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Outline for Lectures 3-+4

@ The Homogeneity theorem for IV > 16 solutions in D=11 and type
[l D=10 supergravity [arXiv:1208.0553]

e N = 29,30, 31 solutions in 1B supergravity [arXiv:0710.1829]

o Global properties of horizons/AdS [arXiv:1303.0869]



The Homogeneity Theorem [Hustler, O'Farrill]

Let S be the space of D=11, IIB/A spinors. Given €1,e5 € S, let
p(e1,€2) = D(e1, TV ea)0n
D is a non-degenerate gauge-invariant inner product,
D:SxS—R
In 1IB supergravity
D(e1, e2) = Re(ey, Tpea)

@ is a squaring operator, which associates to every pair of spinors a
tangent vector, pointwise on the spacetime.



p is:
e Symmetric: (e, €2) = (e, €1).
This implies

1
w(e1,€2) = 3 (@(61 Hlsoleitian el (el el = 80(62762))

so o is fixed by its diagonal values.
@ (e, €) is either timelike or null [JG, Papadopoulos]

Suppose W is the space of Killing spinors, and dim(W) > 16.
If M is the spacetime, and p € M, the map
olw : W x W — T,(M)

is surjective iff the perpendicular component of its image is trivial.



Equivalently,
olw : W x W — T,(M)
is surjective iff the only tangent vector V such that
VMo(er,€2)n =0, Ver,e0 € W
isV=0.
Suppose that
VMp(er,€2)n =0, Ver,e0 € W

Then such V' must be null. To prove this, the above condition is
equivalent to requiring

RV Y g
where

W=t =S =0 = T )



We know that dim(W) + dim(W+) = 32 and dim(W) > 16.
This implies that dim(W+) < 16. As we have

IV : W > W
this implies by the rank-nullity theorem that Ker(I'V;,) # {0}.

However

2
(1—\1\/1 V/”) Bl V M VAJ

so in order to have Ker(I'™V,,) # {0} we must have V2 = 0.

If the spacetime were Euclidean, this would imply V' = 0 and so ¢|w
maps surjectively pointwise onto the tangent space.



But the supergravity is Lorentzian, so if V' is nonzero, it must be null.
Choose a basis for the tangent space
{er e, e}
with V o< ey
We need (¢, €) to be both orthogonal to ey and be non-spacelike.
Hence
ole, ) = A()es

for some function A : W — R, and so

1
w(e1,€2) = G (99(61 Hleolleyit e5)) — (er, e1) + 99(62762))

- 3(Ma+a) - -r@)e,



It follows that both the image of |y and the perpendicular component
of the image of |y are spanned by e, .

This is impossible, so we must have V =0, i.e. ¢|w is surjective.

Note: in D = 10, D = 11 supergravity theories, if €1, €5 are Killing
spinors, then the KSEs imply that ¢(e1, €2) is an isometry which
preserves all the bosonic fields of the theory.

So N > 16 supergravity solutions are all locally transitive - at every point
there is a local frame consisting of Killing vectors which preserve all the
supergravity fields.



Application to Warped Product AdS Solutions

Consider N > 16 warped product solutions AdS,, X, M in D=10 type Il
or D=11 supergravity.

M is some compact and smooth Euclidean internal space.
@ The spacetime spinors can always be written in terms of spinors o
defined on M
@ These spinors satisfy generalized Lichnerowicz theorems on M

@ For N > 16 solutions, there are sufficiently many o spinors in order
for the homogeneity theorem to apply for M.

@ In all cases, the warp factor is constant, and M must be a
homogeneous manifold.

@ All such M have been fully classified (at least for dim (M) < 9) by
S. Klaus: (Einfachzusammenh angende kompakte homogene Raume
bis zur Dimension 9).



[IB Supergravity and Killing Spinors

The bosonic fields of 1IB supergravity are the spacetime metric g, the
axion ¢ and dilaton ¢ , two three-form field strengths G* = dA“
(e =1,2), and a self-dual five-form field strength F’

The axion and dilaton give rise to a complex 1-form P [Schwarz, West].
The 3-forms are combined to give a complex 3-form G.

To achieve this, introduce a SU(1,1) matrix U = (V{,V?), a =1,2
such that

Ay et V2 V) — v

612 —Hl= €12.



The V¥ are related to the axion and dilaton by

V2 1+i(o+ie ?)
Vi 1-i(o+ie )’

Then P and G are defined by

Py = —éaﬁVfanf, GuNR = _Eaﬁv_gG@]\/R



The gravitino Killing spinor equation is

4 i 1
VI\/IG it ZSFNIIHNAIGFNL..NALM {1l %(F]\INlNQNgGNlNQNg

—9FN1N2GA]N1N2)(C * 6) =(0)

where i .
4 i
Vm =0m— §QM + ZQM,ABFAB

is the standard covariant derivative twisted with U(1) connection Q s,
given in terms of the SU(1,1) scalars by

Qum = —i€asVoOMV]

and () is the spin connection.



There is also an algebraic condition

1
PZLIFM(C % 6) + ﬂGNlNzNSFNlAbNSG =0

The Killing spinor € is a complex Weyl spinor constructed from two
copies of the same Majorana-Weyl representation Afﬁ:
€ =1 +ith
Majorana-Weyl spinors 1) satisfy
Y=Cxy
C is the charge conjugation matrix with the property that

CxTpy =TpCx

A basis can be chosen in which C' = I'grsg.



Spinors as Forms

@ Let eq,...,e5 be a locally defined orthonormal basis of R®.

@ Take U to be the span over R of ey, ..., es5.

@ The space of Dirac spinors is A = A*(U ® C) (the complexified
space of all forms on U).

@ °A decomposes into even forms ¢AT and odd forms ¢A~, which are
the complex Weyl representations of Spin(9,1).



@ The gamma matrices are represented on “A as

Woni=l=cs5/Alniaes4n
I'sm = esAn+esm
I'in = e An+e;an =l e g dl
DG = | el AN = BEdi) 0=l gk
@ These gamma matrices are chosen so that I'; for j =1,...,9 are

hermitian and Iy is anti-hermitian with respect to the inner product
5
< 2%, wley >= Z(za)*wa :
a=l!

This inner product can be extended from U ® C to ¢A.



We take Majorana-Weyl spinors 1) € Ay fixed by 1) = C * ).
A basis (over R) of Ay is given by

) il ) 1
{1+ e1234, Z(l 7l 61234)’ €ij — 5 €iiraCpas Z(eij il §6iqu6ptI)

] 1
ej5 + 6€j7rz,'rzp€'nmp5a 2(6’]5 3¢ gej'nmpemxnp5)}
for i,7,p,q,m,n=1,2,3,4.

A 1IB Killing spinor € € A is given by
€ =11 +iths
for 1,19 € Afﬁ.



There is a Spin(9,1) invariant inner product defined on “A defined
by

B(€17 62) =< Foc * €1,€2 >
B is skew-symmetric in €1, €5.

B vanishes when restricted to AT or A,

This defines a non-degenerate pairing B : ‘AT ® A~ — R given by

B(e, &) = Re B(e, &)



Canonical forms of spinors

Spin(9,1) has one type of orbit with stability subgroup Spin(7) x R® in
A [Figueroa-O'Farrill, Bryant].

To see this, decompose AJ; as

Ai% = IR e 1l €1234 > +A1(R7) + Ag s

R < 1+ e1234 > is the singlet generated by 1 + e1934

Al(]R7) is the vector representation of Spin(7) spanned by Majorana
spinors associated with 2-forms in the directions eq, e, e3, ¢4 and by

Z(]. T3 61234).

Ag is the spin representation of Spin(7) spanned by the remaining
Majorana spinors of type es A 7’ where 1)’ is generated by odd forms in
the directions eq, €3, €3, e4.



Spin(7) acts transitively on the S7 in Ag, with stability subgroup G,
and G acts transitively on the S in A1(R") with stability subgroup
SU(3) [Salamon]

Using these transitive actions, one can show that a single Majorana-Weyl
spinor lies in the orbit of 1 + e1334. This spinor is Spin(7) x R® invariant.

To see this, write the spinor 1, as

Y1 = a(l + eig34) + 601 + 62,

with a € R, 6; € AY(R") and 6, € Ag



There are several cases to consider.

If a # 0, 62 = 0, using the transitive action of Go C Spin(7) on the S°
in Al(R7), make a gauge transformation so that 6; = ib(1 — ej234), and
hence

1 = a(l+ e1234) + ib(1 — e1234) = Va2 + b2 (DT10(1 4 eg55,)

So 1 lies in the same orbit as 1 + e1234.

The other cases, for which a # 0 and 05 # 0; and a = 0 can be dealt
with similarly.

Having fixed v to be proportional to 1 + ej234 using Spin(9,1) gauge
transformations, it remains to consider 5.



By using Spin(7) gauge transformations, which leave 1, invariant, one
can write

o = b1 (1 + e1234) + iba(1 — e1234) + b3(e1s + €2345)

There are various cases

i) bs # 0. Then we have (taking 'y = %(m +Ty)):

L DLy i Bl
thy =€ Pa * TTs +hy(er5 + egaus)
so using a R® € Spin(7) x R® gauge transformation one can take
g p gaug
¥y = g(e1s + e2345)

The stability subgroup of Spin(9,1) which leaves 1; and
invariant is Gs.



ii) If bs =0 then
o = g1(1 + e1234) + ig2(1 — €1234)

and the stability subgroup is SU(4) x R®

III) If b2 = bg = 0 then
o = g(1 + e1234)

and the stability subgroup is Spin(7) x R®.



N = 31 Solutions: Algebraic Conditions

Suppose that there exists a solution with exactly (and no more than) 31
linearly independent Killing spinors over R.

Consider the algebraic condition

1
PMFM(C * ET) A ﬂGN1N2N3FN1N2N36T =0

where €” are Killing spinors for r =1,...,31.

The space of Killing spinors is orthogonal to a single normal spinor,
v € A7 with respect to the Spin(9,1) invariant inner product B.
Using Spin(9,1) gauge transformations, this normal spinor can be
brought into one of 3 canonical forms:

Spin(7) x R® : v = (n+im)(es + e12345),
SU(4) x R®: v =(n—L+im)es + (n+ £+ im)eiaass
G : v =n(es + e12345) + im(e1 + ea34),



In general, one can write

B2
i il
€=§fﬂ7
=1l

where f7; are real, nP for p=1,...,16 is a basis for A, and
7716+p iy iT]p.
The matrix with components f”; is of rank 31.

The functions f7; are related by the orthogonality condition B(e",v) = 0

For example, take the case for which v = (n + im)(es + e€12345): set

€ = fT1(1+ e1234) + fr17i(1 + e1234) + fin®

where ¥ the remaining (even form spinor) basis elements orthogonal
(w.r.t the Dirac inner product (,)) to 1 + e1234,%(1 + €1234)-



Then the orthogonality relation B(e",v) = 0 implies
nf'1—mfr17 =0

and so, taking without loss of generality n # 0; one finds

el i

(m+in)(1 + e1034) + frknk

Substituting this back into the algebraic Killing spinor equation gives

i | 1l y g
Py C#[(min) (1+en28a)|+ 57 G ar vy ity TV MM (mtin) (14€1234) = 0

and

Fl\'flel\'f:snP =0

PMFM??pZ ) G ay Mo Ms 5 D= b 1B



Analogous equations are obtained for SU(4) R® and G, invariant
normals.

In all cases, the conditions PMI‘an = 01 2 =0,

This means that the algebraic Killing spinor equation is linear over C, so
if there is a background with N = 31 linearly independent solutions of
the algebraic Killing spinor equation, then this equation must have 32
linearly independent solutions.

This in turn fixes G = 0. However, if G = 0 then the gravitino Killing
spinor equation also becomes linear over C.

In this case, if the gravitino Killing spinor equation has 31 linearly
independent solutions, it must have 32 solutions also. So the background
is maximally supersymmetric.



N = 30 Solutions: Algebraic Conditions

Having excluded N = 31 solutions, consider N = 30.

To simplify the analysis, we use the homogeneity theorem of Figueroa
O'Farrill, Hackett-Jones and Moutsopoulos.

This states that all solutions with N > 16 linearly independent Killing
spinors are homogeneous, and hence have P = 0.

So, for N = 30 solutions, the algebraic Killing spinor equation becomes
linear over C:

1

ﬂGNlNzNgl—‘NIN?NBE =1



To analyse the case of IV = 30 solutions, note that the spinors satisfying
the algebraic KSE are all orthogonal to a normal spinor v € A7 with
respect to the inner product B.

This can be brought into canonical form using gauge transformations.

Spin(7) x R® : v = (n+1im)(es + €12345),
SUA)xR®:  v=(n—L+im)es + (n+ L+ im)eissss,
Gy : == n(e5 A 612345) A im(el s 6234) )

The solutions to the algebraic Killing spinor equation are
15
el iz lont
G=1l

where {1} is a basis of A} normal to v (with respect to B), and z is an
invertible 15 x 15 matrix of spacetime dependent complex functions.



There are three cases to consider, corresponding to the types of normal
spinor v.

In all cases, one can choose the basis {1’} to have 13 (very simple)
common elements, which are orthogonal to v: epq, €15pq; €1p, €14 fOr
p=2,3,4 and e15 — e2345.

The remaining two basis elements are case-dependent

Spin(7) x R® : 1 — e1234, €15 + €2345,
SU(4) X Rg : €15 + €2345, (n — 0+ im)l = (n + 0+ im)€1234 !
Gy : 1 — ej934, m(l + 61234) aF in(615 i 62345>

In all cases, evaluating the algebraic Killing spinor equation on the basis
{n"} produces sufficient conditions to fix G = 0.



Integrability Conditions for N=30 Solutions

It remains to consider the integrability conditions of the Killing spinor
equations for solutions with G = P = 0.

The curvature R = [D, D] of the covariant connection D of |IB
supergravity can be expanded as

1 1
Run = 5(Tin)pel? + 5 (Thn)Qr..@ L9
2 41

where

QIQZQgﬂN\Pz]C%QzQs )

2 HR 1 1
(Tun)pp, = zRun PP — 3FMP,
Q1Q2

(Tyn)P..ps = 3DFNP,..P, + $FMNG.0u1P P, PPy



The T2 and T* tensors satisfy various algebraic conditions, following
from the Bianchi identities and field equations:

(Tyrn)pip, = (Thp,)un
(Typ)rps) = 0,
(g O
(Tﬁrlpz)PngSPG] =0
(Tan)eipsrs” | =10,
(Triip)Papspars) = —%6P1P2P3P4P5Q1Q”Q3Q4Q“(Tz@[Ql)QzQstd :

And (T p,(ar) Ny P, Py P, i totally antisymmetric in Py, Py, Ps, Py



Analysis of Conditions

The integrability conditions of the gravitino Killing spinor equations

Re" =0
To analyse this condition, note that Re” = 0, implies
RMN,ab' = UMN,rNaVer + UNN XaVb!

where u are complex valued, and {n", x} is a basis for AT in which {n"}
is a basis for the space of Killing spinors.

a are indices on even Weyl spinors, b’ are indices on odd Weyl spinors.
Indices on (even products) of Gamma matrices are lowered as

(FA1A2"'A2k)a FA1A2...A2k)aC

v = —1(Tos789) et (



We also have the formula

2
1
¢(1Vb’ STl Z B(¢aFA1A2...A2kV)(FAlAQWA%)ab’ 5

(2Kk)!

for any positive chirality spinor .

Note that R ;n consists of 2-I" and 4-I" terms whose trace over the even
Weyl spinor indices vanishes,

(TCmn)e® (TunpPg)a®
Requiring that Ra/n,.* = 0 imposes
upMNB(x,v) =0

which eliminates the contribution to Rasn,qp from uprp.



Hence we are left with

RMN,aby = UMN ol
1 &l
— SN EE D ol B  § F FAIAQAzk 5
16uMN, ;;71 (2k)! (1", T As 4, 45 ¥)( )ab

which in turn relates 7%, T% to upn , via

(Tun)aras = — T6uA4N,TB(77T7 Ta,a,v)

1
(TaiN) A1 AsdsAs = — TGUI\JN,TB(Urv Ta,4,454,7)



The method is then as follows
@ Determine all components of 72 and T in terms of up/n
@ Translate the 72 and T conditions into conditions on u

@ After some moderately unpleasant linear algebra, one finds that
these are sufficient to fix uprn,» = 0.

@ This then implies that T2 =0, T% = 0.

@ However these are equivalent (together with P = 0, G = 0) to the
conditions on maximally supersymmetric backgrounds.

So all N = 30 solutions are (locally) maximally supersymmetric.



N = 29 Solutions

Solutions with exactly N = 29 linearly independent Killing spinors are
excluded as follows:

@ As P = 0, the algebraic Killing spinor eqns are linear over C.

@ So a background with N = 29 linearly independent solutions to the
algebraic Killing spinor equation must have at least 30 solutions to
this equation.

@ By the N = 30 analysis, this is sufficient to fix G = 0

@ As G = 0, the gravitino Killing spinor equation is linear over C, and
so an exactly N = 29 solution is excluded.



Conclusions

There are no solutions of 1IB supergravity with exactly NV =29, N = 30
or N = 31 linearly independent Killing spinors

What about solutions with N = 28 supersymmetries? A non-trivial
example is known - the plane wave geometry of Bena and Roiban.

In fact in order to have a solution with exactly 28 linearly independent
Killing spinors, one is forced to take G # 0.

Analysis of the Killing spinor equation integrability conditions with G # 0
is much more complicated!



The gravitino integrability conditions are

Se+ T(Ce)* =0

where
i 51 14 0 o115
Aty _g(F[N LS BiD N G ipa T B O B2 D N Ciginy 7o)
o
in2 1
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e g GG oo T 2F[N\L1L2Q1Q2G\M]Q1Q2

1 1
Q 1143 1851 el Q
L R G 2 Lo R R B RSN M p 5T G U D0
1 1
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NN C R SR o or i SRR iy G v e
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LiLoL: Q1Q
7§F[N\ 128 Fr nons Tt 2 G M@ @)
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One can show that the Bena and Roiban plane wave is the unique
solution with N = 28 supersymmetries:

9 i iy

ds? = 2dw(dv— (g + 2h%)8;x 2! dw) + 6;;dx’ dw?
G = —2v/2iedw A (dz'® + dz?® + d® + dz?®)
iR = 2R it 5 de? )

All homogeneous solutions with N > 16 linearly independent Killing
vectors could (in principle) be classified using similar methods.

N.B. It has also been shown [Gran, JG, Papadopoulos, Roest], that there
are no N = 31 or N = 30 solutions in D=11 supergravity.



Global Properties of Supergravity Solutions

The Classical Lichnerowicz Theorem

Suppose that N is a spin compact manifold. Then the following identity

holds:
/<Fivie,rjvje>:/< i€, V') /Re €)
N N

where V is the Levi-Civita connection, (,) is the Dirac inner product, R
is the Ricci scalar.

Note: this uses T'; = (T';), and also

94 1
F”viVjG = _ZRG



An alternative approach: if e satisfies the Dirac equation I'*V;e = 0 then

/ 1 b
VIV [l eP= SR €]* +2(Vie, V'e)

Consequences:

@ If R > 0 then the Dirac operator has no zero modes.

o If R =0 then the zero modes of the Dirac operator are also parallel.

Question: can we generalize the classical Lichnerowicz theorem to
supergravity backgrounds with flux?



Gaussian Null Co-ordinates

We consider the event horizon of a supersymmetric extremal D=11 BH

We assume that the spacetime is stationary, and contains a regular black
hole event horizon, which is a Killing horizon of a Killing vector W.

To analyse the near-horizon geometry, we introduce a co-odinate system
adapted to the horizon.

These Gaussian null co-ordinates are higher dimensional generalization of
the Eddington-Finkelstein co-ordinates

We assume the future event horizon ™ has a single connected
component.

Let 3 be a Cauchy surface for the exterior of the black hole, with a
boundary S on the future event horizon.



The Gaussian null co-ordinates are {u,r,y’}.

[Isenberg & Moncrief, Friedrich, Racz, Wald]

Here W = % is the black hole Killing vector.

As W is an isometry, there is no dependence on w in the metric.
r denotes the radial distance away from the event horizon.

The event horizon is at 7 = 0, which is a null hypersurface.

The {y'}, I =1,...,9 are local co-ordinates on S.



In the Guassian null co-ordinates the metric is

L6 1
ds® = 2ete™ +4;;e'e = 2du(dr +rh — 57'2Adu) + yrdy’ dy”’

1 A }
et = du, e =dr+rh— §T2Adu’ el = el']dyJ
Here

h=hi(r,ydy’, A=Almy), 715 =7(ny)

are u-independent 1-form, scalar, and metric, on S which depend
analytically on 7.



The Near-Horizon Limit

Having obtained the metric
1
ds® = 2du(dr + rh — §T2Adu) + ~rdytdy’

with near horizon data {A, h;,~;;}, which are u-independent and
analytic in r, we can take the near-horizon limit [Reall et al.] by setting

r — Or, u— 0ty
and then taking the limit £ — 0.

In this limit, the form of the metric is preserved, but now the
near-horizon data depend only on y, and not on 7.

The limit exists only for extremal black holes.
The limit decouples the bulk geometry from the near-horizon region.

The spatial cross-sections of the horizon S, equipped with metric ~; 5,
are assumed to be smooth and compact without boundary.



Example: Warped Product AdS> Geometries

Take the near-horizon limit metric:
ds® = 2du(dr + rh — %TQACZU) + ds*(S)
Choose the following near-horizon data:
h =dd, A=e®L

for constant L, where ® is a smooth function on S, and make the
co-ordinate transformation

The metric is then
ds? = 2e~®du(dp — %LQdeu) + ds*(S)
where
ds3 = 2du(dp — %LQdeu)

is the metric on AdS;. So AdS; X, S is a near-horizon geometry.



D = 11 Supergravity

It is expected that there are many black hole solutions in M-Theory
The IIA Newton constant increases quadratically with string coupling.

As the IIA string coupling becomes large, the strength of the
gravitational force increases and IIA matter collapses to black holes.

But the strong coupling limit of IIA string theory is conjectured to be
M-Theory, which has as an effective theory D=11 supergravity.

The bosonic content of D=11 supergravity is the metric g and 4-form F.

We assume that all the components of F' are independent of u and are
analytic in 7 in the Gaussian null co-ordinates.



Then, on taking the near-horizon limit and imposing the Bianchi identity
dF =0
one finds that
F=e"ANe AY +ret A(dY —hAY)+ X

where Y € A%2(S) and X € A*(S) are u,r-independent 2 and 4-forms on
the horizon sections.

The 4-form X must be closed as a consequence of the Bianchi identity:

dX =0



The Field Equations

Before analyzing the conditions imposed by supersymmetry, we consider
the gauge and Einstein field equations.

The D=11 gauge field equations are
1
d*llF—§F/\F:0

These decompose into the following conditions on the 2-form Y and

4-form X on S:
vi‘}(iz1£2[3 + 36[[1 Y—fzeg] 51t 3h[£1 Yzzéd] + hiXi[1[2[3
1 i
ﬁféléﬂgqlquwaqﬁquzanquIsqe
and and
v]yj, i4¢ 1159 EilhII2QSQ4Q5QGQ7(18Xq1q2q3q4Xq5q6q7q8 =0

Here V is the Levi-Civita connection of the metric on S.



The D=11 Einstein equations are:

1

Ryn = —=Fymr,1,L,
12

1i
DA YLIIbE L1LoLsl
FN Lier 2 ‘5—71 g]uz\rF[1[2[3[4F a2 it

From the 4, j frame component of the Einstein equations:

LN I 1 1 A
Ri; + V) — Shih ﬁmyf il ZXMMSXJ-EIMS
1 1
Sl Ay [ e aids il , X ttatsls
+ ] (12 (22 144 £1020304 )

where Rij is the Ricci tensor of S.

From the +— component of the Einstein equations:

il 1 | 1 )
Vihi = DA 4L h2 114 g glgzyzlb {30 5 515253&){[122[‘3[4

The ++, +i components of the Einstein equations are implied by these
conditions.



Supersymmetric Near-Horizons

The Killing spinor equations of D = 11 supergravity are:

1 ) 1 ;
Ve + ( 5 @FMLILQLJL“FLleLng; t3 ML1L2L3FL1L2L3)6 il
€ is a Majorana spinor

We solve the KSE first by integrating up the components in the
light-cone directions + and —.

This is possible, because all of the bosonic fields are u-independent and
the dependence on 7 is explicit.

Having done this, we evaluate the remaining components of the KSE
along the horizon section directions.



To solve the KSE along the light-cone directions, decompose the Killing
spinor into positive and negative (light-cone) chirality parts:

e—leit el i IR et — ()
On integrating up the light-cone components of the KSE, this gives
€+ =T+, el ms L Sl
and
N+ = ¢+ +ul'y8_¢_, n- = ¢

where

N i 1
01 = (4hif’ + 53 A ot e = EYMQFE “)

The spinors ¢+ = ¢+ (y) do not depend on u, r.



Some algebraic conditions are also imposed by the “+", “-" KSE
components
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However, these are actually redundant...!



The remaining “spatial” components of the KSE (i.e. along the
directions of S) imply

~ 1 1 1
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V is the supercovariant derivative on S.



There is also an additional condition:

1 1 1 1
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Using the KSE for V., this can be rewritten as a purely algebraic
condition.



Simplifying the Killing Spinor Equations

Using purely local calculations, making extensive use of the field
equations, the Killing spinor equations can be reduced to:

Vgi)%[ = Vb + ‘I’Ei)cﬁi — i)

Note: the & in Vz(-i) corresponds to the lightcone chirality of the spinor
¢+, and is not a spacetime index on the covariant derivative.

The \I/Ei) is an algebraic operator:
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Key property of solutions:
If ¢_ satisfies
viTs_ =0
Then ¢/, defined by
¢, =T, 0_¢_

automatically satisfies (again from a purely local analysis)

Vil =0

In principle, this provides a way to generate ¢ spinors from ¢_ solutions!

But: We need to know more about Ker(©_) to understand the counting
better...



Global Analysis |: Properties of Ker(©_)

Suppose that ¢_ = 0, and satisfies VE_)qb_ =0, ©@L@L =)
Then one of the algebraic KSE conditions implies

1l 1 ” 1
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which then implies
A=0
Next, the condition VE_)QS_ = 0 implies

1 1 1 1 ;
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Using the condition ©_¢_ = 0, this simplifies further to

Vi{p-,¢-) = —hi(¢-,4-)
As ¢_ # 0, this implies
dh =0
The “4++4" component of the Einstein equation then implies

dY —hAY =0



Returning to the condition:
dl ¢ |IP=—1ll¢- I h

Take the divergence of this and use the “+-" component of the Einstein
equations to eliminate the V;h’ term:

~ 1 1
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On integrating both sides of this expression over S, the contribution from
the LHS vanishes, leaving

1 1
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So



Finally, substitute Y = 0, X = 0 back into the “+-" component of the
Einstein equations:

Wlifs = e
Again, integrating both sides of this expression over S implies
=0

We have therefore found that if there is a nonzero ¢_ spinor such that
V{7 $_ =0 with ¢_ € Ker(©_), then

A=0, h=0, Y=0, X=0



In this case, the 4-form vanishes, and the non-zero vector field
W; = (¢_,T;¢_) is parallel.

The spacetime is RY' x S x M where M is a compact Ricci-flat
8-manifold.

We will not consider this case any further...



Global Analysis Il: Horizon Dirac Equations

Given KSE (on S) of the form v§i>¢i = 0, we define horizon Dirac
operators

D® = 1iv® — iy, 4 v@®

where

, 1 1 1
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These Dirac operators, in addition to the Levi-Civita connection, also
depend on the fluxes of D = 11 supergravity restricted to the horizon
section S.



Generalized Lichnerowicz Theorem for ¢

Suppose that the spinor ¢ satisfies the horizon Dirac equation
D(+)¢+ 0
On, making (extensive) use of the bosonic field equations, it follows that
V2 || 64 [P =hiVi || 64 |P=2(V 6, ViV o)

We do not assume that V§+)¢+ = 0, or any of the other algebraic
conditions on ¢ at any point in this analysis...

On applying the Hopf maximum principle, assuming that S is smooth
and compact without boundary, one finds

|| o+ ||= const. V§+)<]§+ =0



Generalized Lichnerowicz Theorem for ¢_

Suppose that the spinor ¢_ satisfies the horizon Dirac equation
DHg_ =0

On making (extensive) use of the bosonic field equations, it follows that
P o= 17 +9 (o= 17 1) = 27 0-, 9 70)

On integrating both sides over S, assuming that S is smooth and
compact without boundary, one finds

vile =0

Note: in this case, || ¢_ || need not be constant...



Index Theory: Supersymmetries of M-Horizons

The generalized Lichnerowicz theorems imply
Vg = 0= DHg, =0
We have decomposed the spin bundle S of D = 11 supergravity as
SIS IET S
using the projectors I'..
Note that

IS o TT(S0)
DRI S TS

where I'(S) are smooth sections of S_.



The operator D) is defined on S which is an odd-dimensional manifold.
So it follows that the index of D(+) vanishes [Atiyah].
Hence
dim kerD™) = dim ker(DH))f
We can also compute directly the adjoint operator:
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If we set ¢/, =T ¢_ then
(DW)ig, =T, D¢

This establishes a 1-1 correspondence between Ker(D()1) and
Ker(D()).



Hence

dim ker(DF)1) = dim ker(D(7))
We also have the index theory result
dim kerD™) = dim ker(D™)f

Combining these two results, the total amount of supersymmetry
preserved is

N = dim kerD™) + dimkerD(™) = 2 dim kerD(~).

So the number of supersymmetries preserved is always even.



Symmetry Enhancement

A priori, near horizon geometries admit two Killing vector fields generated

o) 9 9
by o and Wt = (o

However, all known examples exhibit a larger symmetry algebra which
always includes a s((2,R) subalgebra.

We shall prove that this is a generic property of M-horizons (and AdSs
solutions) of M-horizons with non-trivial fluxes, and it arises as a direct
consequence of supersymmetry.

This symmetry is dynamical in the sense that it emerges after using the
field equations.

We begin by considering the general structure of the Killing spinors



The most general Killing spinor is:
e=¢r +ul'10_¢_+¢_+rT'_ O, +rul_ O, T, 0_¢_

We consider two Killing spinors, both generated by x = x_.

@ The first is generated by setting (¢4, ¢_) = (0, x).

@ The second is generated by setting (¢4, ¢—) = (['+O_x,0)
So

a=¢_tupy +rul O, , e=¢,+7T_0,.0,
where we have set ¢_ = x, ¢4 =T,0_x.
For any two Killing spinors (; and (5, the 1-form bilinear
R RUIETTIN GET Cole

is dual to a Killing vector which also preserves the 4-form F.



The Killing spinors €1, €5 generate 3 Killing vectors:
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where

Vi= <F+¢—7 Fi¢+>



To obtain these components for K, K5, K3 two identities are used:

@ From one of the algebraic KSE conditions:
Allgy I?P=4] 6194 |7

@ From the condition || ¢4 ||= const. and V§+)¢+ =0

($+,Ti04¢1) =0



The Geometry of S

There are 2 cases, corresponding to V' # 0 or V' = 0.
If V2 0 then the conditions Lk, g =0and Lk, F =0, (a = 1,2, 3) give
e o e oA = 0 A g AT X0

So S admits an isometry generated by V, which leaves h, A, Y, X
invariant.

Other identities imposed by the field equations and KSE are:

=2 || 64 II” V' +2(C46-,0464) =
iv(dh) +2d(T'+¢—, 04 ¢4)
2(0+4-,8104) — Al g- |I° =
Vtllo- IPh+dllo- P =

g -o-e—-a



The geometry of S is restricted by the existence of a nowhere vanishing
spinor ¢_.

The structure group reduces to Spin(7).
The existence of additional spinor ¢4 reduces the structure group further.

There are various possibilities depending on the isotropy group associated
with the second spinor- Spin(7), SU(4), Gs, SU(3).



If V=0 then the group action generated by K1, K5, K3 has
2-dimensional orbits.

The KSE/field equations imply that
Allg-IP=211¢+ 2, h=A"tdA
As h is exact, the solution is static.

On making a co-ordinate transformation » = Ap, the geometry becomes
a warped produce AdSs X, S.

There are also further restrictions on the fluxes; the “++" Einstein
equation implies

dY —hANY =0



The sl(2,R) Symmetry

The vector fields dual to the 1-form bilinears K7, Ko, K3 are:

K, = —2ul ¢4 2”2 Ou +2r || ¢4 H2 or + Viéi
Ky, = -2 ||2¢+ [ 32u ; i {14
K; = —2u"| ¢4 |I70u+ 2| - |I° +4ru || ¢+ I7)0r + 2uV"0;

These satisfy the s[(2,R) commutation relations

[eiira i S IRl 52
[K2, K3] = —4| ¢4 |7 K1
[K3, K1l = 2| ¢4 |? K3
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Exercise: Check these commutation relations.
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Other Applications: D=10 Horizons/AdS solutions

The same construction works for supersymmetric extreme black hole
near-horizons in D=10 supergravity.

@ Locally, KSE decompose on S into a pair of parallel transport
equations for pairs of spinors ¢, together with a pair of algebraic
conditions

VB, =0, A® g, =0

@ The generalized Lichnerowicz theorems hold. Globally, if ¢4 satisfy
the associated “horizon Dirac equations” then the KSE hold — both
parallel transport and algebraic conditions.

e.g. if DHg, =0 then
V2 || ¢y |12 —hiV; || 64 [1P= 2(vDigy, VD)4 | AD g, |2

and the Hopf maximum principle implies V(t) ¢, = 0 and
VGO )



There is again a 1-1 correspondence between the kernels of D(—),
DT If we set ¢/, =T ¢_ then

(D), =T, D g

The total number of supersymmetries is
N =N, +N_
where
Ny = dim Ker(V®), A®)) = dim Ker(D®))

because of the generalized Lichnerowicz theorems.
We have

Index(D™)) = dim Ker(D™)) — dim Ker(D™M1) = N, — N_

because N_ = dim Ker(D(7)) = dim Ker(D(H)T).



Hence

N = 2N_ + Index(D™)) = 2N, — Index(D™))

One subtlety: in D=10, S is 8-dimensional, so the index need not vanish!
If N_ = 0 then the solution admits a s[(2,R) symmetry.

This construction generalizes to all warped product AdS,, X, M
solutions in D=10, D=11 supergravities, where M is some compact,
smooth internal space without boundary.

In all cases, generalized Lichnerowicz theorems hold, and the entire
content of the Killing spinor equations is equivalent to finding zero
modes of Dirac operators defined on M.



