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Supersymmetric Solutions

Motivation:

(i) In String/M-Theory, extended objects (e.g. D-branes, M-branes)
preserve supersymmetry.

(ii) Supersymmetric Black Holes in D = 4, D = 5.
Also, supersymmetric D = 5 black rings, with horizon topology
S1 × S2.

(iii) Many examples of (warped) Anti-de-Sitter geometries × internal
space - links to ADS/CFT.

(iv) Question - how far can we get in systematically classifying
supersymmetric solutions??

(v) Applications: classifying AdS solutions, highly supersymmetric
solutions, symmetries of black holes etc....



Outline for Lectures 1+2

Toy model - gauge theory example: an introduction to spinorial
geometry [hep-th/0410155]

Classifying solutions of N = 2, D = 5 Supergravity [hep-th/0209114]

(a) Geometry of N = 4 supersymmetric solutions
(b) New solutions via the classification programme
(c) Maximally Supersymmetric Solutions via the Homogeneity

Theorem.



Gauge Theory on R6

Consider a gaugino Killing Spinor Equation on R6
:

FABΓABε = 0

All gauge indices are supressed - solve this using Spinorial Geometry

First step: what is ε? ε is a constant Weyl spinor

c∆ = the (complexified) space of all differential forms on R3
.

c∆+ = the (complexified) space of all even differential forms on R3
-

these are the Weyl spinors; ε ∈ c∆+

A basis for c∆+ is {1, e12, e13, e23}; e12 = e1 ∧ e2, e13 = e1 ∧ e3, etc.



Action of Clifford algebra on c∆

Adopt a holomorphic basis for R6
, so that the metric is

ηαβ̄ = δαβ̄ , ηαβ = ηᾱβ̄ = 0

and define

Γα =
√

2eα∧, Γᾱ =
√

2ieα , α = 1, 2, 3

Γα, Γᾱ act as creation/annihilation operators acting on the spinor 1.

The Clifford algebra relation holds

ΓAΓB + ΓBΓA = 2ηABI

Key idea: use Spin(6) gauge transformations to simplify ε...



Spin(6) orbits on c∆+

An arbitrary Weyl spinor is

ε = α.1 + β1e12 + β2e13 + β3e23

Spin(6) acts on spinors via ε→ efABΓAB ε, where fAB = −fBA.

Note: clearly ΓAB : c∆+ → c∆+.

Consider the generators

{1

2

(
Γ12 + Γ1̄2̄),

i

2

(
Γ12 − Γ1̄2̄), i

(
Γ11̄ + Γ22̄

)
}

These generate a su(2) which acts transitively on {1, e12} but leaves
{e13, e23} invariant.



Similarly, the generators

{1

2

(
Γ13 + Γ1̄3̄),

i

2

(
Γ13 − Γ1̄3̄), i

(
Γ11̄ + Γ33̄

)
}

generate a su(2) acting transitively on {1, e13} but leaves {e12, e23}
invariant, and

{1

2

(
Γ23 + Γ2̄3̄),

i

2

(
Γ23 − Γ2̄3̄), i

(
Γ22̄ + Γ33̄

)
}

generate a su(2) acting transitively on {1, e23} but leaves {e12, e13}
invariant.

Exercise: Check these three su(2) actions on the spinors.

Using these three su(2) transformations, an arbitrary Weyl spinor can be
rotated to

ε = 1



N = 1 Solutions

Consider the case ε = 1. The following identities hold

Γᾱβ̄1 = 2eαβ , Γαβ̄1 = δαβ̄ .1, Γαβ1 = 0

So, the gaugino equation FABΓAB1 = 0 implies

2Fαβeαβ + 2Fα
α1 = 0

where Fα
α = Fαβ̄δ

αβ̄ . Hence

Fαβ = 0, Fα
α = 0

So F is traceless and (1, 1), i.e. F ∈ su(3).



These conditions can be written covariantly using a 2-form bilinear

ω =
i

2
〈1,ΓMN1〉dxM ∧ dxN = −iδαβ̄dzα ∧ dzβ̄

〈, 〉 is the canonical Dirac inner product on C4
, which acts on spinors via

〈α.1 + β1e12 + β2e13 + β3e23, µ.1 + ν1e12 + ν2e13 + ν3e23〉 = ᾱµ+

3∑
i=1

β̄iνi

i.e. the spinors {1, e12, e13, e23} form an orthonormal basis for c∆+ with
respect to 〈, 〉

〈, 〉 is also Spin(6)-invariant, because ΓA are hermitian, and hence ΓAB
are anti-hermitian, so

〈ΓABψ1, ψ2〉+ 〈ψ1,ΓABψ2〉 = 0

for all spinors ψ1, ψ2 ∈ c∆.



When written covariantly, the conditions on F become

FAB = ωA
CωB

DFCD

so F is a (1, 1) form, and

FABω
AB = 0

so F is traceless.



N = 2 Solutions

Consider now N = 2 solutions, i.e. suppose there exist two linearly
independent spinors ε1, ε2 ∈ c∆+ such that

FABΓABεi = 0, i = 1, 2

Without loss of generality, apply a Spin(6) gauge transformation to set
ε1 = 1, and hence F ∈ su(3) as before.

What about ε2? We can take ε2 = β1e12 + β2e13 + β3e23.

Apply Spin(6) gauge transformations generated by λABΓAB ∈ spin(6) to
both ε1, ε2.

As we have ε1 = 1, this is simplified as much as possible - we don’t want
to change ε1. We therefore require

λABΓAB1 = 0

We have already solved this - it implies λ ∈ su(3).



Consider then λABΓAB ∈ su(3) ⊂ spin(6) acting on ε2.

The generators of the su(3) act transitively on {e12, e13, e23}, and so
without loss of generality take

ε2 = e12

To solve the condition FABΓABe12 = 0, note that

e12 =
1

2
Γ1̄2̄.1

so the condition is equivalent to

Fλµ̄
(

Γλµ̄Γ1̄2̄ − Γ1̄2̄Γλµ̄

)
.1 = 0



Expanding out the Γ-matrices; the 4-Γ and 0-Γ terms cancel, and only
the 2-Γ terms survive:

Fλ[1̄Γλ
2̄].1 = 0

or equivalently

Fλ[1e2]λ = 0

Exercise: Check these identities

Equating coefficients gives

F11̄ + F22̄ = 0, F13̄ = 0, F23̄ = 0

i.e

F3A = 0, ∀A

This implies that F ∈ su(2).



N = 3, 4 Solutions

We could continue like this to deal with the N = 3 solutions.

A more useful approach: a N = 3 solution is associated with a
3-dimensional space of spinors W ⊂ c∆+.

The orthogonal complement W⊥ to W, with respect to 〈, 〉, is
1-dimensional.

Take W⊥ = span{ν}. Spin(6) acts transitively on c∆+.

So w.l.o.g. can take ν = e23, hence

W = span{1, e12, e13}

A N = 3 solution is therefore given by

ε1 = 1, ε2 = e12, ε3 = e13



The condition

FABΓAB.1 = 0

implies F ∈ su(3). The further conditions

FABΓAB.e12 = 0, FABΓAB.e13 = 0

imply that

F3A = 0, F2A = 0, ∀A

respectively. As F is traceless F11̄ = 0 also.

Hence

F = 0

Clearly, this analysis also implies that F = 0 for N = 4 solutions.



Summary

We have the following set of conditions

N = 1 =⇒ F ∈ su(3)

N = 2 =⇒ F ∈ su(2)

N = 3 =⇒ F = 0

N = 4 =⇒ F = 0

The conditions for N = 3, the near-maximal case, are identical to those
for the maximally supersymmetric N = 4 solutions.

This property extends to the analogous preon solutions in D = 10,
D = 11 supergravity.

The gaugino condition could also be solved using bilinears+Fierz
identities.



N = 2, D = 5 Minimal Supergravity

The bosonic content is a metric g and a closed 2-form F = dA. The
action is

S =
1

4πG

∫ (
1

4
R ? 1− 1

2
F ∧ ?F − 2

3
√

3
F ∧ F ∧A

)

General structure similar to D = 11 supergravity

Many interesting solutions - black holes/rings, Black Saturns,
microstate geometries etc.

Bosonic field equations:

EAB ..= RAB − 2(FACFB
C − 1

6
gABF

2) = 0 ,

LF ..= d ? F − 2√
3
F ∧ F = 0 ,

The theory has a single fermion; the gravitino.



Requiring that the variation of the gravitino vanishes imposes the KSE:

DAε = 0 , DA ..= ∇A −
i

4
√

3
(ΓA

BC − 4δBAΓC)FBC ,

The supercovariant curvature is given by

RABε = [DA,DB]ε

RAB =
1

4
R̂AB,CDΓCD +

i√
3

(
∇̂AFBC − ∇̂BFAC

)
ΓC

+
2i

3
(?F )AB

DFDCΓC − 2

3
FACFBDΓCD ,

where R̂ is the curvature of the connection

∇̂AY
B ..= ∇AY

B + (1/
√

3) ? FB
ACY

C



If we impose dF = 0, then the relationship between the field equations
and the supercovariant connection is:

ΓBRAB = −1

2
EABΓB − 1

12
√

3
LFAB1B2B3

ΓB1B2B3 +
i√
3
∗LFA

Hence, if ε is a Killing spinor, and the gauge field equations hold, then

EABΓBε = 0

Beware: This does not necessarily imply the Einstein equations
automatically hold!

It depends on which orbit of Spin(4, 1) the spinor ε lies in...



Spinors and Gamma Matrices

The spinor ε is a 4-(complex) component Dirac spinor.

The space of Dirac spinors is identified with the space of complexified
forms on R2

, Λ∗(R2
).

An arbitrary Dirac spinor, ε ∈ Λ∗(R2
) is

ε = µ.1 + ν1e1 + ν2e2 + λe12, e12 = e1 ∧ e2

for complex µ, ν1, ν2, λ.

The real spatial Gamma matrices Γ1,Γ2,Γ3,Γ4 are given by

Γi = ei ∧+iei , Γ2+i = i(ei ∧ −iei) , i = 1, . . . , 2 ,

and we set

Γ0 = −iΓ1234, Γ01 = −i.1, Γ0ej = iej , Γ0e12 = −ie12

These Gamma matrices satisfy the standard Cliford algebra on R4,1
.



Spinor Orbits on Λ∗(R2)

It is useful to adopt a holomorphic basis for the spatial directions:

Γα =
√

2eα∧, Γᾱ =
√

2ieα , α = 1, 2

Then

{i(Γ11̄ − Γ22̄),Γ12̄ + Γ1̄2, i
(
Γ12̄ − Γ1̄2

)
}

generate a su(2) which acts transitively on {e1, e2} but leaves {1, e12}
invariant.

{i(Γ11̄ + Γ22̄),Γ12 + Γ1̄2̄, i
(
Γ12 − Γ1̄2̄

)
}

generate a su(2) which acts transitively on {1, e12} but leaves {e1, e2}
invariant.

Exercise: Check these actions!



Using these two su(2), an arbitrary spinor ε can be written as

ε = µ.1 + ν.e1, µ, ν ∈ R

Here µ, ν are functions of the spacetime co-ordinates.

Further simplification can be made by considering the so(1, 1) generated
by Γ03. This can be used to write ε in one of three canonical forms:

ε = f.1, if |µ| > |ν|
ε = 1 + e1, if |µ| = |ν|
ε = h.e1, if |µ| < |ν|

The case ε = f.1 and ε = h.e1 are in the same orbit, as 1 = −Γ03e1.

Γ03 is an element of spin(4, 1) which is disconnected from I.

There are two canonical forms for the spinor: ε = f.1 and ε = 1 + e1.



Counting Supersymmetries

Before solving the KSEs, let us count the number of possible
supersymmetries. We count supersymmetries over R.

As DA is linear over C, if ε is a Killing spinor, then so is iε.

Also, introduce the charge conjugation operator: C∗ where

C.1 = e12, C.e1 = −e2, , C.e2 = e1, C.e12 − 1

where C2 = −I. This operator anticommutes with the Gamma matrices

C ∗ ΓA = −ΓAC∗

It follows that C∗ commutes with DA:

C ∗ DA = DAC∗

So C ∗ ε and iC ∗ ε are also Killing spinors.



In particular, if ε = f.1 is a Killing spinor (for f ∈ R), then
if.1, fe12, ife12 are also Killing spinors .

Similarly, if ε = 1 + e1 is a Killing spinor, then so are i(1 + e1), e12 − e2

and i(e12 − e2).

The Killing spinors therefore come in multiples of 4.

Supersymmetric solutions are therefore N = 4 or N = 8 (maximally)
supersymmetric.

Next solve explicitly the KSEs for the cases ε = f.1 and ε = 1 + e1

separately.

The isotropy group of f.1 in Spin(4, 1) is SU(2).

The isotropy group of 1 + e1 in Spin(4, 1) is R3
.



N = 4 solutions with ε = f.1

Evaluate DAf.1 = 0 for all choices of A: obtain the linear system:

∂0f +
1

2
fΩ0,β

β − 1

2
√

3
fFβ

β = 0 , F0β̄ −
√

3

2
Ω0,0β̄ = 0 ,

Fαβ −
√

3Ω0,αβ = 0 , ∂αf +
1

2
fΩα,β

β +

√
3

2
fF0α = 0 ,

−Ωα,0β̄ −
1√
3
Fγ

γδαβ̄ +
√

3Fαβ̄ = 0 , Ωα,β̄γ̄ +
2√
3
δα[β̄Fγ̄]0 = 0 ,

∂ᾱf +
1

2
fΩᾱ,γ

γ +
1

2
√

3
fF0ᾱ = 0 , − Ωᾱ,0β̄ +

1√
3
Fᾱβ̄ = 0 ,

Ωᾱ,β̄γ̄ = 0 .

Here Ω is the spin connection of the Levi-Civita connection:

∇A = ∂A +
1

4
ΩA,BCΓBC

Exercise: Check this linear system...



Solve this linear system: first write F in terms of the geometry:

F =
√

3 dlogf ∧ e0 +

√
3

2
Ωα,0β e

α ∧ eβ +

√
3

2
Ωᾱ,0β̄ e

ᾱ ∧ eβ̄

+
1√
3

(Ωα,0β̄ + δαβ̄Ωγ,0
γ) eα ∧ eβ̄

The rest of the linear system imposes conditions on the geometry via the
spin connection:

∂0f = 0 , Ωα,0
α − Ω0,α

α = 0 , Ω0,0α = −2∂αlogf ,
Ωα,β

β = ∂αlogf , Ωα,0β = Ω0,αβ , Ωα,0β̄ + Ωβ̄,0α = 0 ,
Ωα,β̄γ̄ = −2δα[β̄∂γ̄]logf , Ωα,βγ = 0 ,

To rewrite these conditions on the geometry introduce spinor bilinears
generated by ε.

This requires a gauge-invariant inner product on spinors:

D(ε1, ε2) = 〈Γ0ε1, ε2〉

satisfying

D(ΓAε1, ε2) +D(ε1,ΓAε2) = 0, D(ΓABε1, ε2) +D(ε1,ΓABε2) = 0,



Spinor Bilinears: Timelike Class

The Spin(4, 1) gauge-invariant bilinears are

X = D(f1,ΓAf1) eA = f2e0 ,

ω1 =
1

2
D(f1,ΓABf1) eA ∧ eB = −if2δαβ̄e

α ∧ eβ̄ ,

ω2 + iω3 =
1

2
D(f1,ΓAB i C ∗ f1) eA ∧ eB =

1

2
f2εαβe

α ∧ eβ ,

with ε12 = 1. Note: the vector bilinear X is timelike.

The geometric conditions involving a “0” index are equivalent to

LXf = 0 , LXg = 0 , LXωr = 0 , r = 1, 2, 3 .

and the remaining geometric conditions are

dωr = 0 .

The flux F satisfies iXF =
√

3
2 df

2, and so is also invariant under X,
LXF = 0.



Introducing Co-ordinates: Timelike Class

Introduce co-ordinate t such that X = ∂
∂t , and write the metric

ds2 = −f4(dt+ α)2 + f−2d̊s2

where

ei ..= f−1e̊i, d̊s2 = δij e̊
ie̊j

The metric d̊s2 on the 4-D base space B; as well as f , α, ωr and F are
all t-independent .

The volume form dvolB on B is related to the 5-D volume form by

dvol5 = f−4e0 ∧ dv̊olB

The ωr are all self-dual on B, and satisfy the algebra of the imaginary
unit quaternions. The KSE imply that

∇̊ωr = 0

so B is a hyper-Kähler manifold



The Maxwell field strength is

F =

√
3

2
de0 − 1√

3
f2dαasd ,

where dαasd denotes the anti-self dual part of dα on B.

The Bianchi identity implies

d
(
f2dαasd

)
= 0 ,

and the gauge field equations are equivalent to

∇̊2f−2 =
2

9
f4 (dαasd)2

Examples of solutions can be found provided that dαasd = 0.
Then f−2 is a harmonic function on a hyper-Kähler manifold B. For
B = R4

and f−2 = 1 +
∑
aQa/|y − ya|2, the solutions are rotating

multi-black holes. The rotation is associated with the self-dual part of dα



The Einstein equations: we have imposed the KSE, and the Bianchi and
gauge field equations.

The integrability conditions of the KSE are then equivalent to

EABΓB1 = 0

and expanding this out gives

EA0(i.1) +
√

2EA
αeα = 0

and hence

EA0 = 0, EAᾱ = 0

This implies that all components of the Einstein equations hold!

Exercise: Check these conditions...



N = 4 solutions with ε = 1 + e1

Next take the case ε = 1 + e1. It is useful to take the basis corresponding
to the metric associated with metric

ds2 = 2e+e− + (e1)2 + 2e2e2̄

where

Γ± =
1√
2

(∓Γ0 + Γ3), Γ1 = e1 ∧+ie1

Γ2 =
√

2e2∧, Γ2̄ =
√

2ie2

With these conventions the spinor ε satisfies

Γ+ε = 0



The linear system obtained from the KSE DA(1 + e1) = 0 implies that

F =
1

2
√

3
εi
jkΩ−,jke

− ∧ ei +

√
3

2
εij

kΩ−,+ke
i ∧ ej ,

where ε122̄ = −i.

The conditions on the geometry are

ΩA,+B + ΩB,+A = 0 , Ω+,ij = 0 , Ωi,+j = 0 , Ω2,12 = Ω1,22̄ = 0 ,
2Ω−,+2 + Ω1,12 = 0 , 2Ω2,+− + Ω2,22̄ = 0 , 2Ω1,+− + Ω2,12̄ = 0 .

This is a full content of the KSE.

Again, we rewrite these conditions in terms of gauge-invariant spinor
bilinears.



Spinor Bilinears: Null Class

The Spin(4, 1) gauge-invariant bilinears are

X =
1

2
√

2
D(1 + e1,ΓA(1 + e1)) eA = e− ,

ω1 =
1

4
√

2
D(1 + e1,ΓAB(1 + e1)) eA ∧ eB = e− ∧E1

and

ω2 + iω3 =
1

4
√

2
D(1 + e1,ΓAB i C ∗ (1 + e1)) eA ∧ eB

= e− ∧ (E2 + iE3)

Note: the vector bilinear X is null.

Here we introduce a new basis {e+, e−,Ei} for i = 1, 2, 3 such that

ds2 = 2e+e− + δijE
iEj

where

E1 = e1, E2 + iE3 = −
√

2ie2̄



The conditions on the geometry imply that

LXg = 0 , X ∧ dX = 0 , dωr = 0 .

The flux F satisfies

iXF = 0

and hence the flux F is invariant with respect to X; LXF = 0.



Introducing Co-ordinates: Null Class

Introduce a local co-ordinate u such that X = ∂
∂u .

Also, the condition X ∧ dX = 0 implies that there exists another local
co-ordinate v, and a u-independent function h such that

e− = h−1dv

Next, consider the closure condition dωr = 0; this implies that

dv ∧ d(h−1Ei) = 0 ,

Hence there exist co-ordinates xI , I = 1, 2, 3 and functions qI ,
I = 1, 2, 3 such that

Ei = δiI
(
hdxI + pIdv

)
.



There is some further simplification which can be made using a change of
basis

e− → e− , e+ → e+ − qiEi −
1

2
q2 e− , Ei → Ei + qi e− ,

for any qi.

This basis change corresponds to that induced by the generators Γ−i

which generate the R3 ⊂ Spin(4, 1) which leaves the spinor 1 + e1

invariant.

Using such a transformation, set pI = 0 without loss of generality, so

e+ = du+ V dv + nIdx
I , e− = h−1dv, Ei = h δiI dx

I ,

where V, h, nI are u-independent.



The Maxwell field strength is determined via the spin connection
components:

F = − 1

4
√

3
ε̊I
JKh−2dnJKdv ∧ dxI −

√
3

4
ε̊IJ

K∂Kh dx
I ∧ dxJ .

where ε̊ is the alternating symbol on R3
. The Bianchi identity dF = 0

implies

δIJ∂I∂Jh = 0 , ∂v∂Ih = −1

3
δJK∂J(dnKIh

−2) .

and the gauge field equations are automatically satisfied.

It remains to consider the Einstein equations: recall from the integrability
conditions that we have

EABΓB(1 + e1) = 0



Expand this out, using

Γ+(1 + e1) =
√

2i(e1 − 1), Γ1(1 + e1) = 1 + e1

Γ2̄(1 + e1) =
√

2(e2 − e12), Γ2(1 + e1) = 0

to find
√

2iEA+(e1 − 1) + EA1(1 + e1) +
√

2EA2̄(e2 − e12)

which implies

EA+ = 0, EA1 = 0, EA2 = 0

So all components of EAB are forced to vanish except for E−−.

Exercise: Check these conditions.

This must be imposed as an extra condition:

h−3δIJ∂I(−∂JV h+ ∂vnJ)− 3h∂2
vh− 3(∂vh)2 +

3

2
δIJ(∂IV ∂Jh

− ∂vnIh−2∂Jh) +
1

6
δIJδKLdnIKdnJL = 0 ,



These spacetimes are plane fronted waves.

They are foliated by hypersurfaces v = const, such that dv is null,
geodesic, and free from expansion, rotation and shear.

The solutions are plane fronted parallel waves if and only if du is
covariantly constant. This only happens if h = h(v), and if this holds, we
take h = 1.

So in general the solutions are plane fronted waves, which can be
pp-waves in special cases.



Example: Timelike solution with Gibbons-Hawking base

Let B be a Gibbons-Hawking manifold, which admits a tri-holomorphic
isometry.

If the tri-holomorphic isometry is a symmetry of the full solution, then
the complete solution is determined by a choice of four harmonic
functions on R3.

The base metric is

d̊s2 = H−1(dz + χ)2 +Hδrsdx
rdxs , r, s = 1, 2, 3 ,

where H is a harmonic function on R3; χ = χrdx
r is a 1-form on R3

satisfying

?3dχ = dH .

The Hodge dual ?3 is taken on R3, and the volume form on the base and
the volume form on R3 are related by dv̊olB = Hdvol3 ∧ dz.
The hyper-Kähler structure is given by

ωr = δrp(dz + χ) ∧ dxp − 1

2
Hεrpqdx

p ∧ dxq, r, p, q = 1, 2, 3 .



To construct the solution for which the tri-holomorphic isometry ∂
∂z is a

symmetry of the full solution, decompose α as

α = Ψ(dz + χ) + σ ,

where Ψ is a function on R3 and σ is a 1-form on R3. The anti-self-dual
part of dα is then

dαasd =
1

2
(dz + χ) ∧

(
− dΨ +H−1ΨdH +H−1 ?3 dσ

)
+

1

2

(
dσ + Ψ ?3 dH −H ?3 dΨ

)
.

We require f2dαasd to be closed (Bianchi identity):

d

(
f2
(
dΨ−H−1ΨdH −H−1 ?3 dσ

))
= 0 ,

and hence there locally exists a function ρ on R3 such that

f2
(
dΨ−H−1ΨdH −H−1 ?3 dσ

)
= dρ .



The remaining content of the Bianchi identity can then be written as

�3(Hρ) = 0 ,

where �3 denotes the Laplacian on R3. It follows that there exists a
harmonic function K on R3 such that

ρ = 3KH−1 .

The gauge field equation can then be rewritten as

�3f
−2 = �3

(
K2H−1

)
,

so there exists a further harmonic function L on R3 such that

f−2 = K2H−1 + L .

Having determined f in terms of these harmonic functions, we determine
Ψ by returning to the Bianchi identity:

HdΨ−ΨdH − ?3dσ = 3(K2 + LH)d(KH−1) .

Taking the divergence of this condition gives

�3Ψ = �3

(
H−2K3 +

3

2
H−1KL

)
,



So there exists a harmonic function M on R3 such that

Ψ = H−2K3 +
3

2
H−1KL+M .

The 1-form σ is then fixed by substituting this expression into (1) to give

?3dσ = HdM −MdH +
3

2
(KdL− LdK) .

This procedure therefore determines the complete solution entirely in
terms of the harmonic functions {H,K,L,M}

There is some freedom to redefine these harmonic functions. Solutions
generated by {H,K,L,M} and {H,K ′, L′,M ′} are identical provided
that

K = K ′ + µH , L = L′ − 2µK ′ − µ2H ,

M = M ′ +
1

2
µ3H − 3

2
µL′ +

3

2
µ2K ′ ,

for constant µ.



The harmonic function M is only defined up to an additive constant ν
with

M = M̂ + ν, σ = σ̂ − νχ ,

and the harmonic functions H,K,L are unchanged.

It is possible for the same solution to be described by two different
Gibbons-Hawking base spaces.

E.g. the maximally supersymmetric AdS2 × S3 solution can be
constructed from both a flat base space, as well as a singular
Eguchi-Hanson base.

All of the maximally supersymmetric solutions can be written as solutions
in the timelike class with a Gibbons-Hawking base space for which the
tri-holomorphic isometry is a symmetry of the solution.



Example: Black Hole/Black Ring solutions

Take H = 1
r , so that the base space is R4 together with

K = −1

2

P∑
i=1

qihi , L = 1 +
1

4

P∑
i=1

(Qi − q2
i )hi ,

M =
3

4

P∑
i=1

qi

(
1− |yi|hi

)
,

where hi = 1
|x−yi| and Qi, qi,yi are constant.

For a single pole, P = 1, there are two possibilities.

If y1 = 0 then the solution will describe a single rotating BMPV black
hole, which is static provided that 3Q1 = q2

1 .

Additional conditions on the constants are also imposed to avoid closed
timelike curves.



The generic multi-BMPV black hole solution does not however lie within
this family of solutions, because although the base space is R4, the
tri-holomorphic isometry is not a symmetry of the full solution.

If y1 6= 0, then the solution is the supersymmetric black ring.

Further generalization: take multiple poles → configurations of
concentric black rings as well as Black Saturn solutions

All these solutions are N = 4 supersymmetric. They undergo
supersymmetry enhancement to N = 8 at asymptotic infinity and in the
near-horizon limit.



N = 8 Solutions

For maximally supersymmetric solutions, the 1-Γ and 2-Γ terms in the
supercovariant curvature must vanish independently

This is equivalent to

∇AFBC =
2√
3
? FD

A[BFC]D

and

RABCD +
4

3
η[B|[CF

2
D]|A] +

1

3
F 2ηA[CηD]B

+
2

3
FA[CFD]B −

2

3
FABFCD = 0

Note: The term 2√
3
?FD

A[BFC]D need not vanish. So ∇F 6= 0 in general.

This is distinct from maximal supersymmetry conditions in D = 10, 11.



All maximally supersymmetric solutions must lie in the timelike class.

This follows from the following gauge invariant identity:

X2 = (D(ε, ε))2, XA = D(ε,ΓAε)

This identity can be checked directly via Fierz identities.

Alternatively, as it is gauge invariant, it suffices to check it for ε = f.1
and ε = 1 + e1.

Suppose that there exists a N = 8 solution which does not lie within the
timelike class.

Then all spinor bilinears X must be null. This in turn implies that

D(ε, ε) = 0

for all Killing spinors. This is not possible, because at each p ∈M , there
exists a (constant) linear combination of Killing spinors such that ε = 1
at p. So, in some neighbourhood of p, D(ε, ε) 6= 0, and hence X2 6= 0.



Decompose the conditions on ∇F and on R in terms of the fibration
over a hyper-Kähler base B:
The condition on R0i0j is:

∇̊i∇̊jf = −f−1∇̊if∇̊jf + f−1∇̊`f∇̊`fδij

− 1

3
f7(dαsd +

1

3
dαasd)i`(dαasd)j

`

and the condition on Rijmn is:

R̊ijmn = f6

(
1

18
(dαasd)pq(dαasd)pq

(
δnjδmi − δniδmj − ε̊mnij

)
− 2

3
(dαasd)mn(dαasd)ij

)
where all indices are frame indices with respect to the metric d̊s2 on B.

The latter condition implies that R̊ = 0 if and only if dαasd = 0



The conditions on R0ijk together with ∇iFjk imply that

∇̊i(dαasd)jk = −6f−1∇̊if(dαasd)jk + 4f−1(dαasd)i[j∇̊k]f

− 4f−1∇̊`f(dαasd)`[jδk]i

and

∇̊i(dαsd)jk = −f−1∇̊if(4dαsd −
2

3
dαasd)jk

+ 2f−1(2dαsd +
2

3
dαasd)i[j∇̊k]f

− 2f−1∇̊`f(2dαsd −
2

3
dαasd)`[jδk]i

where dαsd denotes the self-dual part of dα.



N = 8 Solutions with B = R4

Consider B = R4
, with dαasd = 0.

The condition

∇̊i∇̊jf = −f−1∇̊if∇̊jf + f−1∇̊`f∇̊`fδij

on R4
can be integrated up to determine f .

There are two possibilities,

f2 = β, or f2 =
β

2
r2

for constant β, where r is the standard radial co-ordinate on R4.

In the case for which f is constant, dα can be expanded as

dα =
1

4β

3∑
i=1

λid(r2σiL)

where σiL are the left-invariant 1-forms on SU(2).



The remaining conditions imply that dαsd is covariantly constant, so λi

are constants.

If all the λi vanish, then the solution is Minkowski space R4,1; if the λi

are not all zero then the solution is the maximally supersymmetric Gödel
spacetime.

In the case for which f2 = β
2 r

2, dα can be expanded as

dα =
2

β

3∑
i=1

λid(r−2σiR)

where σiR are the right-invariant 1-forms on SU(2).

The remaining conditions imply that dαsd is covariantly constant, so the
λi are constants. In this case, the geometry is that of the near-horizon
BMPV black hole. If all the λi are vanish then the geometry is
AdS2 × S3.



N = 8 Solutions with B 6= R4

Suppose that B 6= R4
, and so dαasd 6= 0.

Define the vector field W on B by:

Wj = f5(dαasd − 3dαsd)jk∇̊kf .

The integrability conditions imply that

∇̊iWj = 3f4
(
− 4∇̊[if(dαsd)j]k∇̊kf − ∇̊kf∇̊kf(dαsd)ij

)
− 1

3
f12

(
1

12
(dαasd)pq(dαasd)pq − 3

4
(dαsd)pq(dαsd)pq

)
(dαasd)ij

− f4∇̊kf∇̊kf(dαasd)ij

and also

iW dα = −1

2
d

(
1

12
f6(dαasd)pq(dαasd)pq − 3

4
f6(dαsd)pq(dαsd)pq

)
.



Special case W ≡ 0, and B is not flat.

These conditions imply that

?FD
A[BFC]D

and so

∇F = 0

The spacetime is a Lorentzian symmetric space and F is an invariant
2-form.

The geometry must be locally isometric to a product of dSn, AdSn,
CWn or Rn−1,1 with a Euclidean signature symmetric space.

The only possible maximally symmetric solutions of this type are
AdS2 × S3, AdS3 × S2, the maximally supersymmetric plane wave CW5,
and R4,1.



Remaining case: B is not flat and W 6= 0.

Then W is an isometry of B and

LW f = 0, LW dα = 0

Hence W extends to a symmetry of the 5-dimensional solution.

In addition, ∇̊iWj is anti-self-dual, so W is a tri-holomorphic isometry.

Such solutions are therefore determined entirely in terms of four
harmonic functions {H,K,L,M} on R3. Conditions on these functions
are obtained by decomposing the integrability conditions



N = 8 Solutions with Gibbons-Hawking base

The integrability conditions when decomposed in the Gibbons-Hawking
ansatz imply that

d

(
K

H

)
∧ d
(
L

H

)
= 0 .

If K
H is constant, then dα is self-dual and base B is flat.

We exclude this possibility here, so L
H = F(KH ) for some function F .

As L, H, and K are harmonic, this function must be linear, so
L = βH + γK for constants β, γ.

On making use of the redefinition of the harmonic functions take w.l.o.g.

L = βH



Further conditions on the harmonic functions obtained from the
integrability conditions are:

d

(
K

H

)
∧ d(M +

β

2
K) = 0

which implies that M + β
2K = H(KH ) for some function H.

The integrability conditions also imply that H is constant, and hence we
take without loss of generality

M = −β
2
K

This procedure has determined the harmonic functions L and M in terms
of H and K.



The remaining content of the integrability conditions can then be written
as

2ρδps = ∂p∂s
(
HK(βH2 +K2)−2

)
2ψδps = ∂p∂s

(
(K2 − βH2)(βH2 +K2)−2

)
where ∂p = ∂

∂xp , p = 1, 2, 3; and ρ, ψ are constants.

There are a number of solutions to these equations. If β = 0 then there
are two cases; for the first

K = m, H = npx
p

for constants m,np. The corresponding geometry is the maximally
supersymmetric plane wave CW5. The second case has

K =
m

r
, H =

k

r
+
npx

p

r3

for constants m, k, np. If k = 0 the geometry is AdS3 × S2, and if k 6= 0
the geometry is the near-horizon BMPV solution.



If β < 0 then the solutions to (1) are given by

H =
1

2
√
−β

(
1

P−
∓ 1

P+

)
, K =

1

2

(
1

P−
± 1

P+

)
where P± =

√
Y2 ± 2

√
−βY1, and

Y1 = ρr2 + λpx
p + k, Y2 = ψr2 + µpx

p + `

for constants λp, µp, k, `. There are again two cases to consider; in the
first case

H =
1√
−β

(
m+

n

r

)
, K = m− n

r

for constants m,n with mn < 0. This is the Gödel solution. In the
second case,

H =
1√
−β

(
m

R+
+

n

R−

)
, K =

m

R+
− n

R−

for R± =
√
r2 ± 2λr cos θ + λ2 for constants m,n, λ, with mn < 0 and

λ > 0. This geometry is also the near-horizon BMPV solution.



For solutions with β > 0 the solutions to (1) are given by

H =
1√
β

Im

(
1

P−

)
, K = Re

(
1

P−

)
where P− =

√
τr2 + µpxp + ν for complex constants τ, µp, ν.

If τ 6= 0 the geometry is the near-horizon BMPV solution.

If τ = 0 the solution is the maximally supersymmetric plane wave CW5.



This exhausts the content of the integrability conditions, and the
resulting geometries are:

R4,1

the maximally supersymmetric plane wave CW5,

AdS3 × S2,

the near-horizon BMPV geometry

the maximally supersymmetric Gödel spacetime.

∇F = 0 for R4,1 and AdS2 × S3.

All of these geometries can be written in terms of the timelike class of
solutions.

Some of the solutions admit different base space geometries in this
description.


