The $E_{7(7)}$ black hole entropy

Geoffrey Compère

Université Libre de Bruxelles (ULB)

The String Theory Universe - COST MP1210 Conference Milano, February 24th, 2017

Fundamental questions:

- Universality of black hole entropy $\frac{A}{4G}$?
- Non-extremal entropy counting?

In this talk I will concentrate on the IR sector of string theory: non-extremal black holes in supergravity.

2/37

Fundamental questions:

- Universality of black hole entropy $\frac{A}{4G}$?
- Non-extremal entropy counting?

In this talk I will concentrate on the IR sector of string theory : non-extremal black holes in supergravity.

Practical questions answered in this talk:

- What is the structure of non-extremal black holes in string theory?
- Are there universal relations which are unexplained in the IR?
- What is the structure of the entropy?

Based on

- "Seed for general rotating non-extremal black holes of $\mathcal{N}=8$ supergravity", D.Chow & G.C., arXiv:1310.1925
- "Dyonic AdS black holes in maximal gauged supergravity", D.Chow & G.C., arXiv:1311.1204
- "Black holes in $\mathcal{N}=8$ supergravity from SO(4,4) symmetries", D.Chow & G.C., arXiv :1404.2602
- " $E_{7(7)}$ invariant non-extremal entropy", G.C. & V. Lekeu, arXiv :1510.03582

Outline

1 Lightning review of $\mathcal{N}=8$ supergravity

2 The non-extremal black hole of $\mathcal{N}=8$ supergravity

3 The $E_{7(7)}$ invariant entropy

Lightning review of of $\mathcal{N}=8$ supergravity

Amazing features

- Unique
- Can be obtained as low energy regime of M-theory on T^7
- Maximally supersymmetric
- ullet Admits $E_{7(7)}(\mathbb{R})$ symmetries (U-dualities) Cremmer and Julia (1978), etc
- Perturbative UV cancellations Bern et al. (2009), etc
- Cannot be decoupled from string theory Green, Ooguri, Schwarz (2007)
- Contains BPS black holes with known microscopics
 Maldacena, Strominger, Witten (1997).

The STU supergravity subsector

The 4*d* metric is preserved under U-dualities. Matter fields are shuffled.

A generic black hole has 56 electromagnetic charges. However, with 5 (appropriate) charges turned on, one can U-dualize to the generic black hole Cvetič-Hull, 1996

A suitable sector of $\mathcal{N}=8$ supergravity is a $\mathcal{N}=2$ supergravity with three vector multiplets known as the STU supergravity Cremmer et al '85; Duff et al. '96.

The STU supergravity subsector

The 4*d* metric is preserved under U-dualities. Matter fields are shuffled.

A generic black hole has 56 electromagnetic charges. However, with 5 (appropriate) charges turned on, one can U-dualize to the generic black hole CVELIĞ-HUII, 1996

A suitable sector of $\mathcal{N}=8$ supergravity is a $\mathcal{N}=2$ supergravity with three vector multiplets known as the STU supergravity Cremmer et al '85; Duff et al. '96.

The STU supergravity subsector

The 4*d* metric is preserved under U-dualities. Matter fields are shuffled.

A generic black hole has 56 electromagnetic charges. However, with 5 (appropriate) charges turned on, one can U-dualize to the generic black hole Cvetič-Hull, 1996

A suitable sector of $\mathcal{N}=8$ supergravity is a $\mathcal{N}=2$ supergravity with three vector multiplets known as the STU supergravity Cremmer et al '85; Duff et al. '96.

STU supergravity

In a specific U-duality frame the Lagrangian has the general form $\frac{\text{Duff et al.}}{\text{Out}}$

$$\mathcal{L}_{4} = d^{4}x\sqrt{-g}\left(R - \frac{1}{2}f_{ab}(z)\partial_{\mu}z^{a}\partial^{\mu}z^{b}\right)$$
$$-\frac{1}{4}k_{IJ}(z)F^{I}_{\mu\nu}F^{J\mu\nu} + \frac{1}{4}h_{IJ}(z)\epsilon^{\mu\nu\rho\sigma}F^{I}_{\mu\nu}F^{J}_{\rho\sigma}\right)$$

where

- $z^a = x^a + i y^a$, a = 1, 2, 3 are three complex scalar fields
- $A^I = (A^1, A^2, A^3, A^4)$ are the four U(1) gauge fields.

Triality symmetry : $SL(2,\mathbb{R}) \times SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ and their \mathbb{Z}_3 permutations.

From $\mathcal{N} = 8$ to STU supergravity

$$\mathcal{N} = 8$$
supergravity

U-duality

 STU supergravity

 $A^2 = A^3$

$$A^{2} = A^{3} = A^{4}$$

$$S^{3} \text{ supergravity }$$

$$(\text{reduction of 5d}$$

$$\text{minimal supergravity})$$

$$\mathcal{N}$$

 $A^1 = A^4, A^2 = A^3$

$$A^2 = A^3 = A^4 = 0$$

Kaluza–Klein theory

 $A^{I} = A$ Einstein-

Maxwell theory $(\mathcal{N} = 2 \text{ supergravity})$

$$A^1 = A^4, A^2 = A^3 = 0$$

Einstein-Maxwell-dilaton-axion theory

A little bit of representation theory

The electromagnetic charges are conveniently organized as the *charge tensor* $\gamma_{aa'a''}$, with components

$$(\gamma_{000}, \gamma_{111}) = (P^4, -Q_4),$$
 $(\gamma_{100}, \gamma_{011}) = (Q_1, -P^1),$ $(\gamma_{010}, \gamma_{101}) = (Q_2, -P^2),$ $(\gamma_{001}, \gamma_{110}) = (Q_3, -P^3).$

The charge tensor transforms as

$$\gamma_{aa'a''} \mapsto (S_1)_a{}^b (S_2)_{a'}{}^{b'} (S_3)_{a''}{}^{b''} \gamma_{bb'b''}$$

under $SL(2,\mathbb{R})^3$, where the group elements $S_i \in SL(2,\mathbb{R})_i$ are

$$S_i = \begin{pmatrix} a_i & b_i \ c_i & d_i \end{pmatrix}$$
 with $a_i d_i - b_i c_i = 1$.

in order to define the Quartic Invariant

The quartic invariant is defined as

$$\begin{split} \Delta &= \frac{1}{16} [4(Q_1 Q_2 Q_3 Q_4 + P^1 P^2 P^3 P^4) \\ &+ 2 \sum_{J < K} Q_J Q_K P^J P^K - \sum_J (Q_J)^2 (P^J)^2]. \end{split}$$

It is a Cayley hyperdeterminant, and is manifestly invariant under $SL(2,\mathbb{R})^3+$ permutations upon rewriting as [Duff, '06]

$$\Delta = \frac{1}{32} \epsilon^{ii'} \epsilon^{jj'} \epsilon^{kk'} \epsilon^{ll'} \epsilon^{mm'} \epsilon^{nn'} \gamma_{ijk} \gamma_{i'j'm} \gamma_{npk'} \gamma_{n'p'm'}$$

This invariant is a special case of the more general $E_{7(7)}$ quartic invariant $\diamondsuit(Q_I,P^I)$ Cartan, 1894; Cremmer, Julia, '79.

The non-extremal black hole of $\mathcal{N}=8$ supergravity

- 1. The general (rotating, charged, non-extremal) single-center black hole of $\mathcal{N}=8$ has been constructed.
- 2. It unifies the two regular extremal limits (Fast/BPS and Slow/non-BPS)
 - 3. It has some universal thermodynamic properties
 - 4. It has some universal algebraic properties

Expected Thermodynamics

First law and Smarr relation hold

$$\delta M = T_{+}\delta S_{+} + \Omega_{+}\delta J + \Phi_{+}^{I}\delta Q_{I} + \Psi_{I}^{+}\delta P^{I},$$

$$M = 2T_{+}S_{+} + 2\Omega_{+}J + \Phi_{+}^{I}Q_{I} + \Psi_{I}^{+}P^{I},$$

Also at the inner horizon, formally,

$$\delta M = T_{-}\delta S_{-} + \Omega_{-}\delta J + \Phi_{-}^{I}\delta Q_{I} + \Psi_{I}^{-}\delta P^{I},$$

$$M = 2T_{-}S_{-} + 2\Omega_{-}J + \Phi_{-}^{I}Q_{I} + \Psi_{I}^{-}P^{I}.$$

Warning : $T_-S_- < 0$.

Universal unexplained thermodynamic properties

Product of area law: Cvetič, Gibbons, Pope, '10

$$rac{A_+}{4}rac{A_-}{4}=4\pi^2\left(J^2+rac{1}{16}\diamondsuit(Q_I,P^I)
ight)\in\pi^2\mathbb{Z}$$

Angular momentum law:

$$8\pi^2 J = \frac{\Omega_+}{T_+} (\frac{A_+}{4} - \frac{A_-}{4}) \in 4\pi^2 \mathbb{Z}$$

Kinematical relationship :

$$rac{\Omega_+}{T_+} = -rac{\Omega_-}{T_-}$$

Quadratic mass formula

All black holes obey the quadratic mass formula

$$M^2 + rac{1}{4} G_{ij} \partial_r z^i \partial_r z^j |_{r=\infty} = |Z|^2 + |D_i Z|^2 + 4 S_+^2 \left(T_+^2 + rac{\Omega_+^2}{4\pi^2} .
ight)$$

This generalizes the one given by Gibbons, 1982.

This relationship follows from the conservation of $Tr(\mathcal{Q}^2)$ under coset model transformations (where \mathcal{Q} is the charge matrix).

Universal algebraic properties

• Kerr-Neumann admits a Killing-Yano tensor

$$\nabla_{[a}Y_{b]c}=0, \qquad Y_{ab}=-Y_{ba}.$$

- ⇒ Separability of Dirac equation
- Several classes of black holes with 2 electromagnetic charges admits a Killing-Stäckel tensor

$$\nabla_{(a}K_{bc)}=0, \qquad K_{cb}=K_{bc}.$$

- ⇒ Separability of massive Klein-Gordon
- Generic black hole admits a conformal Killing-Stäckel tensor

$$\nabla_{(a}Q_{bc)}=q_{(a}g_{bc)}, \qquad Q_{cb}=Q_{bc}.$$

 \Rightarrow Separability of massless Klein-Gordon and hidden conformal symmetries $_{\text{Castro}, Maloney, Strominger, 2010}$

[subcases : Chow, '08; Keeler, Larsen, '12]

The Kerr metric (1963)

$$\mathrm{d}s^2 = -rac{R-U}{W}\left(\mathrm{d}t + rac{2mrU}{a(R-U)}\,\mathrm{d}\phi
ight)^2 + rac{WRU}{a^2(R-U)}\,\mathrm{d}\phi^2 + \left(rac{\mathrm{d}r^2}{R} + rac{\mathrm{d}u^2}{U}
ight)$$

where

$$W(r,u) = r^2 + u^2,$$

 $R(r) = r^2 - 2mr + a^2,$
 $U(u) = a^2 - u^2,$

and $u = a \cos \theta$ in terms of the standard polar angle θ .

It admits a Killing-Yano tensor.

Generic algebraically special metric

The non-extremal rotating metric falls into the class:

$$ds^{2} = -\frac{R-U}{W} dt^{2} - \frac{(L_{u}R + L_{r}U)}{aW} 2 dt d\phi + \frac{(W_{r}^{2}U - W_{u}^{2}R)}{a^{2}W} d\phi^{2} + W\left(\frac{dr^{2}}{R} + \frac{du^{2}}{U}\right),$$

where

$$W^2 = (R - U) \left(\frac{W_r^2}{R} - \frac{W_u^2}{U} \right) + \frac{(L_u R + L_r U)^2}{RU},$$

and

$$egin{array}{lll} R & = & R(r), & L_r = L_r(r), & W_r = W_r(r), \ U & = & U(u), & L_u = L_u(u), & W_u = W_u(u) \end{array}$$

It admits a conformal Killing-Stäckel tensor.

III. The $E_{7(7)}$ invariant entropy

The extremal $E_{7(7)}(\mathbb{R})$ entropy

There are two branches of regular extremal black holes in $\mathcal{N}=8$ supergravity. Their entropy takes a universal form [Kallosh and Kol, 1996].

Fast rotating/BPS Branch It has $\Diamond(Q_I, P^I) > 0$ and

$$S_+=2\pi\sqrt{rac{1}{16}}\diamondsuit(Q_I,P^I)+J^2$$

Microscopics: Maldacena, Strominger, Witten, 1997, ...

Slow rotating/non-BPS Branch It has $\Diamond(Q_I, P^I) < 0$ and

$$S_+ = 2\pi \sqrt{rac{1}{16} \diamondsuit(Q_I, P^I) - J^2}$$

Microscopics: Emparan, Horowitz, 2006

The non-extremal $E_{7(7)}(\mathbb{R})$ entropy

Using the universal properties, one can prove Cardy's form :

$$S_{+}=2\pi\left(\sqrt{rac{1}{16}\diamondsuit(Q_{I},P^{I})+F}+\sqrt{-J^{2}+F}
ight)$$

Since $S_+,J,\Diamond(Q_I,P^I)$ are $E_{7(7)}(\mathbb{R})$ invariants, then

$$\mathbf{F} = F(M, Q_I, P^I, z_{\infty}^i)$$

is invariant as well.

Known special cases:

- For BPS black holes, F = J = 0.
- In the extremal "fast" rotating limit, $F = J^2$.
- ullet In the extremal "slow" rotating limit, $F=-rac{1}{16}\Diamond(Q_I,P^I)$
- For Kerr-Newman : $F = M^4 M^2Q^2$.
- In the AdS/CFT regime $Q_{1,2,3} \rightarrow \infty$:

Rewrite the *F* invariant

$$F_{STU}[ext{solution parameters}] = F_{STU}[SL(2,\mathbb{R})^3 ext{ invariants}] \\ = F_{\mathcal{N}=8 ext{ sugra}}[E_{7(7)} ext{ invariants}]$$

Note : We also rewrote it in terms of invariants of $\mathcal{N}=2$ supergravity with cubic prepotential, which gives a conjecture of the entropy formula for such theories.

Asymptotic scalars of the STU model

The scalar fields parametrize the three coset matrices

$$\mathcal{M}_i = rac{1}{y_i} egin{pmatrix} 1 & -x_i \ -x_i & x_i^2 + y_i^2 \end{pmatrix} = \mathcal{M}_i^{(0)} + rac{\mathcal{M}_i^{(1)}}{r} + \mathcal{O}\left(rac{1}{r^2}
ight)$$

which are invariant under the $SL(2,\mathbb{R})_j$ group with $j \neq i$ but transform under $SL(2,\mathbb{R})_i$ as

$$\mathcal{M}_i \mapsto (S_i^{-1})^T \mathcal{M}_i S_i^{-1}.$$

Here $\mathcal{M}_i^{(1)}$ encodes the scalar moduli at infinity while $\mathcal{M}_i^{(1)}$ encodes the scalar charges. We define the *dressed scalar charge tensor* as

$$R_i = (\mathcal{M}_i^{(0)})^{-1} \mathcal{M}_i^{(1)}.$$

which transforms under $SL(2,\mathbb{R})_i$ as

$$R_i \mapsto S_i R_i S_i^{-1}$$
.

Building $SL(2,\mathbb{R})^3$ and triality invariants

We can now form invariants from the following objects:

- \bullet charge tensor $\gamma_{aa'a''}\mapsto (S_1)_a{}^b(S_2)_{a'}{}^{b'}(S_3)_{a''}{}^{b''}\gamma_{bb'b''}$;
- moduli tensors $(\mathcal{M}_i^{(0)})^{ab} \mapsto (\mathcal{M}_i^{(0)})^{cd} (S_i^{-1})_c{}^a (S_i^{-1})_d{}^b$;
- dressed scalar charge tensors $(R_i)_a{}^b \mapsto (S_i)_a{}^c (R_i)_c{}^d (S_i^{-1})_d{}^b$.
- ullet the invariant epsilon tensor $arepsilon^{ab}$

To build triality invariants, we proceed in two steps.

- First, we make $SL(2,\mathbb{R})^3$ invariants by contracting all indices, with the constraint that only indices corresponding to the same $SL(2,\mathbb{R})$ can be contracted together.
- ② Second, we implement invariance under permutations of the three $SL(2,\mathbb{R})$ factors by summing the expression with all others obtained by permuting its different $SL(2,\mathbb{R})$ internal indices.

We define the degree as follows : $[M] = [N] = [Q_I] = [P^I] = 1$, $[\varphi^a] = 0$. Then [F] = 4. We find the invariants :

• Degree 1 :

M, N.

• Degree 2:

$$L_1 = M_1^{ab} M_2^{a'b'} M_3^{a''b''} \gamma_{aa'a''} \gamma_{bb'b''},$$

 $L_2 = \frac{1}{3} \left(\text{Tr} R_1^2 + \text{Tr} R_2^2 + \text{Tr} R_3^2 \right).$

• Degree 3:

$$C_{1} = \frac{1}{3} \sum \varepsilon^{ac} R_{1c}{}^{b} \varepsilon^{a'b'} \varepsilon^{a''b''} \gamma_{aa'a''} \gamma_{bb'b''},$$

$$C_{2} = \frac{1}{3} \sum M_{1}^{ac} R_{1c}{}^{b} M_{2}^{a'b'} M_{3}^{a''b''} \gamma_{aa'a''} \gamma_{bb'b''}.$$

• Degree 4:

$$\begin{split} &\Delta = \frac{1}{32} \varepsilon^{ac} \varepsilon^{a'b'} \varepsilon^{a''b''} \varepsilon^{bd} \varepsilon^{c'd'} \varepsilon^{c''d''} \gamma_{aa'a''} \gamma_{bb'b''} \gamma_{cc'c''} \gamma_{dd'd''}, \\ &\Delta_2 = \frac{1}{96} \sum M_1^{ac} \varepsilon^{a'b'} \varepsilon^{a''b''} M_1^{bd} \varepsilon^{c'd'} \varepsilon^{c''d''} \gamma_{aa'a''} \gamma_{bb'b''} \gamma_{cc'c''} \gamma_{dd'd''}, \\ &\Delta_3 = \frac{1}{96} \left(\text{Tr} R_1^4 + \text{Tr} R_2^4 + \text{Tr} R_3^4 \right). \end{split}$$

Match with the solution

We know F, the electromagnetic charges and all the final solution in terms of charging parameters and seed parameters.

We can therefore check a relation among them.

Using numerical checks, we find that the F-invariant is

$$F = M^4 - rac{M^2}{4}L_1 + rac{M}{8}C_2 + rac{-\Delta + \Delta_2 + \Delta_3}{2} - rac{3}{128}(L_2)^2$$

First found by Sárosi, 2015 using a $SL(6,\mathbb{R})$ embedding

Embed in $E_{7(7)}$

Use the embedding of STU model in $\mathcal{N}=8$ supergravity.

Cremmer et al, 1985, Duff et al, 1995; Cremmer, Julia, Lu, Pope, 1997

Find the corresponding invariants in $\mathcal{N}=8$ supergravity.

The fundamental representation of $e_{7(7)}(\mathbb{R})$

The 56 charges of $\mathcal{N}=8$ supergravity transform in the fundamental representation of $e_{7(7)}$ which consists of a pair of antisymmetric tensors $X\equiv(X^{ij},X_{ij})$, $i,j=1\dots 8$ transforming as

$$\delta X = gX, \qquad g \in e_{7(7)}$$

The algebra $e_{7(7)}$ admits su(8) as a maximal compact subalgebra. One can change basis to

$$X_{AB} = \frac{1}{4\sqrt{2}} \left(X^{ij} + iX_{ij} \right) (\Gamma^{ij})_{AB}, \qquad A,B = 1 \dots 8$$

which transforms under $\Lambda_{A}^{\ \ C} \in su(8)$ as

$$\delta X_{AB} = \Lambda_A^{\ C} X_{CB} + \Lambda_B^{\ C} X_{AC}$$

Cartan's quartic invariant

The quartic invariant is a quartic form over one fundamental representation

$$\begin{split} \mathcal{I}_4(X) = & X^{ij} X_{jk} X^{kl} X_{li} - \frac{1}{4} (X^{ij} X_{ij})^2 \\ & + \frac{1}{96} \varepsilon^{ijklmnpq} X_{ij} X_{kl} X_{mn} X_{pq} + \frac{1}{96} \varepsilon_{ijklmnpq} X^{ij} X^{kl} X^{mn} X^{pq}. \end{split}$$

Using the su(8) basis, we can also build the quartic invariant

$$\diamondsuit(X) = \bar{X}^{AB} X_{BC} \bar{X}^{CD} X_{DA} - \frac{1}{4} (\bar{X}^{AB} X_{AB})^2$$

$$+ \frac{1}{96} \varepsilon^{ABCDEFGH} X_{AB} X_{CD} X_{EF} X_{GH} + \frac{1}{96} \varepsilon_{ABCDEFGH} \bar{X}^{AB} \bar{X}^{CD} \bar{X}^{EF} \bar{X}^{GH}$$

In fact, these invariants are proportional to each other:

$$\diamondsuit(X) = -\mathcal{I}_4(X)$$

Scalar sector

The 70 scalar fields parametrize the coset matrix

$$\mathcal{V} \in \frac{\textit{E}_{7(7)}}{\textit{SU}(8)}$$

which transforms under the group $G \in E_{7(7)}$ as

$$V \mapsto KVG^{-1}$$
.

where $K \in SU(8)$.

From V, we define the usual matrix $\mathcal{M} = V^T V$ which transforms as

$$\mathcal{M} \mapsto (G^{-1})^T \mathcal{M} G^{-1}$$
.

Scalar sector

Again, from the asymptotic expansion

$$\mathcal{M} = \mathcal{M}^{(0)} + rac{\mathcal{M}^{(1)}}{r} + \mathcal{O}\left(rac{1}{r^2}
ight),$$

we define the dressed charge matrix

$$\mathcal{R}=(\mathcal{M}^{(0)})^{-1}\mathcal{M}^{(1)}$$

that transforms in the adjoint representation of $E_{7(7)}$,

$$\mathcal{R}\mapsto G\mathcal{R}G^{-1}$$
.

Since $E_{7(7)} \in Sp(56,\mathbb{R})$, we can also use Ω , which has the property

$$G^T \Omega G = \Omega, \qquad G \in E_{7(7)}.$$

Additional invariants

We can now construct several additional invariants:

$$X^T \mathcal{M}^{(0)} X, \quad X^T \mathcal{M}^{(0)} \mathcal{R} X, \quad X^T \Omega \mathcal{R} X, \quad (\mathcal{V} X)_{AB} \overline{(\mathcal{V} X)}^{BC} (\mathcal{V} X)_{CD} \overline{(\mathcal{V} X)}^{DA}$$

where $\overline{(\mathcal{V}X)}^{AB} = ((\mathcal{V}X)_{AB})^*$.

Since $\ensuremath{\mathcal{R}}$ transforms in the adjoint, all traces

$$\operatorname{Tr}(\mathcal{R}^k)$$

are invariant. Mathematicians tell us that the only independent ones are those with

$$k = 2, 6, 8, 10, 12, 14$$
 and 18.

Note that $k \neq 4$.

Match STU invariants with $E_{7(7)}$ invariants

Order two:

$$L_1 = X^T \mathcal{M}^{(0)} X,$$
 $L_2 = \frac{1}{36} \mathrm{Tr}(\mathcal{R}^2).$

• Order three:

$$C_1 = rac{1}{3} X^T \Omega \mathcal{R} X,$$
 $C_2 = rac{1}{3} X^T \mathcal{M}^{(0)} \mathcal{R} X.$

$$\begin{split} \bullet \text{ Order four :} & \Delta = \frac{1}{16} \diamondsuit(X), \\ \Delta_2 &= \frac{1}{96} \left(8T_4 + 6\mathcal{I}_4 - (X^T \mathcal{M}^{(0)} X)^2 \right), \\ 0 &= 2^{17} 3^7 5 (\Delta_3)^2 - 2^8 3^3 5 \Delta_3 (\text{Tr}(\mathcal{R}^2))^2 - 5 (\text{Tr}(\mathcal{R}^2))^4 \\ &+ 2^5 3^2 11 \text{Tr}(\mathcal{R}^2) \text{Tr}(\mathcal{R}^6) - 2^6 3^5 \text{Tr}(\mathcal{R}^8). \end{split}$$

We find a non-polynomial expression for Δ_3 ,

$$\Delta_3 = \frac{1}{2^{10}3^45} \left[5Tr(\mathcal{R}^2)^2 + \sqrt{5}\sqrt{5^3Tr(\mathcal{R}^2)^4 - 2^83^311Tr(\mathcal{R}^2)Tr(\mathcal{R}^6) + 2^93^6Tr(\mathcal{R}^8)} \right]$$

Match STU invariants with $E_{7(7)}$ invariants

Order two :

$$L_1 = X^T \mathcal{M}^{(0)} X,$$
 $L_2 = \frac{1}{36} \operatorname{Tr}(\mathcal{R}^2).$

• Order three:

$$C_1 = \frac{1}{3} X^T \Omega \mathcal{R} X,$$

$$C_2 = \frac{1}{3} X^T \mathcal{M}^{(0)} \mathcal{R} X.$$

$$\begin{split} \bullet & \text{ Order four : } \\ & \Delta = \frac{1}{16} \diamondsuit(X), \\ & \Delta_2 = \frac{1}{96} \left(8T_4 + 6\mathcal{I}_4 - (X^T \mathcal{M}^{(0)} X)^2 \right), \\ & 0 = 2^{17} 3^7 5 (\Delta_3)^2 - 2^8 3^3 5 \Delta_3 (\text{Tr}(\mathcal{R}^2))^2 - 5 (\text{Tr}(\mathcal{R}^2))^4 \\ & + 2^5 3^2 11 \text{Tr}(\mathcal{R}^2) \text{Tr}(\mathcal{R}^6) - 2^6 3^5 \text{Tr}(\mathcal{R}^8). \end{split}$$

We find a non-polynomial expression for Δ_3 ,

$$\Delta_3 = \frac{1}{2^{10}3^45} \left[5 Tr(\mathcal{R}^2)^2 + \sqrt{5} \sqrt{5^3 Tr(\mathcal{R}^2)^4 - 2^8 3^3 11 Tr(\mathcal{R}^2) Tr(\mathcal{R}^6) + 2^9 3^6 Tr(\mathcal{R}^8)} \right].$$

ULB

The answer of F in terms of $E_{7(7)}$ invariants

We have enough invariants to be able to express the missing F function.

The answer is

$$\begin{split} F = & M^4 - \frac{M^2}{4} X^T \mathcal{M}^{(0)} X + \frac{M}{24} X^T \mathcal{M}^{(0)} \mathcal{R} X - \frac{1}{16} \diamondsuit(X) + \frac{1}{24} T_4 \\ & - \frac{1}{192} (X^T \mathcal{M}^{(0)} X)^2 - \frac{1}{2^{10} 3^4} \mathrm{Tr} (\mathcal{R}^2)^2 \\ & + \frac{5}{2^{11} 3^4} \sqrt{\mathrm{Tr} (\mathcal{R}^2)^4 - (2^8 3^3 5^{-3} 11) \mathrm{Tr} (\mathcal{R}^2) \mathrm{Tr} (\mathcal{R}^6) + (2^9 3^6 5^{-3}) \mathrm{Tr} (\mathcal{R}^8)}. \end{split}$$

36 / 37

The answer of F in terms of $E_{7(7)}$ invariants

We have enough invariants to be able to express the missing F function.

The answer is

$$\begin{split} F = & M^4 - \frac{M^2}{4} X^T \mathcal{M}^{(0)} X + \frac{M}{24} X^T \mathcal{M}^{(0)} \mathcal{R} X - \frac{1}{16} \diamondsuit(X) + \frac{1}{24} T_4 \\ & - \frac{1}{192} (X^T \mathcal{M}^{(0)} X)^2 - \frac{1}{2^{10} 3^4} \mathrm{Tr} (\mathcal{R}^2)^2 \\ & + \frac{5}{2^{11} 3^4} \sqrt{\mathrm{Tr} (\mathcal{R}^2)^4 - (2^8 3^3 5^{-3} 11) \mathrm{Tr} (\mathcal{R}^2) \mathrm{Tr} (\mathcal{R}^6) + (2^9 3^6 5^{-3}) \mathrm{Tr} (\mathcal{R}^8)}. \end{split}$$

Conclusions

- The general non-extremal stationary solution, including the matter sector, is written in a manageable form.
- Solution admits a conformal Killing tensor, implying separability and hidden conformal symmetries.
- The relations $\frac{\Omega_+}{T_+}(S_+-S_-)\in 4\pi^2\mathbb{Z}$ and $\frac{\Omega_+}{T_+}=-\frac{\Omega_-}{T_-}$ are universal.
- The non-extremal entropy depends upon another $E_{7(7)}$ invariant, $F(M,Q_I,P^I,z^i_\infty)\geq J^2$, as

$$S_{+} = 2\pi \sqrt{rac{1}{16} \diamondsuit(X) + F} + 2\pi \sqrt{-J^{2} + F}.$$

