

where Γ(S+) are smooth sections of S+.



The operator D(+) is defined on S which is an odd-dimensional manifold.

So it follows that the index of D(+) vanishes [Atiyah].

Hence

dim kerD(+) = dim ker(D(+))†

We can also compute directly the adjoint operator:

(D(+))† = −Γi∇̃i −
1

4
h`Γ

` +
1

96
X`1`2`3`4Γ`1`2`3`4 − 1

8
Y`1`2Γ`1`2

If we set φ′+ = Γ+φ− then

(D(+))†φ′+ = Γ+D(−)φ−

This establishes a 1-1 correspondence between Ker(D(+)†) and
Ker(D(−)).



Hence

dim ker(D(+)†) = dim ker(D(−))

We also have the index theory result

dim kerD(+) = dim ker(D(+))†

Combining these two results, the total amount of supersymmetry
preserved is

N = dim kerD(+) + dimkerD(−) = 2 dim kerD(−).

So the number of supersymmetries preserved is always even.



Symmetry Enhancement

A priori, near horizon geometries admit two Killing vector fields generated
by ∂

∂u and u ∂
∂u − r

∂
∂r .

However, all known examples exhibit a larger symmetry algebra which
always includes a sl(2,R) subalgebra.

We shall prove that this is a generic property of M -horizons (and AdS2

solutions) of M -horizons with non-trivial fluxes, and it arises as a direct
consequence of supersymmetry.

This symmetry is dynamical in the sense that it emerges after using the
field equations.

We begin by considering the general structure of the Killing spinors



The most general Killing spinor is:

ε = φ+ + uΓ+Θ−φ− + φ− + rΓ−Θ+φ+ + ruΓ−Θ+Γ+Θ−φ−

We consider two Killing spinors, both generated by χ = χ−.

The first is generated by setting (φ+, φ−) = (0, χ).

The second is generated by setting (φ+, φ−) = (Γ+Θ−χ, 0)

So

ε1 = φ− + uφ+ + ruΓ−Θ+φ+ , ε2 = φ+ + rΓ−Θ+φ+

where we have set φ− = χ, φ+ = Γ+Θ−χ.

For any two Killing spinors ζ1 and ζ2, the 1-form bilinear

K = 〈(Γ+ − Γ−)ζ1,ΓAζ2〉 eA

is dual to a Killing vector which also preserves the 4-form F .



The Killing spinors ε1, ε2 generate 3 Killing vectors:

K1 = 〈(Γ+ − Γ−)ε1,ΓAε2〉 eA = (2r〈Γ+φ−,Θ+φ+〉+ r2u∆ ‖ φ+ ‖2) e+

− 2u ‖ φ+ ‖2 e− + Vie
i

K2 = 〈(Γ+ − Γ−)ε2,ΓAε2〉 eA = r2∆ ‖ φ+ ‖2 e+ − 2 ‖ φ+ ‖2 e−

K3 = 〈(Γ+ − Γ−)ε1,ΓAε1〉 eA = (2 ‖ φ− ‖2 +4ru〈Γ+φ−,Θ+φ+〉
+ r2u2∆ ‖ φ+ ‖2)e+

− 2u2 ‖ φ+ ‖2 e− + 2uVie
i

where

Vi = 〈Γ+φ−,Γiφ+〉



To obtain these components for K1, K2, K3 two identities are used:

From one of the algebraic KSE conditions:

∆ ‖ φ+ ‖2= 4 ‖ Θ+φ+ ‖2

From the condition ‖ φ+ ‖= const. and ∇(+)
i φ+ = 0:

〈φ+,ΓiΘ+φ+〉 = 0



The Geometry of S

There are 2 cases, corresponding to V 6= 0 or V = 0.

If V 6= 0 then the conditions LKag = 0 and LKaF = 0, (a = 1, 2, 3) give

∇̃(iVj) = 0 , L̃V h = 0 , L̃V ∆ = 0 , L̃V Y = 0 , L̃VX = 0

So S admits an isometry generated by V , which leaves h, ∆, Y , X
invariant.

Other identities imposed by the field equations and KSE are:

−2 ‖ φ+ ‖2 −hiV i + 2〈Γ+φ−,Θ+φ+〉 = 0

iV (dh) + 2d〈Γ+φ−,Θ+φ+〉 = 0

2〈Γ+φ−,Θ+φ+〉 −∆ ‖ φ− ‖2 = 0

V+ ‖ φ− ‖2 h+ d ‖ φ− ‖2 = 0



The geometry of S is restricted by the existence of a nowhere vanishing
spinor φ−.

The structure group reduces to Spin(7).

The existence of additional spinor φ+ reduces the structure group further.

There are various possibilities depending on the isotropy group associated
with the second spinor- Spin(7), SU(4), G2, SU(3).



If V = 0 then the group action generated by K1,K2,K3 has
2-dimensional orbits.

The KSE/field equations imply that

∆ ‖ φ− ‖2= 2 ‖ φ+ ‖2 , h = ∆−1d∆

As h is exact, the solution is static.

On making a co-ordinate transformation r = ∆ρ, the geometry becomes
a warped produce AdS2 ×w S.

There are also further restrictions on the fluxes; the “++” Einstein
equation implies

dY − h ∧ Y = 0



The sl(2, R) Symmetry

The vector fields dual to the 1-form bilinears K1,K2,K3 are:

K1 = −2u ‖ φ+ ‖2 ∂u + 2r ‖ φ+ ‖2 ∂r + V i∂̃i
K2 = −2 ‖ φ+ ‖2 ∂u
K3 = −2u2 ‖ φ+ ‖2 ∂u + (2 ‖ φ− ‖2 +4ru ‖ φ+ ‖2)∂r + 2uV i∂̃i

These satisfy the sl(2,R) commutation relations

[K1,K2] = 2 ‖ φ+ ‖2 K2

[K2,K3] = −4 ‖ φ+ ‖2 K1

[K3,K1] = 2 ‖ φ+ ‖2 K3

Exercise: Check these commutation relations.



Other Applications: D=10 Horizons/AdS solutions

The same construction works for supersymmetric extreme black hole
near-horizons in D=10 supergravity.

Locally, KSE decompose on S into a pair of parallel transport
equations for pairs of spinors φ±, together with a pair of algebraic
conditions

∇(±)φ± = 0, A(±)φ± = 0

The generalized Lichnerowicz theorems hold. Globally, if φ± satisfy
the associated “horizon Dirac equations” then the KSE hold – both
parallel transport and algebraic conditions.

e.g. if D(+)φ+ = 0 then

∇̃2 ‖ φ+ ‖2 −hi∇̃i ‖ φ+ ‖2= 2〈∇(+)iφ+,∇(+)
i φ+〉+ ‖ A(+)φ+ ‖2

and the Hopf maximum principle implies ∇(+)φ+ = 0 and
A(+)φ+ = 0



There is again a 1-1 correspondence between the kernels of D(−),
D(+)†: If we set φ′+ = Γ+φ− then

(D(+))†φ′+ = Γ+D(−)φ−

The total number of supersymmetries is

N = N+ +N−

where

N± = dim Ker(∇(±),A(±)) = dim Ker(D(±))

because of the generalized Lichnerowicz theorems.

We have

Index(D(+)) = dim Ker(D(+))− dim Ker(D(+)†) = N+ −N−

because N− = dim Ker(D(−)) = dim Ker(D(+)†).



Hence

N = 2N− + Index(D(+)) = 2N+ − Index(D(+))

One subtlety: in D=10, S is 8-dimensional, so the index need not vanish!

If N− 6= 0 then the solution admits a sl(2,R) symmetry.

This construction generalizes to all warped product AdSn ×w M
solutions in D=10, D=11 supergravities, where M is some compact,
smooth internal space without boundary.

In all cases, generalized Lichnerowicz theorems hold, and the entire
content of the Killing spinor equations is equivalent to finding zero
modes of Dirac operators defined on M .


