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Fundamental questions :

@ Universality of black hole entropy 4% ?
@ Non-extremal entropy counting ?
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Fundamental questions :

@ Universality of black hole entropy 4% ?
@ Non-extremal entropy counting ?

In this talk I will concentrate on the IR sector of string
theory : non-extremal black holes in supergravity.
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Practical questions answered in this talk :

@ What is the structure of non-extremal black holes in
string theory?

@ Are there universal relations which are unexplained in
the IR?

@ What is the structure of the entropy ?
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Based on

@ “Seed for general rotating non-extremal black holes of
N = 8 supergravity”, D.Chow & G.C., arXiv :1310.1925

@ “Dyonic AdS black holes in maximal gauged
supergravity”, D.Chow & G.C., arXiv :1311.1204

@ “Black holes in V' = 8 supergravity from SO(4,4)
symmetries”, D.Chow & G.C., arXiv :1404.2602

@ “Ey 7 invariant non-extremal entropy”, G.C. & V. Lekeu,
arXiv :1510.03582
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Outline
@ Lightning review of A’ = 8 supergravity

© The non-extremal black hole of A = 8 supergravity

© The E;(; invariant entropy

=] 5 = Q>
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Lightning review of
of N = 8 supergravity
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Amazing features

@ Unique

@ Can be obtained as low energy regime of M-theory on T’
@ Maximally supersymmetric

@ Admits E7(7) (R) symmetries (U-dualities) cremmer and julia (1978), etc
@ Perturbative UV cancellations sem etal (2009), etc

@ Cannot be decoupled from string theory creen, ooguri, schwarz (2007)
@ Contains BPS black holes with known microscopics

Maldacena, Strominger, Witten (1997).
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The STU supergravity subsector

The 4d metric is preserved under U-dualities. Matter fields
are shuffled.
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The STU supergravity subsector

The 4d metric is preserved under U-dualities. Matter fields
are shuffled.

A generic black hole has 56 electromagnetic charges.

However, with 5 (appropriate) charges turned on, one can
U-dualize to the generic black hole cvetictun, 1996
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The STU supergravity subsector

The 4d metric is preserved under U-dualities. Matter fields
are shuffled.

A generic black hole has 56 electromagnetic charges.
However, with 5 (appropriate) charges turned on, one can
U-dualize to the generic black hole cvetictun, 1996

A suitable sector of ' = 8 supergravity is a N' = 2

supergravity with three vector multiplets known as the STU
Supergravity Cremmer et al ‘85; Duff et al. ‘96.
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STU supergravity

In a specific U-duality frame the Lagrangian has the general
form pufret al. ‘06

L4 = d4x\/—g(R—;fab(z)auzaaf‘zb

—ikU(z)FwaJ’“’JrihU(z)e“”p"Fl F )

pvs po

where

@ 29 =x2+1iy%, a=1,2,3 are three complex scalar fields
o Al = (A A% A3 A%) are the four U(1) gauge fields.

Triality symmetry : SL(2,R) x SL(2,R) x SL(2,R) and their Z3
permutations.
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From N = 8 to STU supergravity

N =38
supergravity
U-duality

STU supergravity

A= A3

ST? supergravity
(reduction of 6d
minimal supergravity)

=A% = / \ A A7 = A3

S?% supergravity —iX9X1! supergravity
(reduction of 5d (truncation of
minimal supergravity) = 4 supergravity)
A2 = A3 = A4 / \ Al = / \Q A4 A2 = A3 = 0
Einstein—-

Einstein-Maxwell—

Maxwell theory dilaton—axion theory

(N = 2 supergravity)
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A little bit of representation theory

The electromagnetic charges are conveniently organized as
the charge tensor 4447, With components

(7000:7111) = (P*,—Qu), (7100,7011) = (Q1,—P?),
(7010, 7101) = (Q2,—P?), (7001, 7110) = (Q3,—P?).

The charge tensor transforms as

Yaarar = (51)a”(S2)a” (S3)a™ Vbbb

under SL(2,R)3, where the group elements S; € SL(2,R); are

Si = <al b1> with Clidi — biCi =1.
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in order to define the Quartic Invariant

The quartic invariant is defined as

A = £54(Q1Q2Q3Q4 + P'P*P°P*)
+23 .k QQxP/PX — 37,(Q))*(P)?].
It is a Cayley hyperdeterminant, and is manifestly invariant

under SL(2,R)3+ permutations upon rewriting as us ‘061

A—i"c-u kk’ ll’ mm nn

32 Yijk Vi'j'mYnpk’ Yn'p'm’

This invariant is a special case of the more general E7
qual"tiC invariant <>(QI,PI) Cartan, 1894 ; Cremmer, Julia, '79.
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The non-extremal black hole
of N = 8 supergravity
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1. The general (rotating, charged, non-extremal)
single-center black hole of A/ = 8 has been constructed.

2. It unifies the two regular extremal limits (Fast/BPS and
Slow/non-BPS)

3. It has some universal thermodynamic properties

4. It has some universal algebraic properties
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Expected Thermodynamics

First law and Smarr relation hold

6M =T8S, + Q0] + @,.6Q; + ¥ 6P,
M =2T.S; +20.J + @, Qr + ¥/ P,

Also at the inner horizon, formally,

M = T_8S_ +Q_g] + oL 5Qy + ¥y 6P,
M=2T_S_+2Q_J+ o Q;+ v, P.

Warning : T_S_ < 0.
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Universal unexplained thermodynamic
properties

Product Ofarea law : cveti¢, Gibbons, Pope, '10

AA_
4= (J2 (QLPI)) € n°Z
Angular momentum law :
Q, A A_
812J = TI( 4+ <) € € 47%7

Kinematical relationship :

2 __0
T, T
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Quadratic mass formula

All black holes obey the quadratic mass formula

QZ
M? + G,Jarzarzf\r o = |Z|* + |DiZ|* + 452 <T2 = )

This generalizes the one given by cisbons, 1982.
This relationship follows from the conservation of Tr(Q?)

under coset model transformations (where Q is the charge
matrix).
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Universal algebraic properties
@ Kerr-Neumann admits a Killing-Yano tensor
v[aYb]c - 07 Yab - _Yba-

= Separability of Dirac equation
@ Several classes of black holes with 2 electromagnetic
charges admits a Killing-Stackel tensor

VaKpey =0,  K¢p = Kpe.

= Separability of massive Klein-Gordon

@ Generic black hole admits a conformal Killing-Stackel
tensor

V(aQbe) = 4agbc),  Qcb = Qpe-

= Separability of massless Klein-Gordon and hidden
COIlfOl"mal Symmetries Castro, Maloney, Strominger, 2010

[subcases : Chow, ‘08 ; Keeler, Larsen, '12]
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The Kerr metric (1963)

R-U 2mrU 2 WRU
W (d” aR—-0) d¢’> T ER-O)

dr? | du?
\rR U

ds? = dg?

where

W(r,u) =r?+u?,
R(r)=r?-2mr+a?,
U(u) = a* — u?,

and u = acos ¥ in terms of the standard polar angle 6.

It admits a Killing-Yano tensor.
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Generic algebraically special metric
The non-extremal rotating metric falls into the class :

"R-U (LuR + L;U) (W2U — W2R)
2 _ 2 (Lu r r u 2
ds” = W dt aw 2dtde + azw d¢
dr? du?
+W< R + U),

where

W2 W2> (LyR + Ly U)?

2 _ _ _r__u
wi=R U)<R U RU

and

R = R(r), Lr=Ly(), W = Wg(nr),
U = U(u), Ly,=Lyu, Wy = Wy(u)

It admits a conformal Killing-Stackel tensor.
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III. The E7 invariant entropy
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The extremal E;7(R) entropy
There are two branches of regular extremal black holes in

N = 8 supergravity. Their entropy takes a universal form (xaiosn
and Kol, 1996].

Fast rotating/BPS Branch It has (Q;,P!) > 0 and

1
Sy = 21/ £0(Qu,PY) +J2

Microscopics : Maldacena, Strominger, Witten, 1997, ...

Slow rotating/non-BPS Branch It has {(Q;,P!) < 0 and

S, = 2m/ 150 P - 2

MiCI‘OSCOpiCS . Emparan, Horowitz, 2006
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The non-extremal E7)(R) entropy
Using the universal properties, one can prove Cardy’s form :

1
Sy =2m ( 160Qn P+ F +4/-J? +F>

Since S.,J, $(Qy, P!) are E7(7)(R) invariants, then

F =F(M, QP 2.)
is invariant as well.

Known special cases :
@ For BPS black holes, F =] =0.
@ In the extremal “fast” rotating limit, F = J2.
@ In the extremal “slow” rotating limit, F = —%Q(QI,PI )
e For Kerr-Newman : F = M* — M2Q2.
@ In the AdS/CFT regime Q133 — o0 :
F= %Ql Q2Q3(M — Mppg) cvetic-Larsen (2014)
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Rewrite the F invariant

Fsry[solution parameters] = Fgry[SL(2,R)3 invariants]

= Fy—_gsugralE7(7) invariants]

Note : We also rewrote it in terms of invariants of NV = 2
supergravity with cubic prepotential, which gives a
conjecture of the entropy formula for such theories.
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Asymptotic scalars of the STU model

The scalar fields parametrize the three coset matrices
(1)
1 /1 —X; 0 M 1
M’_E <—x,~ x1.2+yi2) =M O 2

which are invariant under the SL(2,R); group with j # i but
transform under SL(2,R); as

M; e (STHTM;STL.

Here MI(I) encodes the scalar moduli at infinity while Mgl)
encodes the scalar charges. We define the dressed scalar

charge tensor as
R; = (M)t
which transforms under SL(2,R); as
R; — SiRiSi_l.
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Building SL(2,R)3 and triality invariants
We can now form invariants from the following objects :
o charge tensor yagar — (51)a”(S2)” (S3) 0™ Vobrbr 5
o moduli tensors (M\?) s (MV)ed(s-1) a(s1) b
e dressed scalar charge tensors (R;).” — (Si)°(Ri).7(S;7 1) P
e the invariant epsilon tensor 2
To build triality invariants, we proceed in two steps.

© First, we make SL(2,R)3 invariants by contracting all
indices, with the constraint that only indices
corresponding to the same SL(2,R) can be contracted
together.

© Second, we implement invariance under permutations of
the three SL(2,R) factors by summing the expression
with all others obtained by permuting its different
SL(2,R) internal indices.
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We define the degree as follows : [M] = [N] = [Q] = [P!] =1,
[¢%] = 0. Then [F] = 4. We find the invariants :

@ Degree 1 :
M, N.
@ Degree 2 :
Ly = M{°M5 ' M§™ vawrar o,
Ly— % (TrR? + TrR3 + TrR3)
@ Degree 3 :
C = % Z e Ry P e Y yaaran onrb
Cy = %ZM?CRlch(ZzlblMgﬁb”'Yaa’a”'Ybb’b”-
@ Degree 4 :

]_ /b/ //b// bd /d/ //d//
A:3725H05a e e TS T Nagran Wobrbr Yeorer Yddrar

]_ AN ang >~ g1
Ay = 96 E M e MY e a0 Vbbb Yoo e Yadrar
1
96
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Match with the solution

We know F, the electromagnetic charges and all the final
solution in terms of charging parameters and seed
parameters.

We can therefore check a relation among them.

Using numerical checks, we find that the F-invariant is

F:M4—£2L1+M —A+A2—|—A3 3
4

B 2
gtz 2 128 L2)" |

First found by Sarosi, 2015 using a SL(6, R) embedding
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Embed in E7 )

Use the embedding of STU model in V' = 8 supergravity.

Cremmer et al, 1985, Duff et al, 1995; Cremmer, Julia, Lu, Pope, 1997

Find the corresponding invariants in N' = 8 supergravity.
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The fundamental representation of e;7)(R)

The 56 charges of N' = 8 supergravity transform in the
fundamental representation of e;7y which consists of a pair
of antisymmetric tensors X = (XY, Xj;),i,j=1...8
transforming as

0X =gX, g€ e

The algebra e;(7) admits su(8) as a maximal compact
subalgebra. One can change basis to

— 1 1 ix.. ij —
XAB_m(X +1XU>(F)AB, AB=1..8

which transforms under A, € su(8) as

6Xap = M Xcp + Ag“Xac
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Cartan’s quartic invariant

The quartic invariant is a quartic form over one fundamental
representation

1 .
Z(XUXU)z

1 . 1 .
+ %eyklm”qu,-ijlenqu + %sijk,mnpqxvx“xmnxw

T4 (X) =XUX3XMX; —

Using the su(8) basis, we can also build the quartic invariant

_ _ 1
OX) =XBXpcXPXpa — Z(XABXAB)Z
1

1
96 ABCDEFCH Y ) p X opXErXonH +

96

In fact, these invariants are proportional to each other :

+ £ ABCDEFGH. XAB XCD XEF XGH

OX) = —14(X)
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Scalar sector

The 70 scalar fields parametrize the coset matrix

E7 7

V< SU®)

which transforms under the group G € E7(7 as

Vs KVG L.

where K € SU(8).

From V, we define the usual matrix M = VTV which
transforms as

M= (G HT MG
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Scalar sector

Again, from the asymptotic expansion

(1)
M= MmO L M +0<12),
r r

we define the dressed charge matrix
R = (M©)~1pg(D)
that transforms in the adjoint representation of E7(7),
R GRG™L.
Since E7(7) € Sp(56,R), we can also use 2, which has the

property
GTOG=Q, GeEyy.
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Additional invariants

We can now construct several additional invariants :

XTMOX, XTMORX, XTORX, (VX)asVX) ' (VX)ep(VX)

where VX)'> = (VX)ap)*.
Since R transforms in the adjoint, all traces

Tr(R¥)

are invariant. Mathematicians tell us that the only
independent ones are those with

k=2,6,8,10,12,14 and 18.

Note that k # 4.
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Match STU invariants with E;) invariants

@ Order two :
L =X"M9X,
1
@ Order three : 1
C, = 3XTQRX
C, = %XTM(O)RX.
@ Order four : 1
A= —6<><X>,
T 4 (0) 32
A2 =g (8T4+GI4 XTMOx) )

0 =2'375(A3)? — 28335A3(Tr(R%))? — 5(Tr(R*))*
+2°3%11Tr(R*)Tr(R®) — 2°3°Tr(R?).
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Match STU invariants with E;
@ Order two : L, :XTM(O)X,
1
@ Order three : 1
C1 = §XTQRX,

C, = %XTM(O)RX.

@ Order four :

Ay = (8T4 16T, — (XTM<°>X)2) ,

96

0 =2'7375(A3)? — 28335A5(Tr(R?))* —
+2°3%11Tr(R*)Tr(R®) — 2°3°Tr(R?).

We find a non-polynomial expression for Aj,

1nvar1ants

1
210345
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The answer of F in terms of E7 7 invariants

We have enough invariants to be able to express the missing
F function.
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The answer of F in terms of E7 7 invariants

We have enough invariants to be able to express the missing
F function.

The answer is
1

M? M 1
Ve < VIO 2T a0 _ = _—
F=M" - Z-X"MOX 4+ 7 X" MORX — 7 0(X) + 5, T
1 o1, (0 1 2,2
~ 193X MOX)? — 51032 TH(R?)

+ 2T34\/Tr(7z2)4 — (28335-311)Tr(R2)Tr(RS) + (29365-3)Tr(R8).
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Conclusions

@ The general non-extremal stationary solution, including
the matter sector, is written in a manageable form.

@ Solution admits a conformal Killing tensor, implying
separability and hidden conformal symmetries.

@ The relations %(SJF —S_ )€ 4n?Z and % — - are
universal.

@ The non-extremal entropy depends upon another E7
invariant, F(M, Q;,Pl,Z. ) > J?, as

S, = 2m/116<>(X) +F +2m\/—J2 +F.

G. Compere The E; 7y black hole entropy ULB 37137



	Lightning review of N = 8 supergravity
	The non-extremal black hole of N = 8 supergravity
	The E7(7) invariant entropy

