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Supersymmetric Solutions

Motivation:

(i) In String/M-Theory, extended objects (e.g. D-branes, M-branes)
preserve supersymmetry.

(ii) Supersymmetric Black Holes in D =4, D = 5.
Also, supersymmetric D = 5 black rings, with horizon topology
Sthipdis !

(iii) Many examples of (warped) Anti-de-Sitter geometries X internal
space - links to ADS/CFT.

(iv) Question - how far can we get in systematically classifying
supersymmetric solutions??

(v) Applications: classifying AdS solutions, highly supersymmetric
solutions, symmetries of black holes etc....



Outline for Lectures 1+2

@ Toy model - gauge theory example: an introduction to spinorial
geometry [hep-th/0410155]

o Classifying solutions of N' = 2, D = 5 Supergravity [hep-th/0209114]

(a) Geometry of N = 4 supersymmetric solutions

(b) New solutions via the classification programme

(c) Maximally Supersymmetric Solutions via the Homogeneity
Theorem.



Gauge Theory on RS

Consider a gaugino Killing Spinor Equation on R®:

I e =0

All gauge indices are supressed - solve this using Spinorial Geometry
First step: what is €? € is a constant Weyl spinor
°A = the (complexified) space of all differential forms on R®.

°AT = the (complexified) space of all even differential forms on R -
these are the Weyl spinors; € € AT

A basis for AT is {1,612, €13, 623}; €10 = e1 Nesg, €13 = €1 A\ ez, etc.



Action of Clifford algebra on ‘A

Adopt a holomorphic basis for R®, so that the metric is

and define

Ty = V2euA, T's = V2., a=1,2,3

T, T's act as creation/annihilation operators acting on the spinor 1.
The Clifford algebra relation holds

Py + 15T, = 21,51

Key idea: use Spin(6) gauge transformations to simplify ...



orbits on AT

An arbitrary Weyl spinor is

€ =a.l+ fre1z + Pae13 + Pseas

o . 4 AB
Spin(6) acts on spinors via € — ef4BT" "¢ where fip = —fsa.
Note: clearly T',, : AT — ¢AT,
Consider the generators

1 1 b
{§(F12 +T'13), 5 (12 —T'13),¢(T11 + Taz) }

These generate a su(2) which acts transitively on {1, e12} but leaves
{e13, €23} invariant.



Similarly, the generators

1 .
{§(F13 +I'13), 5 (T13 — I'13),4(T11 + Ts3) }

N =

generate a su(2) acting transitively on {1,e13} but leaves {e12, a3}
invariant, and

1 :
{§(F23 +I33), 5 (23 — I's3), (T2 + Ts3) }

N =

generate a su(2) acting transitively on {1, es3} but leaves {e12, €13}
invariant.

— =0 C————
Exercise: Check these three su(2) actions on the spinors.

—_—> 0 A

Using these three su(2) transformations, an arbitrary Weyl spinor can be
rotated to

Gl



N = 1 Solutions

Consider the case € = 1. The following identities hold
I =245, IP1=6%1, T*1=0
So, the gaugino equation F,;I'*?1 = 0 implies
PN G )

where F,“ = Fa[;éaﬁ. Hence

FoP =, F,*=0

So F is traceless and (1,1), i.e. F € su(3).



These conditions can be written covariantly using a 2-form bilinear
{ : ! 3
= 5(1,FMN1>da:M Adz" = —i6,5d2% N dzP
(,) is the canonical Dirac inner product on C*, which acts on spinors via
3
(.14 Breis + Baeiz + Baeas, .1+ viera + voe13 + vzeas) Z
i.e. the spinors {1, €12, €13, €23} form an orthonormal basis for *A™ with

respect to {,)

(,) is also Spin(6)-invariant, because I', are hermitian, and hence T',
are anti-hermitian, so

(T apth1, ) + <1/J1,FAB1/)2> =0

for all spinors 11,19 € ¢A.



When written covariantly, the conditions on F' become
JINA = WACWBDFCD
so Flis a (1,1) form, and
1ot == (0]

so I is traceless.



N = 2 Solutions

Consider now N = 2 solutions, i.e. suppose there exist two linearly
independent spinors €1, €5 € AT such that

Filase o=ty 1o

Without loss of generality, apply a Spin(6) gauge transformation to set
€1 =1, and hence F' € su(3) as before.

What about €57 We can take e; = [1e1a + B2e13 + P3e23.

Apply Spin(6) gauge transformations generated by A ,;I'*? € spin(6) to
both €1, €s.

As we have ¢; = 1, this is simplified as much as possible - we don't want
to change €;. We therefore require

Al o=

We have already solved this - it implies A € su(3).



Consider then A\ ,;I'*” € su(3) C spin(6) acting on 5.

The generators of the su(3) act transitively on {e12, €13, €23}, and so
without loss of generality take

(€)= EalY)

To solve the condition F,;I'*Ze15 = 0, note that

€12 = Fﬁ.l

N | =

so the condition is equivalent to

FAB <FMFI§ il FEF,\I,) 1=0



Expanding out the I'-matrices; the 4-T" and O-I" terms cancel, and only
the 2-T" terms survive:

Il =g
or equivalently

FAuiegn =0

—<>OC//‘DO<>—
Exercise: Check these identities
—_—> 0

Equating coefficients gives

Fii+Fyp=0, Fi3=0, F;3=0

Iz, = (0% VA

This implies that F' € su(2).



N = 3,4 Solutions

We could continue like this to deal with the N = 3 solutions.

A more useful approach: a N = 3 solution is associated with a
3-dimensional space of spinors W C AT,

The orthogonal complement W+ to W, with respect to (,), is
1-dimensional.

Take W+ = span{v}. Spin(6) acts transitively on AT.
So w.l.o.g. can take v = es3, hence

W = span{l, e12, €13}
A N = 3 solution is therefore given by

a=1l &=cw  6=_C



The condition

ANl =0
implies F' € su(3). The further conditions

FTT 4 (3 = (1) [l e =0
imply that
F3, =0, =0, Ya
respectively. As F' is traceless F1 = 0 also.
Hence
F=0

Clearly, this analysis also implies that F' = 0 for N = 4 solutions.



We have the following set of conditions
N =1= F € su(3)

N =2 = F € su(2)
N=3=F=0
N=4—F=0

O==0—=F=1

The conditions for N = 3, the near-maximal case, are identical to those
for the maximally supersymmetric N = 4 solutions.

This property extends to the analogous preon solutions in D = 10,
D = 11 supergravity.

The gaugino condition could also be solved using bilinears+Fierz
identities.



N =2, D =5 Minimal Supergravity

The bosonic content is a metric g and a closed 2-form F' = dA. The
action is

1 i 1 2
= — - l—=BAxF— —FAFEANA
S 47TG/(4R* 5 A * 3v3 ANF N )

o General structure similar to D = 11 supergravity

e Many interesting solutions - black holes/rings, Black Saturns,
microstate geometries etc.

Bosonic field equations:

1
EAB == RAB —2(FACFBC o 69ABF2) il O’
2
LF = d*F*iF/\F:07
V3

The theory has a single fermion; the gravitino.



Requiring that the variation of the gravitino vanishes imposes the KSE:

D=0, D,=V, (A s E e )

i
4v/3
The supercovariant curvature is given by

Rape = [’DAa DB]f

RAB i RAB CDFCD A == (VA BC @BFAC) ITgH

ilia
4 V3
21
+§(*F)ABD DCPC FACFBDFCD s

where R is the curvature of the connection

V.Y?Z =V, Y5+ (1/V3) x F3,.Y°



If we impose dF' = 0, then the relationship between the field equations
and the supercovariant connection is:

1 1
Lt Lyl IRE e L
12\/3 AB1B2B3 A

1l
I®R.p=—=FE,zT% —
AB o tan /3

Hence, if € is a Killing spinor, and the gauge field equations hold, then

18107 =0

Beware: This does not necessarily imply the Einstein equations
automatically hold!

It depends on which orbit of Spin(4,1) the spinor € lies in...



Spinors and Gamma Matrices

The spinor € is a 4-(complex) component Dirac spinor.

The space of Dirac spinors is identified with the space of complexified
forms on R?, A*(R?).

An arbitrary Dirac spinor, € € A*(R?) is
€= .14+ vieq + voes + Aejo, e12 =e1 Aeg
for complex p, v1, Vo, A
The real spatial Gamma matrices I'1,I'5, '3, 'y are given by
05 =R A St o | Tl = (s AN =) 6 i = T A
and we set
[y = —il1234, Nl = =il g2y = deqh ) 1Dgeim| = i

These Gamma matrices satisfy the standard Cliford algebra on R



Spinor Orbits on A*(R?)

It is useful to adopt a holomorphic basis for the spatial directions:
Lo = V2e A, Ts = V.., a=1,2
Then
{i(T17 — T93), T3 + I1a,i(Fy5 — T12) }

generate a su(2) which acts transitively on {e1, e2} but leaves {1, e15}
invariant.

{i(T1 + Tg3),T12 + I'13,i(T12 — T'13) }

generate a su(2) which acts transitively on {1,e15} but leaves {e, es}
invariant.

——=>0C A0 ————
Exercise: Check these actions!
—_—> 0 A



Using these two su(2), an arbitrary spinor € can be written as
e=p.l+ve, pveR
Here u, v are functions of the spacetime co-ordinates.

Further simplification can be made by considering the so(1, 1) generated
by T'gp3. This can be used to write € in one of three canonical forms:

et HA if |p| > |v|
e = l+ey, if |u| = |v|
etili=thinllen! if |p| < |v|
The case e = f.1 and € = h.ey are in the same orbit, as 1 = —T'p3e;.

Ty3 is an element of spin(4,1) which is disconnected from I.

There are two canonical forms for the spinor: ¢ = f.1 and e =1 + e;.



Counting Supersymmetries

Before solving the KSEs, let us count the number of possible
supersymmetries. We count supersymmetries over R.

As D, is linear over C, if € is a Killing spinor, then so is ie.
Also, introduce the charge conjugation operator: C'* where
Cl=e, Ce=—6€, ,Ceyz=¢e;, Cep—1
where C2 = —I. This operator anticommutes with the Gamma matrices
(15310 ) &5 =10 (K
It follows that C'x commutes with D ,:
(©) 529D = D) ,(CFk:

So C * € and iC % € are also Killing spinors.



In particular, if e = f.1 is a Killing spinor (for f € R), then
if.1, feia,ifero are also Killing spinors .

Similarly, if e =1+ ey is a Killing spinor, then so are i(1 + e1), e12 — e
and i(elg =7 62).

The Killing spinors therefore come in multiples of 4.

Supersymmetric solutions are therefore N =4 or N = 8 (maximally)
supersymmetric.

Next solve explicitly the KSEs for the cases e = f.1 and e =1+ ¢
separately.

The isotropy group of f.1 in Spin(4,1) is SU(2).

The isotropy group of 1+ ¢; in Spin(4,1) is R®.



N = 4 solutions with e = f.1

Evaluate D, f.1 = 0 for all choices of A: obtain the linear system:

V3
5:07 FoBfigo,oB:Oa

1
O f + §fQo,55 = 5

1
ﬁfFﬁ

1 3
Faﬂ_\/§907a6207 aaf"i_ifgaﬁﬂ"'%fFOa:Ov
1 2

Q05— —=F, 10,5+ V3F,5=0, Q.3 +-—=0,3F0=0,

,Oﬁl /3 ¥ 61 B B \{g [B+7]0
Oaf+ Q%"+ —=fFoa=0, —Qsz05+—=F;3=0,

Hee el g it VR
Q&)Bﬁzo.

Here €2 is the spin connection of the Levi-Civita connection:

1
vA o aA iy ZQA,BCFBC

—30C A ———
Exercise: Check this linear system...
AR gy Y A



Solve this linear system: first write F' in terms of the geometry:

3 3 . 3
F = +3dlogf ne’ + gQQ,Oﬁ e* Nef + gQ&,OB e A e

1 13
ar 7(904,05 ar 6&69%07) e* A eB

V3

The rest of the linear system imposes conditions on the geometry via the
spin connection:

Oof =0, Qa0%—Qe*=0, $Qooa=—20sl0gf,
Qaaﬁﬁ i aalogf ’ QOMOB T 9070‘/3 ’ Q(X,OB s QB,O(X =0 )
Qa.ﬂ"y T _2504[58’?]1()&)0 ) Qa,ﬁ"y =0 )

To rewrite these conditions on the geometry introduce spinor bilinears
generated by e.

This requires a gauge-invariant inner product on spinors:
D(e1,ea) = (Dpeq, €2)
satisfying
D(T se1,€2) + D(e1,T4e2) =0, DT s5€1,€2) + D(e1, I apea) =0,



Spinor Bilinears: Timelike Class

The Spin(4,1) gauge-invariant bilinears are

b Gl iR
1 £
wy = §D(f1,FABf1)eA AeP = —if?5,ze” neP |

wy + w3 = %D(fl,FABiC’ xfl)e* Ne® = %f%ageo‘ ne?
with €15 = 1. Note: the vector bilinear X is timelike.
The geometric conditions involving a "0" index are equivalent to
e i =04 | Eem =0 4 Dz = 040 =1L
and the remaining geometric conditions are
@leys = (0 .

The flux F satisfies ix F' = @df% and so is also invariant under X,
LxF =0.



Introducing Co-ordinates: Timelike Class

Introduce co-ordinate ¢ such that X = ;%, and write the metric
e =g L e e
where
i p—lsoi 92 _ ¢ 242
& = T = e

The metric d$? on the 4-D base space B; as well as f, «, w, and F are
all t-independent .

The volume form dvolg on B is related to the 5-D volume form by
dvols = f~%e® A dvolg

The w, are all self-dual on B, and satisfy the algebra of the imaginary
unit quaternions. The KSE imply that

6wT:0

so B is a hyper-Kahler manifold



The Maxwell field strength is

1
= ﬁdeo— Shubh
2 V3

where da,sq denotes the anti-self dual part of da on B.

F f2daasd )

The Bianchi identity implies
d (f*dagsa) =0,
and the gauge field equations are equivalent to
V2F2 = 2 4 (daraa’
Examples of solutions can be found provided that da.,sq = 0.
Then =2 is a harmonic function on a hyper-Kahler manifold B. For

B=R'and f~2=1+Y, Qu/|y — ya|? the solutions are rotating
multi-black holes. The rotation is associated with the self-dual part of da



The Einstein equations: we have imposed the KSE, and the Bianchi and
gauge field equations.

The integrability conditions of the KSE are then equivalent to
BRI ()
and expanding this out gives
E.0(3.1) + V2E,%e, =0
and hence
Eq 0 =0, Eia=0

This implies that all components of the Einstein equations hold!
70 e
Exercise: Check these conditions...
— =0 ————



N = 4 solutions with e =1 + €3

Next take the case e = 1+ e;. It is useful to take the basis corresponding
to the metric associated with metric

ds? = 2ete™ + (e!)? + 2e%€?
where

1 }
ry = E(:FFO e IR e A e
Py = \/§€2A7 Iz = \/§i€2
With these conventions the spinor € satisfies

F+€:0



The linear system obtained from the KSE D, (1 + e1) = 0 implies that

1 . YS! . !
B = e ia@aiiEniAl e L Sl g) i +re' Nel
2\/§ »J 2 ) s )
Where €195 = —1.

The conditions on the geometry are

Qa4 +054a=0, Q1;=0, Q,;=0, Q319=109=0,
29_74'_2 + 91712 - 0 5 29274__ + 92722 = 0 5 29174'__ + 92712 - 0 .

This is a full content of the KSE.

Again, we rewrite these conditions in terms of gauge-invariant spinor
bilinears.



Spinor Bilinears: Null Class

The Spin(4,1) gauge—invariant bilinears are

XL — 1+e;,Ts(1+e1))e* =e ,
2\[ D(1 +e1,T4(1 + e1))
= I i el et A efi=len INED
1 4\/» ( il AB( 1))
and
Wy + w3 D(1+e,T,5iCx(14e1))e* Ne®

4f
= e A(E?+iE®)

Note: the vector bilinear X is null.

Here we introduce a new basis {eT,e™,E‘} for i = 1,2,3 such that
ds® =2ete” + §;,;E'E

where

El=¢!, E24iE?=—_v2ie?



The conditions on the geometry imply that
=0 DINGE=0 el =)
The flux F' satisfies
ixF=0

and hence the flux F' is invariant with respect to X; LxF = 0.



Introducing Co-ordinates: Null Class

Introduce a local co-ordinate u such that X = 5%.

Also, the condition X A dX = 0 implies that there exists another local
co-ordinate v, and a u-independent function h such that

e =hldv
Next, consider the closure condition dw, = 0; this implies that
dvAd(h'E") =0,

Hence there exist co-ordinates z!, I = 1,2,3 and functions ¢/,
I =1,2,3 such that

E’ = 6} (hdz" + p'dv) .



There is some further simplification which can be made using a change of
basis

i : ] )
enti=cpil) eJ”—>e+—qiEl—§qu_7 18/ s To0 AL G (T
for any ¢*.

This basis change corresponds to that induced by the generators I'~*
which generate the Rt Spin(4,1) which leaves the spinor 1 + ¢
invariant.

Using such a transformation, set p’ = 0 without loss of generality, so
et =du+ Vdv +n,dx’, e” = hldv, B0 de

where V. h,n; are u-independent.



The Maxwell field strength is determined via the spin connection
components:

V3

1
F=———¢&'"h2dn,dv Adz’ — TéuKﬁkhdII A dx’

43

where ¢€ is the alternating symbol on R®. The Bianchi identity dF =0
implies

gilo e Rt Arht— —ch‘”‘8 (it

and the gauge field equations are automatically satisfied.

It remains to consider the Einstein equations: recall from the integrability
conditions that we have

E.xT?(14e)=0



Expand this out, using

TH(l+e1) =v2i(er —1), TY1+4e)=1+e

I2(1+e1) = V2(ez — e12), T2(1+e1) =0

to find

V2%E,(e1 — 1)+ Es(1+e1) + V2E 5(e2 — e12)
which implies

B, =0, 'En=0, E.n=0
So all components of E,; are forced to vanish except for £__.
—_ A

Exercise: Check these conditions.
—_—> 0

This must be imposed as an extra condition:
] 3
I B R N B R A2 R 3(0, h)2 5<5”(311/a,,h

1
— 9yn.h20,h) + 5070  dnuedn,, =0,



These spacetimes are plane fronted waves.

They are foliated by hypersurfaces v = const, such that dv is null,
geodesic, and free from expansion, rotation and shear.

The solutions are plane fronted parallel waves if and only if du is
covariantly constant. This only happens if h = h(v), and if this holds, we
take h = 1.

So in general the solutions are plane fronted waves, which can be
pp-waves in special cases.



Example: Timelike solution with Gibbons-Hawking base

Let B be a Gibbons-Hawking manifold, which admits a tri-holomorphic
isometry.

If the tri-holomorphic isometry is a symmetry of the full solution, then
the complete solution is determined by a choice of four harmonic
functions on R3.

The base metric is
di? = H™'(dz + x)? + Hérodz"d2® ,  1,8=1,2,3,

where H is a harmonic function on R?; x = x,dz" is a 1-form on R3
satisfying

*3dx = dH .

The Hodge dual 3 is taken on R3, and tﬂhe volume form on the base and
the volume form on R? are related by dvolg = Hdvols A dz.
The hyper-Kahler structure is given by

1L
wr = dpp(dz + x) A dzP — §Herpqup Adxl, i = %8 .



To construct the solution for which the tri-holomorphic isometry % is a
symmetry of the full solution, decompose « as

a=Y(dz+x)+o,

where W is a function on R? and o is a 1-form on R3. The anti-self-dual
part of da is then
domsa = 5(dz+x)A(—dU+ H 'UdH + H™' %3 do)

+

N~ DN —

(dO’+‘IJ*3dH7H*3d\I’) g
We require f2dav,sq to be closed (Bianchi identity):
d(fQ(d\I' it s AU da)) — 1)

and hence there locally exists a function p on R? such that

f2(d¥ — H '"WdH — H " *3do) = dp .



The remaining content of the Bianchi identity can then be written as
D3(Hp) =0 s

where 3 denotes the Laplacian on R3. It follows that there exists a
harmonic function K on R? such that

o BT
The gauge field equation can then be rewritten as
s R = (KA Y
so there exists a further harmonic function L on R? such that
VAT B e |

Having determined f in terms of these harmonic functions, we determine
W by returning to the Bianchi identity:

HdV — WdH — x3do = 3(K? + LH)d(KH™") .
Taking the divergence of this condition gives

O30 = 05 (H2K® + gH’lKL) )



So there exists a harmonic function M on R? such that
U=H?K+ gH‘lKL +M.
The 1-form o is then fixed by substituting this expression into (1) to give
*sdo = HdM — MdH + g(KdL — LdK) .

This procedure therefore determines the complete solution entirely in
terms of the harmonic functions {H, K, L, M }

There is some freedom to redefine these harmonic functions. Solutions
generated by {H, K, L, M} and {H, K', L', M'} are identical provided
that

RS R SR [ = Y 2 9 Fe! 2
i
M = M’+§u3H—guL’+gu2K’,

for constant p.



The harmonic function M is only defined up to an additive constant v
with

]W:]\:[Jrl/, o=6—vx,
and the harmonic functions H, K, L are unchanged.

It is possible for the same solution to be described by two different
Gibbons-Hawking base spaces.

E.g. the maximally supersymmetric AdS; x S® solution can be
constructed from both a flat base space, as well as a singular
Eguchi-Hanson base.

All of the maximally supersymmetric solutions can be written as solutions
in the timelike class with a Gibbons-Hawking base space for which the
tri-holomorphic isometry is a symmetry of the solution.



Example: Black Hole/Black Ring solutions

Take H = % so that the base space is R* together with

g

P
1 1l
K= ihi, L=1+- i — @ )hi
2;@1 +4;(Q a)
i
M = 4ZQi<1_|Yi|hi>v
i=1

where h; = |“xll-y‘\ and Q;, ¢;,y; are constant.
For a single pole, P = 1, there are two possibilities.

If y1 = 0 then the solution will describe a single rotating BMPV black
hole, which is static provided that 3Q; = ¢3.

Additional conditions on the constants are also imposed to avoid closed
timelike curves.



The generic multi-BMPV black hole solution does not however lie within
this family of solutions, because although the base space is R?, the
tri-holomorphic isometry is not a symmetry of the full solution.

If y1 # 0, then the solution is the supersymmetric black ring.

Further generalization: take multiple poles — configurations of
concentric black rings as well as Black Saturn solutions

All these solutions are N = 4 supersymmetric. They undergo
supersymmetry enhancement to N = 8 at asymptotic infinity and in the
near-horizon limit.



N = 8 Solutions

For maximally supersymmetric solutions, the 1-I" and 2-T" terms in the
supercovariant curvature must vanish independently

This is equivalent to

2
=% FDA[BFC]D

vAFBC 351 \/g

and

4 1
Ripep + 777[3‘[CF[2)]|A] m 7F2nA[C77D]B

3 3
% 2
+§ A[CFD]B iti gFABFCD =0

Note: The term 72——5 * F'P 415 Fo)p need not vanish. So VI # 0 in general.

This is distinct from maximal supersymmetry conditions in D = 10, 11.



All maximally supersymmetric solutions must lie in the timelike class.
This follows from the following gauge invariant identity:

D= timy el B e iie)
This identity can be checked directly via Fierz identities.

Alternatively, as it is gauge invariant, it suffices to check it for e = f.1
and e =1+ e;.

Suppose that there exists a N = 8 solution which does not lie within the
timelike class.

Then all spinor bilinears X must be null. This in turn implies that
D(e,e) =0

for all Killing spinors. This is not possible, because at each p € M, there
exists a (constant) linear combination of Killing spinors such that e = 1
at p. So, in some neighbourhood of p, D(e,€) # 0, and hence X? # 0.



Decompose the conditions on VF' and on R in terms of the fibration
over a hyper-Kahler base B:
The condition on Ry;p; is:

ViVif = —fTWLfVif + [TIVefVEefes,

1 1
17! §f7(dasd F §daasd)i€ (dOéan)jK

and the condition on R;jmy, is:

. 1 o
Rijmn 0 f6 (18 (daasd )pq (daasd )pq (671] 6’mi T 5n16m7 i €mnij)

2

iR g(daasd)mn (daasd)ij)

where all indices are frame indices with respect to the metric ds? on B.

The latter condition implies that R =0 if and only if dasqg = 0



The conditions on Ry, together with V; F} imply that

Vi(daasa)jk = —6f71V,f(doasa)j + 4f71(daasd)i[j6k]f
—  4f IV f(dtasa) e Oy

and

o

1 2
Vi(dasa)je = —f7'Vif(4dasa — Sdoasa)jn
% .
= 2f_1(2d0[5d I gdaasd)i[jvk]f
o 2
— 2f7'V!f(2dasq — gdaasd)z[j(sk]i

where dagq denotes the self-dual part of da.



N = 8 Solutions with B = r*

Consider B = R*, with daseq = 0.

The condition
ViVif = =TIV + TV VEfy
on R* can be integrated up to determine f.

There are two possibilities,

Rl len | fR = e
for constant /3, where 7 is the standard radial co-ordinate on R*.

In the case for which f is constant, da can be expanded as

BZ)J r2at)

where o are the left-invariant 1-forms on SU(2).



The remaining conditions imply that dagq is covariantly constant, so
are constants.

If all the A? vanish, then the solution is Minkowski space R*!: if the \?
are not all zero then the solution is the maximally supersymmetric Godel
spacetime.

In the case for which f2 = §r2, doc can be expanded as

where o%, are the right-invariant 1-forms on SU(2).

The remaining conditions imply that dayq is covariantly constant, so the
A% are constants. In this case, the geometry is that of the near-horizon
BMPV black hole. If all the A\ are vanish then the geometry is

AdSy x S3.



N = 8 Solutions with B # r*

Suppose that B # R*, and so daeg #0.
Define the vector field W on B by:

W; = £5(d0tasa — 3doea)jxVEF .
The integrability conditions imply that
ViW; = 3f4( — AV f(dosa) ik VE F — Vif VEf (dosa)is)
- *f 12( (datasa)pg(davasa)™? Z(dasd)pq(dasd)p q) (davasa)ij

¥ f4vk.fv f(daasd)ij

and also

1
iwdo = —d(

12f (daasd)pq(daasd)pq 7 if6(dasd)pq(dasd)pq> .



Special case W = 0, and B is not flat.
These conditions imply that
*F'® 412 Felp
and so
VF =0

The spacetime is a Lorentzian symmetric space and F' is an invariant
2-form.

The geometry must be locally isometric to a product of dS,,, AdS,,,
CW,, or R*~L1 with a Euclidean signature symmetric space.

The only possible maximally symmetric solutions of this type are
AdSy x S3, AdSs x S2, the maximally supersymmetric plane wave CWs,
and R*1.



Remaining case: B is not flat and W # 0.
Then W is an isometry of B and
Wyrif = (0} Ly da =0
Hence W extends to a symmetry of the 5-dimensional solution.
In addition, VZWJ is anti-self-dual, so W is a tri-holomorphic isometry.

Such solutions are therefore determined entirely in terms of four
harmonic functions {H, K, L, M} on R3. Conditions on these functions
are obtained by decomposing the integrability conditions



N = 8 Solutions with Gibbons-Hawking base

The integrability conditions when decomposed in the Gibbons-Hawking

ansatz imply that
K L
d| = dl =] =0.

If % is constant, then do is self-dual and base B is flat.
We exclude this possibility here, so ~IL; = .7-'(%) for some function F.

As L, H, and K are harmonic, this function must be linear, so
L = SH + vK for constants 3, .

On making use of the redefinition of the harmonic functions take w.l.0.g.

G



Further conditions on the harmonic functions obtained from the
integrability conditions are:

K e
d(H) Ad(M + SK) =0

which implies that M + gK = H(£) for some function H.
The integrability conditions also imply that # is constant, and hence we
take without loss of generality

M=-—

o
2

This procedure has determined the harmonic functions L and M in terms
of H and K.



The remaining content of the integrability conditions can then be written
as

200ps = 0p0s(HK(BH? + K*)72)
2¢5ps T 81388((}(2 it 5H2)(6H2 - Kz)_Q)

where 9, = =2 p=1,2,3; and p, 1 are constants.
D OxP

There are a number of solutions to these equations. If 8 = 0 then there
are two cases; for the first

K =m, Il = [y
for constants m,n,. The corresponding geometry is the maximally
supersymmetric plane wave C'W5. The second case has

m 151 e
i 2 prs
for constants m, k,n,,. If k = 0 the geometry is AdSs x S?, and if k # 0

the geometry is the near-horizon BMPV solution.



If 5 < 0 then the solutions to (1) are given by

1 1 1 L7l 11
H=—+o| —7F— K=-(—+—
2\/—5<P¢P+>’ 2(P P+)
where P = /Y5 + 24/—fY7, and
Y1 = pr? + AP + k, Yo = 912 + ppaP + £

for constants Ay, up,, k,£. There are again two cases to consider; in the
first case

1l n n
H:\/jﬁ<m/+r>, sz—;

for constants m,n with mn < 0. This is the Godel solution. In the
second case,

1 m n m n

H=——+— K=— - —
W (R+ i R)’ e

for Ry = /12 £ 2\r cos f + A2 for constants m, n, A, with mn < 0 and

A > 0. This geometry is also the near-horizon BMPV solution.




For solutions with 3 > 0 the solutions to (1) are given by

1l 1 1
H=—Im| — K =Re({ —
ﬂIH<P>’ e(P)
where P_ = \/7r2 + p,zP + v for complex constants 7, i, V.

If 7 £ 0 the geometry is the near-horizon BMPV solution.

If 7 = 0 the solution is the maximally supersymmetric plane wave CWs.



This exhausts the content of the integrability conditions, and the
resulting geometries are:

° R4’1

@ the maximally supersymmetric plane wave C'Ws,
o AdS; x S?,

@ the near-horizon BMPV geometry

@ the maximally supersymmetric Godel spacetime.

VF =0 for R*! and AdS, x S3.

All of these geometries can be written in terms of the timelike class of
solutions.

Some of the solutions admit different base space geometries in this
description.



