T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

T-branes, monopole operators and S-duality

Simone Giacomelli

ICTP

Milano, February 21 2017

Based on: A. Collinucci, S.G., R. Savelli and R. Valandro arXiv:1603.00062[hep-th]A. Collinucci, S.G. and R. Valandro, to appear.

Branes and F/M-theory geometry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d A stack of $N D_p$ branes supports a U(N) gauge theory and the vev of the scalars Φ_i in the vectormultiplet parametrizes the position of the branes.

In M/F-theory these data (eigenvalues of Φ_i) are encoded in the geometric properties of the background.

In the case of D7 branes we have the BPS equation $[\Phi, \Phi^{\dagger}] \sim F_A$ and if we turn on the gauge flux we can consider a non diagonalizable Higgs field! S. Cecotti, C. Cordova, J. Heckman, C. Vafa '10.

A brane configuration with nilpotent Φ is called **T-brane**!

Branes and F/M-theory geometry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d A stack of $N D_p$ branes supports a U(N) gauge theory and the vev of the scalars Φ_i in the vectormultiplet parametrizes the position of the branes.

In M/F-theory these data (eigenvalues of Φ_i) are encoded in the geometric properties of the background.

In the case of D7 branes we have the BPS equation $[\Phi, \Phi^{\dagger}] \sim F_A$ and if we turn on the gauge flux we can consider a non diagonalizable Higgs field! S. Cecotti, C. Cordova, J. Heckman, C. Vafa '10.

A brane configuration with nilpotent Φ is called **T-brane**!

Branes and F/M-theory geometry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d A stack of $N D_p$ branes supports a U(N) gauge theory and the vev of the scalars Φ_i in the vectormultiplet parametrizes the position of the branes.

In M/F-theory these data (eigenvalues of Φ_i) are encoded in the geometric properties of the background.

In the case of D7 branes we have the BPS equation $[\Phi, \Phi^{\dagger}] \sim F_A$ and if we turn on the gauge flux we can consider a non diagonalizable Higgs field! S. Cecotti, C. Cordova, J. Heckman, C. Vafa '10.

A brane configuration with nilpotent Φ is called **T-brane**!

T-branes in M-theory and probes

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d One way to characterize compactifications of F-theory is in terms of a dual description in M-theory:

M-theory on X ~ F-theory on $S^1 \times X$.

On a stack of D6 branes there are three scalars Φ_i . A T-brane is defined by $[\langle \Phi_i \rangle, \langle \Phi_j \rangle] \neq 0$. We consider the case of nilpotent vev for $\Phi_{D6} = \Phi_1 + i\Phi_2$.

Since we don't have a definition of T-brane in M-theory, we consider the 3d theory on a 2-brane probing a T-brane background. For simplicity we will restrict to ADE singularities.

T-branes in M-theory and probes

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d One way to characterize compactifications of F-theory is in terms of a dual description in M-theory:

```
M-theory on X ~ F-theory on S^1 \times X.
```

On a stack of D6 branes there are three scalars Φ_i . A T-brane is defined by $[\langle \Phi_i \rangle, \langle \Phi_j \rangle] \neq 0$. We consider the case of nilpotent vev for $\Phi_{D6} = \Phi_1 + i\Phi_2$.

Since we don't have a definition of T-brane in M-theory, we consider the 3d theory on a 2-brane probing a T-brane background. For simplicity we will restrict to ADE singularities.

D6 branes and **ADE** singularities

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d **Theory A:** (D2 on top of N D6 branes) SQED with N flavors. **Theory B:** (D2 at a A_{N-1} singularity) circular quiver with N abelian gauge groups

Theory A: (D2 on top of N D6 and O6 plane) SU(2) SQCD with N flavors.

Theory B: (D2 brane probing a singularity of type D_N) unitary quiver with affine D_N shape.

$\mathcal{N} = 4$ multiplets and mirror symmetry

T-branes, monopole operators and S-duality

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

- Vectormultiplet: (A_{μ}, σ, Φ) .
- Hypermultiplet: (Φ_1, Φ_2) .
- Monopole operators: $d\gamma = *dA$, $W_{\pm} = e^{\sigma \pm i \gamma}$

Mirror Symmetry (K. Intriligator, N. Seiberg '96) Duality between $\mathcal{N} = 4$ theories exchanging Coulomb and Higgs branches.

In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^j Q_j \tilde{Q}^i$. Under mirror symetry a T-brane is mapped in theory B to

 $\delta \mathcal{W} = m W_{i,+}.$

How can we deal with monopole superpotentials?

소리가 소문가 소문가 소문가

$\mathcal{N} = 4$ multiplets and mirror symmetry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

- Vectormultiplet: (A_{μ}, σ, Φ) .
 - Hypermultiplet: (Φ_1, Φ_2) .
 - Monopole operators: $d\gamma = *dA$, $W_{\pm} = e^{\sigma \pm i \gamma}$

Mirror Symmetry (K. Intriligator, N. Seiberg '96)

Duality between $\mathcal{N} = 4$ theories exchanging Coulomb and Higgs branches.

In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^j Q_j \tilde{Q}^i$. Under mirror symetry a T-brane is mapped in theory B to

 $\delta \mathcal{W} = m W_{i,+}.$

How can we deal with monopole superpotentials?

$\mathcal{N} = 4$ multiplets and mirror symmetry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

- Vectormultiplet: (A_{μ}, σ, Φ) .
 - Hypermultiplet: (Φ_1, Φ_2) .
 - Monopole operators: $d\gamma = *dA$, $W_{\pm} = e^{\sigma \pm i \gamma}$

Mirror Symmetry (K. Intriligator, N. Seiberg '96)

Duality between $\mathcal{N} = 4$ theories exchanging Coulomb and Higgs branches.

In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^j Q_j \tilde{Q}^i$. Under mirror symetry a T-brane is mapped in theory B to

 $\delta \mathcal{W} = m W_{i,+}.$

How can we deal with monopole superpotentials?

Abelian theories and mirror symmetry

T-branes, monopole operators and S-duality

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

Consider SQED with 2 flavors and monopole superpotential ${\cal W}=-\phi\,{ m Tr}(q ilde q)+W_+$

Integrating out the massive flavor in the mirror

$$\mathcal{N} = -\phi(S_1 + S_2) - S_1 S_2 Q \tilde{Q}$$

and mirroring again we get a deformed XYZ model

$$\mathcal{W} = -\phi \operatorname{Tr} M - X \operatorname{det} M; \ M = \begin{pmatrix} S_1 & Y \\ Z & S_2 \end{pmatrix}$$

Abelian theories and mirror symmetry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d Consider SQED with 2 flavors and monopole superpotential $W = -\phi \operatorname{Tr}(q\tilde{q}) + W_{+}$

Integrating out the massive flavor in the mirror

$$\mathcal{W}=-\phi(\mathcal{S}_1+\mathcal{S}_2)-\mathcal{S}_1\mathcal{S}_2Q ilde{Q}$$

and mirroring again we get a deformed XYZ model

$$\mathcal{W} = -\phi \operatorname{Tr} M - X \operatorname{det} M; \ M = \left(egin{array}{cc} S_1 & Y \ Z & S_2 \end{array}
ight)$$

∃ >

Abelian theories and mirror symmetry

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d Consider SQED with 2 flavors and monopole superpotential $W = -\phi \operatorname{Tr}(q\tilde{q}) + W_{+}$

Integrating out the massive flavor in the mirror

$$\mathcal{W}=-\phi(\mathcal{S}_1+\mathcal{S}_2)-\mathcal{S}_1\mathcal{S}_2Q ilde{Q}$$

and mirroring again we get a deformed XYZ model

$$\mathcal{W} = -\phi \operatorname{Tr} M - X \operatorname{det} M; \ M = \left(egin{array}{cc} S_1 & Y \\ Z & S_2 \end{array}
ight)$$

Nonabelian SQCD and S-duality

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d **S-duality** for $\mathcal{N} = 2 SU(N)$ SQCD with 2N flavors in 4d:

 $R_{0,N}$ is a SCFT with $SU(2) \times SU(2N)$ global symmetry.

- $R_{0,2}$ consists of three SU(2) doublets;
- *R*_{0,N≥3} is described by N M5 branes wrapping a three-punctured sphere.

Higgs branch operators of $R_{0,N}$: $\mu_{SU(2)}$, $\mu_{SU(2N)}$ Chiral ring relation for $R_{0,N}$: $\mu^2_{SU(2N)} = \text{Tr}(\mu^2_{SU(2)})I_{2N\times 2N}$

By dimensional reduction we get a duality in 3d!

Nonabelian SQCD and S-duality

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersym metry

Dualities from 4d **S-duality** for $\mathcal{N} = 2 SU(N)$ SQCD with 2N flavors in 4d:

 $R_{0,N}$ is a SCFT with $SU(2) \times SU(2N)$ global symmetry.

- $R_{0,2}$ consists of three SU(2) doublets;
- *R*_{0,N≥3} is described by N M5 branes wrapping a three-punctured sphere.

Higgs branch operators of $R_{0,N}$: $\mu_{SU(2)}$, $\mu_{SU(2N)}$ Chiral ring relation for $R_{0,N}$: $\mu_{SU(2N)}^2 = \text{Tr}(\mu_{SU(2)}^2)I_{2N\times 2N}$

By dimensional reduction we get a duality in 3d!

・ロン ・回と ・ヨン ・ヨン

Nonabelian SQCD and S-duality

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d **S-duality** for $\mathcal{N} = 2 SU(N)$ SQCD with 2N flavors in 4d:

 $R_{0,N}$ is a SCFT with $SU(2) \times SU(2N)$ global symmetry.

- $R_{0,2}$ consists of three SU(2) doublets;
- *R*_{0,N≥3} is described by N M5 branes wrapping a three-punctured sphere.

Higgs branch operators of $R_{0,N}$: $\mu_{SU(2)}$, $\mu_{SU(2N)}$ Chiral ring relation for $R_{0,N}$: $\mu^2_{SU(2N)} = \text{Tr}(\mu^2_{SU(2)})I_{2N\times 2N}$

By dimensional reduction we get a duality in 3d!

Nonabelian theories and monopoles

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersym metry

Dualities from 4d $U(1)_B$ of SQCD is mapped to U(1) acting on SU(2) doublet

Monopoles of R-charge one in SQCD are mapped to U(1) monopoles in the dual theory!

 $\mathcal{W} = -\phi \operatorname{Tr} M - X \det M + \operatorname{Tr} [\Phi_{SU(2)} (M - \mu_{SU(2)})]$

From F-terms we get: $M = \mu_{SU(2)}, M^2 = 0 \longrightarrow \mu_{SU(2N)}^2 = 0.$

Nonabelian theories and monopoles

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersym metry

Dualities from 4d $U(1)_B$ of SQCD is mapped to U(1) acting on SU(2) doublet

Monopoles of R-charge one in SQCD are mapped to U(1) monopoles in the dual theory!

 $\mathcal{W} = -\phi \operatorname{Tr} M - X \det M + \operatorname{Tr}[\Phi_{SU(2)}(M - \mu_{SU(2)})]$

From F-terms we get: $M = \mu_{SU(2)}, M^2 = 0 \longrightarrow \mu_{SU(2N)}^2 = 0$

Nonabelian theories and monopoles

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersym metry

Dualities from 4d $U(1)_B$ of SQCD is mapped to U(1) acting on SU(2) doublet

Monopoles of R-charge one in SQCD are mapped to U(1) monopoles in the dual theory!

 $\mathcal{W} = -\phi \operatorname{Tr} M - X \det M + \operatorname{Tr}[\Phi_{SU(2)}(M - \mu_{SU(2)})]$ From F-terms we get: $M = \mu_{SU(2)}, M^2 = 0 \longrightarrow \mu^2_{SU(2N)} = 0.$

Higgs branch and resolutions

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

 $\mu^2_{SU(6)} = 0 \rightarrow$ Higgs Branch (E_7 singularity) is not deformed. We lost a U(1) gauge node, so the resolution is obstructed! (resolution parameters: FI terms $\int d^4\theta \xi_i V_i$)

Higgs branch and resolutions

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

 $\mu^2_{SU(6)} = 0 \rightarrow$ Higgs Branch (E_7 singularity) is not deformed. We lost a U(1) gauge node, so the resolution is obstructed! (resolution parameters: FI terms $\int d^4\theta \xi_i V_i$)

Higgs branch and resolutions

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

 $\mu^2_{SU(6)} = 0 \rightarrow$ Higgs Branch (E_7 singularity) is not deformed. We lost a U(1) gauge node, so the resolution is obstructed! (resolution parameters: FI terms $\int d^4\theta \xi_i V_i$)

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d

We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

The problem reduces to understanding quivers with monopole superpotential terms. This can be approached combining mirror symmetry and 4d dualities.

T-branes do not deform the geometry but obstruct resolutions! It would be interesting to apply this method to more complicated backgrounds/brane systems.

Thank You!

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

The problem reduces to understanding quivers with monopole superpotential terms. This can be approached combining mirror symmetry and 4d dualities.

T-branes do not deform the geometry but obstruct resolutions! It would be interesting to apply this method to more complicated backgrounds/brane systems.

Thank You!

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

The problem reduces to understanding quivers with monopole superpotential terms. This can be approached combining mirror symmetry and 4d dualities.

T-branes do not deform the geometry but obstruct resolutions! It would be interesting to apply this method to more complicated backgrounds/brane systems.

Thank You!

(1) マン・ション・ (1) マン・

T-branes, monopole operators and S-duality

> Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Dualities from 4d We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

The problem reduces to understanding quivers with monopole superpotential terms. This can be approached combining mirror symmetry and 4d dualities.

T-branes do not deform the geometry but obstruct resolutions! It would be interesting to apply this method to more complicated backgrounds/brane systems.

Thank You!

- 4 回 ト 4 ヨ ト 4 ヨ ト