Supersymmetric AdS backgrounds and their moduli spaces

Jan Louis, University Hamburg

In collaboration with:

S.de Alwis, P.Karndumri, S.Lüst, L.McAllister, C.Muranaka, P.Rüter, H.Triendl, A.Westphal, M.Zagermann

[arXiv:1312.5659,1406.3363,1506.08040,1507.01623,1601.00482,1607.08249, 1611.02982, 1612.00301, and in progress]

Milano, Februrary 2017

Motivation

- 1. AdS backgrounds often appear as intermediate step (before "uplifting") in models of string phenomenology
- 2. AdS backgrounds feature prominently in AdS/CFT correspondence

In both cases their moduli space C also is of interest

- 1. moduli stabilization/values of physical parameters
- 2. corresponds to <u>conformal manifold</u> of dual CFT
- ⇒ study (supersymmetric) AdS backgrounds and their moduli spaces in supergravity in arbitrary space-time dimensions with arbitrary number of supercharges

D=4, N=1- basic formuli

chiral multiplet: $(\phi,\chi)^{\mathrm{i}}$, gravitational multiplet: $(g_{\mu\nu},\psi_{\mu})$

$$\mathcal{L}_{\text{bosonic}} = \frac{1}{2}R - \mathbf{G}_{i\bar{j}} \partial_{\mu} \phi^{i} \partial_{\mu} \bar{\phi}^{j} - \mathbf{V} , \qquad i, \bar{j} = 1, \dots, n_{c} ,$$

where

$$\begin{aligned} \mathbf{G}_{\mathbf{i}\bar{\mathbf{j}}} &= \partial_{\mathbf{i}}\partial_{\bar{\mathbf{j}}}\mathbf{K} , & \mathbf{V} &= |\mathbf{A}_{\mathbf{1}\mathbf{i}}|^2 - 3|\mathbf{A}_{\mathbf{0}}|^2 , \\ \mathbf{A}_{\mathbf{0}} &= \mathbf{e}^{\frac{1}{2}\mathbf{K}}\mathbf{W}(\phi) , & \mathbf{A}_{\mathbf{1}\mathbf{i}} &= \mathbf{D}_{\mathbf{i}}\mathbf{A}_{\mathbf{0}} , & \mathbf{D}_{\mathbf{i}}\mathbf{A}_{\mathbf{0}} &= \partial_{\mathbf{i}}\mathbf{A}_{\mathbf{0}} + \frac{1}{2}(\partial_{\mathbf{i}}\mathbf{K})\mathbf{A}_{\mathbf{0}} \end{aligned}$$

Supersymmetry transformation of the fermions

$$\delta \chi_i = \mathbf{A_{1i}} \, \epsilon + \dots , \qquad \delta \psi_\mu = D_\mu \epsilon + \mathbf{A_0} \gamma_\mu \epsilon + \dots$$

Supersymmetric AdS backgrounds: $\langle \delta \psi_{\mu} \rangle = \langle \delta \chi_i \rangle = 0$

$$\Rightarrow \langle \mathbf{A_{1i}} \rangle = 0$$
, $\langle \mathbf{A_0} \rangle \neq \mathbf{0}$, $\langle \mathbf{A_0} \rangle \sim \text{cos. const.} / \text{AdS-radius}$

Classification for N=1 difficult/impossible (?)

D=4, N=1- supersymmetric moduli space

1. Minkowski background $(\langle A_0 \rangle = 0)$

generic W: no moduli space

special W: holomorphic $W(\phi)$ implies:

moduli space $\mathcal C$ is Kähler submanifold

of original Kähler field space ${\mathcal M}$

(and protected by supersymmetry)

- 2. AdS background $\langle \mathbf{A_0} \rangle \neq 0$
 - $\bar{\phi}$ cannot drop out of $\mathbf{A_{1\phi}} = \partial_{\phi} \mathbf{A_0} + \frac{1}{2} (\partial_{\phi} K) \mathbf{A_0}$ and $\langle V \rangle$
 - no protection against quantum corrections
 - moduli space $\mathcal C$ is <u>real</u> submanifold of original Kähler manifold $\mathcal M$, at best with $\dim(\mathcal C)=\frac{1}{2}\dim(\mathcal M)$

D=4, N=1- supersymmetric moduli space

necessary condition:

$$\delta \langle \mathbf{A_0} \rangle = \langle \mathbf{A_{1i}} \rangle \delta \phi^{\mathbf{i}} + \langle \bar{\mathbf{A}_{1i}} \rangle \delta \bar{\phi}^{\bar{\mathbf{i}}} = 0 , \quad \delta \langle \bar{\mathbf{A}_0} \rangle = \dots = 0$$

$$\delta \langle \mathbf{A_{1i}} \rangle = \langle \partial_{\mathbf{j}} \mathbf{A_{1i}} \rangle \delta \phi^{\mathbf{j}} + \frac{1}{2} \langle K_{\mathbf{i}\bar{\mathbf{i}}} \mathbf{A_0} \rangle \delta \bar{\phi}^{\bar{\mathbf{j}}} = 0 , \quad \delta \langle \bar{\mathbf{A}_{1i}} \rangle = \dots = 0$$

(1st eq. identically satisfied in supersymmetric backgrounds)

Rewrite 2nd condition:

$$\mathbb{M} \left(\begin{array}{c} \delta \phi^{\mathbf{j}} \\ \delta \bar{\phi}^{\bar{\mathbf{j}}} \end{array} \right) = 0 , \quad \text{with} \quad \mathbb{M} = \left(\begin{array}{cc} \mathbf{m_{ij}} & \langle \mathbf{K_{i\bar{\mathbf{j}}}} \mathbf{A_0} \rangle \\ \langle \mathbf{K_{\bar{\mathbf{i}j}}} \bar{\mathbf{A_0}} \rangle & \bar{\mathbf{m}_{\bar{\mathbf{i}j}}} \end{array} \right) ,$$

where $\mathbf{m_{ij}} = \langle \nabla_i \mathbf{A_{1j}} \rangle$ = fermionic mass matrix

- \Leftrightarrow generically $\mathbb M$ has full rank $\Rightarrow \delta\phi^{\mathbf j}=0 \Rightarrow$ no moduli space
- \Rightarrow for special (tuned) W/A_0 : moduli space possible [DLMTW, ...]

Maximally supersymmetric backgrounds in arbitrary dim. ${\cal D}$

Distinguish two cases: backgrounds with/without fluxes

1. backgrounds without fluxes

Maximally supersymmetric backgrounds in arbitrary dim. D

Distinguish two cases: backgrounds with/without fluxes

1. backgrounds without fluxes

Supersymmetry transformation of fermions in gauged supergravities

$$\delta \psi_{\mu}^{I} = D_{\mu} \epsilon^{I} + \mathbf{A}_{\mathbf{0J}}^{\mathbf{I}}(\phi) \gamma_{\mu} \epsilon^{J} + \dots , \qquad \delta \chi^{i} = \mathbf{A}_{\mathbf{1J}}^{\mathbf{i}}(\phi) \epsilon^{J} + \dots$$
with
$$V \sim |\mathbf{A}_{\mathbf{1}}|^{2} - c(d, q) |\mathbf{A}_{\mathbf{0}}|^{2}$$

Supersymmetric backgrounds preserving all q supercharges:

$$\langle D_{\mu} \epsilon^{I} + \mathbf{A}_{0J}^{I}(\phi) \gamma_{\mu} \epsilon^{J} \rangle = 0 , \qquad \langle \mathbf{A}_{1} \rangle = 0 , \quad \forall I, J$$

Consistency condition: $R_{\mu\nu\rho\sigma} \sim \text{tr} \mathbf{A_0^2} \left(g_{\mu\rho} g_{\nu\sigma} - g_{\mu\sigma} g_{\nu\rho} \right)$

Solutions: AdS_D or $M_d \times T^{(D-d)}$, $1 \le d \le D$

(note: $AdS_d \times Y^{(D-d)}$ not possible)

Supersymmetric moduli spaces C of AdS_D

- ullet supersymmetric moduli spaces $\mathcal{C}\subset\mathcal{M}$
- necessary condition: $\delta_{\phi}\langle \mathbf{A_0}\rangle = 0 = \delta_{\phi}\langle \mathbf{A_1}\rangle$
- Gradient-flow equations: [d'Auria, Ferrara]

$$\delta \langle \mathbf{A_0} \rangle = \langle \mathbf{A_1} \rangle \, \delta \vec{\phi} = 0 \; , \qquad \delta \langle \mathbf{A_1} \rangle = \mathbb{M} \, \delta \vec{\phi} \; , \qquad \mathbb{M} := \mathbf{m_f} + \langle \mathbf{A_0} \rangle$$

• necessary condition for moduli space: M has null eigenspace

- q=4: can tune superpotential/ $\mathbf{m_f}$ but $\mathcal C$ generically destroyed by quantum corrections
- q=8,16,32: no superpotential, can choose spectrum and gauged isometries of \mathcal{M} , supersymmetric protection

Example: d = 5, q = 16 supercharges [JL, Triendl, Zagermann]

- right multiplets and scalar geometry
 - gravity $(g_{\mu\nu}, \psi^i_{\mu}, A^{0,m}_{\mu}, \chi^i, \Sigma), \ m = 1, \dots, 5 \Rightarrow 6$ graviphotons
 - vector $(A_{\mu}^a, \lambda^a, \phi^{am}), a = 1, \dots, n_v$

scalar field space: $\mathcal{M}(\Sigma, \phi) = \mathbb{R}^+ \times \frac{SO(5, n_v)}{SO(5) \times SO(n_v)}$

supersymmetric AdS backgrounds can be "classified" gauge group:

$$\mathbf{G} = \mathbf{U}(\mathbf{1}) \times \mathbf{\hat{G}} \subset \mathbf{SO}(\mathbf{5}, \mathbf{n_v})$$

where $\hat{\mathbf{G}} \subset \mathbf{SO(3, n_v)} \to \mathbf{SO(3)} \times \mathbf{H}$, $\mathbf{H} = \mathsf{compact}$ subgroup

moduli space possible: [Günaydin,Pilch,Warner,Zagermann]

$$\mathcal{C} = \frac{\mathbf{SU}(\mathbf{1}, \mathbf{p})}{\mathbf{U}(\mathbf{1}) \times \mathbf{SU}(\mathbf{p})} \subset \frac{\mathbf{SO}(\mathbf{2}, \mathbf{2p})}{\mathbf{SO}(\mathbf{2}) \times \mathbf{SO}(\mathbf{2p})} \subset \frac{\mathbf{SO}(\mathbf{5}, \mathbf{n_v})}{\mathbf{SO}(\mathbf{5}) \times \mathbf{SO}(\mathbf{n_v})}$$

General story: AdS moduli space for $\mathcal{M} = G/H$

[JL, S. Lüst, Rüter]

- ightharpoonup gauging isometries of ${\mathcal M}$ induces gauging of R-symmetry H_R
- \Rightarrow Maximally supersymmetric AdS backgrounds: $H_R^g \subset H_R$ gauged only by (subset of) graviphotons A_μ
- \Rightarrow A_0 and A_μ transform in specific rep. of H_R depending on D,q
- $\langle A_0 \rangle \neq 0$ implies $H_R \to H_R^l$ (little group)
- additional constraint: $H^g_R\subset H^l_R\subset H_R \text{ of AdS-vacuum has to have } A_\mu \text{ in its adj. rep.}$
- $\Leftrightarrow \text{ flat directions of } V :$ $H_R^g \text{ charged Goldstone bosons} + H_R^g \text{-singlets} = \text{moduli}$

Example: d = 7, q = 32 supercharges

[JL, S. Lüst, P. Rüter]

- gravity multiplet: $(g_{\mu\nu}, \psi^I_\mu, A^{[MN]}_\mu, \chi^{IJK}, \phi)$ $I, J, K = 1, \dots, 4, \quad M, N = 1, \dots, 5$
- \Rightarrow scalar field space: $\mathcal{M}(\phi) = \frac{\mathbf{SL}(5)}{\mathbf{SO}(5)}$
- $A_0 \in \mathbf{1} \oplus \mathbf{5}, \quad A_1 \in \mathbf{5} \oplus \mathbf{14} \oplus \mathbf{35} \quad \text{of } H_R = SO(5) \sim USp(4)$ $\Rightarrow H_R = H_R^l = H_R^g = USp(4)$
- $\Rightarrow \delta \phi \in \mathbf{14} \Rightarrow \text{no GB}, \text{ no singlets} \Rightarrow \text{no moduli}$

Results so far:

$AdS_{(d,q)}$	\mathcal{M}	\mathcal{C}	[]
(4,4)	Kähler	Real	[DLMTW]
(4,8)	$SK \! imes QK$	$Real { imes} K \ddot{a} hler$	[DMLTW]
(5,8)	$SR \! imes QK$	Kähler	[Tachikawa,LM]
(6,8)	$\frac{O(1,n_T)}{O(n_T)} \times QK$	_	[?]

SK: Special Kähler

QK: Quanternionic Kähler

SR: Special Real

[DMLTW]=[de Alwis, JL, McAllister, Triendl, Westphal]

[LM]=[JL, Muranaka]

Results so far:

$AdS_{(d,q)}$	\mathcal{M}	H_R^g	\mathcal{C}	[]
(4,16)	$\frac{SO(6,6+n_v)}{SO(6)\times SO(6+n_v)} \times \frac{SU(1,1)}{U(1)}$	SO(4)	AX	[LT]
(5,16)	$\frac{SO(5,5+n_v)}{SO(5)\times SO(5+n_v)} \times \mathbb{R}^+$	U(2)	$\frac{SU(1,p)}{SU(p)\times U(1)}$	[GPWZ,LTZ]
(6,16)	$\frac{SO(4,4+n_v)}{SO(4)\times SO(4+n_v)} \times \mathbb{R}^+$	$SU(2) \times SU(2)$	AX	[KL]
(7,16)	$\frac{SO(3,3+n_v)}{SO(3)\times SO(3+n_v)} \times \mathbb{R}^+$	USp(2)	AX	[LL]
(4,32)	$rac{E_{7,7}}{SU(8)}$	SO(8)	AX	[LLR]
(5,32)	$rac{E_{6,6}}{USp(8)}$	SU(4)	$rac{SU(1,1)}{U(1)}$	[LLR]
(6,32)	$rac{SO(5,5)}{SO(5) imes SO(5)}$	XX	XX	[LLR]
(7,32)	$rac{SL(5)}{SO(5)}$	USp(4)	AX	[LLR]

AX: AdS background exists and can be classified but no moduli space,

XX: AdS background does not exist

[LT]=[JL,Triendl] [LLR]=[JL, Lüst, Rüter] [KL]=[Karndumri,JL]

AdS/CFT correspondence

 AdS_d bulk with q supercharges

 \Leftrightarrow

 \mathbf{SCFT}_{d-1} on \mathbf{AdS}_d boundary with $\frac{q}{2} + \frac{q}{2}$ super+sconformal charges

\mathbf{AdS}	\Leftrightarrow	SCFT
(broken) gauge group		(anomalous) flavour group
scalars with mass m		couplings of gauge invariant operators
moduli		exactly marginal couplings
$\mathbf{moduli\ space}\ \mathcal{C}$		${\bf conformal\ manifold\ } {\cal C}$
		$S = S_0 + \sum_i \int \varphi^i \mathbf{O_i}$ $g_{ij}(\varphi) = x^{2d} \langle \mathbf{O_i}(\mathbf{x}) \mathbf{O_j}(0) \rangle_S \text{ [Zamolodchikov]}$

Compare AdS with SCFT-results

$AdS_{(d,q)}$	\mathcal{C}	[]	$SCFT_{(d-1,rac{q}{2})}$	$\mathcal{C}_{ ext{SCFT}}$	[]
(4,4)	Real	[DLMTW]	(3,2)	$Real^1$	[CDI]
(4,8)	$Real { imes} K \ddot{a} hler$	[DMLTW]	(3,4)	Kähler	[GKSTW]
(5,8)	Kähler	[T,LM]	(4,4)	Kähler	$[\mathbf{Ansin}]$
(6,8)	-	[?]	(5,4)	SXX	

SX: SCFT exists but no moduli space,

SXX: SCFT does not exist

[CDI]=[Cordova, Dumitrescu, Intriligator]

[GKSTW] = [Green, Komargodski, Seiberg, Tachikawa, Wecht]

 $^{^{1}}$ none known, no susy protection

Compare AdS with SCFT-results (Note: no SCFT in d > 6)

$AdS_{(d,q)}$	\mathcal{C}	[]	$SCFT_{(d-1,rac{q}{2})}$	$\mathcal{C}_{ ext{SCFT}}$	[]
(4,16)	AX	[LT]	(3,8)	SX	[CDI]
(5,16)	$\frac{SU(1,p)}{SU(p)\times U(1)}$	[GPWZ,LTZ]	(4,8)	Kähler $(?)^2$	[P,GGK]
(6,16)	AX	[KL]	(5,8)	SX	[CDI]
(7,16)	AX	[LL]	(6,8)	SX	[LL]
(4,32)	AX	[LLR]	(3,16)	SX	[CDI]
(5,32)	$rac{SU(1,1)}{U(1)}$	[LLR]	(4,16)	$rac{SU(1,1)}{U(1)}$	[?]
(6,32)	XX	[LLR]	(5,16)	SXX	[Nahm]
(7,32)	AX	[LLR]	(6,16)	SX	[LL]

[GPWZ]=[Günaydin,Pilch,Warner,Zagermann]

[P,GGK] = [Papadodimas; Gerchkovitz,Gomis,Komargodski]

 2 [GGK] only show Kähler, [P] shows tt^{*} -geometry

Supersymmetric backgrounds in arbitrary dimensions ${\cal D}$

Distinguish two cases: backgrounds with/without fluxes

2. backgrounds with fluxes

Supersymmetric backgrounds in arbitrary dimensions D

Distinguish two cases: backgrounds with/without fluxes

2. backgrounds with fluxes [JL, S. Lüst, ...]

Supersymmetry transformation of the fermions

$$\delta \psi_{\mu}^{I} = D_{\mu} \epsilon^{I} + (\mathcal{F}_{0\mu})_{\mathbf{J}}^{\mathbf{I}} \epsilon^{J} + A_{0J}^{I} \gamma_{\mu} \epsilon^{J} , \qquad \delta \chi^{i} = (\mathcal{F}_{\mathbf{1}})_{\mathbf{J}}^{\mathbf{i}} \epsilon^{J} + A_{1J}^{i} \epsilon^{J} ,$$

$$\delta \lambda^{A} = (\mathcal{F}_{\mathbf{2}})_{\mathbf{J}}^{\mathbf{A}} \epsilon^{J} + A_{2J}^{A} \epsilon^{J} ,$$

 $\mathcal{F}_{0,1/2}$ = sum of fluxes in gravitational multiplet/other multiplets

supersymmetric backgrounds:
$$\mathcal{F}_1 = \mathcal{F}_2 = A_1 = A_2 = 0 \implies \mathcal{F}_0 = 0$$

two exceptions:

- 1. chiral theories with selfdual fluxes
- 2. supergravities without χ 's in gravitational multiplet

Supersymmetric backgrounds in arbitrary dimensions D

candidate supergravities/fluxes:

dimension	supersymmetry	q	possible flux	classification of maximal supersymmetric solutions
D = 11	N = 1	32	$F^{(4)}$	[Figueroa-O'Farrill,Papadopoulos]
D = 10	IIB	32	$F_{+}^{(5)}$	[Figueroa-O'Farrill,Papadopoulos]
D=6	N=(2,0)	16	$5 \times F_{+}^{(3)}$	[Chamseddine,Figueroa-O'Farrill,Sabra]
D=6	N = (1, 0)	8	$F_{+}^{(3)}$	$[{f Gutowski},{f Martelli},{f Reall}]$
D=5	N = 2	8	$F^{(2)}$	$[{f Gauntlett, Gutowski, Hull, Pakis, Reall}]$
D=4	N=2	8	$F^{(2)}$	[Tod]

study this list case by case to find

•
$$\langle A_0 \rangle = \langle A_1 \rangle = \langle A_2 \rangle = 0$$

• no flux for R-symmetry possible

[Hristov,Looyestijn,Vandoren;Gauntlett,Gutowski;Akyol,Papadopoulos]

background solutions have to coincide with ungauged solutions they are classified in ungauged case (see refs. above and [Gran, Gutowski, Papadopoulos])

AdS backgrounds

dim.	SUSY	q	$AdS \times S$	
D = 11	N = 1	32	$AdS_4 \times S^7$ $AdS_7 \times S^4$	$[{f Freund, Rubin}]$
			$AdS_7 \times S^4$	
D = 10	IIB	32	$AdS_5 \times S^5$	[Schwarz, West]
D=6	N=(2,0)	16	$AdS_3 \times S^3$	[Gibbons, Horowitz, Townsend]
	N = (2, 0) $N = (1, 0)$	8	$AdS_3 \times S^3$	$[{\bf Gibbons, Horowitz, Townsend}]$
D=5	N=2	8	$AdS_2 \times S^3$	[Gibbons, Horowitz, Townsend]
			$\operatorname{AdS}_3 \times S^2$	[Chamseddine,Ferrara,Gibbons,Kallosh]
D=4	N=2	8	$\mathrm{AdS}_2 \times S^2$	[Bertotti,Robinson]

list is exhaustive (cf. [Alonso-Alberca, Ortin])

in addition:

- Hpp-wave solutions [Penrose; Kowalski-Glikman; Blau, Figueroa-O'Farrill, Hull, Papadopoulos]
- further special solutions in D = 5
 [Cvetic, Larsen; Gauntlett, Meyers, Townsend; Gauntlett, Gutowski, Hull, Pakis, Reall]

Conclusion/Outlook

Studied fully supersymmetric AdS backgrounds in D-dimensional supergravities with q supercharges

1. without fluxes

- classified AdS_D backgrounds with q=16,32 supercharges and determined their classical moduli spaces
- ullet determined the geometry of classical moduli spaces for q=4,8

2. with fluxes

- AdS-backgrounds only exist in
 - chiral supergravities
 - supergravities without graviphotinos
- in both cases AdS-solution coincides with solution of corresponding ungauged supergravity which are classified

Results are consistent with dual SCFTs (not yet clear in (4,8))