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Sakura Schäfer-Nameki

COST Conference Milano, February 23, 2017

1610.03663 with Benjamin Assel
1612.05640 with Craig Lawrie, Timo Weigand



String-Pheno-Cosmo 2015!

School  and Workshop !
GGI Florence,  October 19-23 & 26-30, 2015!

!
!

Details and Registration:  
h#p://www.mth.kcl.ac.uk/~ss299/GGI!

Lecturers at the  ``School for Methods in String Theory 
and  Applications in Particle Physics and Cosmology“:!
!
•  Cosmology:           !
       Daniel Baumann (DAMTP), Enrico Pajer (Utrecht)!
•  Phenomenology:  !
       David Shih (Rutgers), Florian Staub (CERN)!
•  Geometry:              !
       David Morrison (UCSB), Andreas Braun (Oxford)!
•  Effective Actions:  !
       Mariana Grana (Saclay), Hagen Triendl (CERN)                                 !

Organizers:!
!
Riccardo Argurio (ULB)!
Marcus Berg (Karlstad)!
Matteo Bertolini (SISSA)!
Gabriele Honecker (Mainz)!
Enrico Pajer (Utrecht)!
Diederik Roest (Groningen)!
Sakura Schafer-Nameki (KCL) !
!

Speakers at the Workshops include:!
!
Steve Abel (Durham)!
Paolo Creminelli (ICTP)!
Raphael Flauger (Carnegie Mellon)!
Jim Halverson (KITP)!
Liam McAllister (Cornell)!
Hiranya Peiris (UCL)!
Fernando Quevedo (ICTP/DAMTP)!
Matt Reece (Harvard)!
Roberto Valandro (ICTP)!
Irene Valenzuela (Madrid)!
Giovanni Villadoro (ICTP)!
Timo Weigand (Heidelberg)!



Plan

Goal: Understanding the D3-brane sector in F-theory.

I. F-theory in a Flash

# Geometric progress

# 8d, 6d, 4d, 2d

II. D3-brane Sector:

# D3s in F/M5s in M

# Defect theories

# New chiral 2d (0,2) Theories



I. F-theory in a Flash



F-theory and Elliptic Fibrations

F-theory on an elliptically fibered Calabi-Yau Y τ6−d results in N = 1 vacua
in R1,2d−1, with τ = C0 + ie−φ axio-dilaton and B the spacetime of Type
IIB string theory:

τ1 τ3

τ2

B

Eτ → Y τ6−d

↓

B5−d

⇒ Eτ fibers = Tori C/Z⊕ τZ with marked point O. There exists a
“zero section” σ0: B → Eτ : b 7→ O

⇒ For such fibrations there is a Weierstrass form with O = [0,1,1]

y2 = x3 + fxw4 + gw6 [w,x, y] ∈ P(1,2,3)



Effective Theory from M/F duality

M-theory on Y6−d
Vol(Eτ )=RMRA→0−−−−−−−−−−−−−→ F-theory on Y6−d

RM ↓ ↓

R1,d−2
RA∼ 1

RB
→0

−−−−−−−−−→ N = 1 Gauge Theory

with Gravity on R1,d−1



Gauge bosons and Singular Fibers

Reduce M-theory 3-form along (1,1) forms ω(1,1) in fiber:

C3 = ω(1,1) ∧A

Additional (1,1) forms from singularities:

• Elliptic curve is y2 = x3 + fxw4 + gw6 singular if

∆ = 4f3 + 27g2 = 0

Here ∆ depends on base:

∆(z) = O(zn) ⇔ z = 0 is surface S ⊂ B

• Kodaira fibers from resolutions of singular fibrations

• Physics:
Syncs with 7-branes intuition in IIB, which sources F9 and
τ ∼ log(x− x0) undergoes monodromy SL2Z



F-theory and Singular Fibers: Codim 1

Kodaira classification of singular fibers: Resolution of singularities results
in collection of rational curves P1 which intersect in ADE-type Dynkin
diagrams:

Affine roots of g↔ Fibral rational curves

Gauge bosons from C3 = Ai ∧ ω(1,1)
i and wrapped M2

B

S

Roots

S

Resolution



F-theory and Singular Fibers: Codim 2

Codim 2: Roots can split into weights of matter representation R of g:

C

C-

S B

C+

Roots

Weights

E.g. SU(n), fundamental weights Li: αi = Li + (−Li+1).

How exactly this happens: as systematically understood as Kodaira in
codim 1 [Hayashi, Lawrie, Dave Morrison, SSN]



F-theory on elliptic CY

F-theory on an elliptically fibered Calabi-Yau

Eτ → Y τ6−d→ B5−d

results in N = 1 vacua in R1,2d−1 with the geometric singularities above
codim i in the base have the following physical interpretation:

CodimC P1s in Fiber 7-brane Gauge Theory

1 Simple roots Gauge algebra g

2 Weights for Reps R Matter in R

3 Splitting gauge invariantly Cubic interactions

4 Further gauge invariant splitting Quartic interactions



2n-dimensional F-theory Vacua

Fiber geometry relatively universal. Base B

# 8d: K3, Geometry highly constrained B1 = P1 etc.

# 6d: Classification of N = (1,0) SCFTs, Geometry of B2 constrained
(Grassi, Gross)+ Anomalies

# 4d: N = 1, MSSM/GUTs, Geometry of B3 largely unconstrained and
freedom of Fluxes

# 2d: N = (0,2) gauge theories + gravity, Geometry of B4 largely
unconstrained, freedom of Fluxes and necessity of D3-branes
(tadpole).



II. D3-brane Sector in F-theory



4d N = 4 SYM with varying τ

F-theory is IIB with varying τ , where there is also a self-duality group
SL2Z, which descends upon D3-branes to the Montonen-Olive duality
group of N = 4 SYM.

4d N = 4 SYM has an SL2Z duality group acting on the complexified
coupling

τ =
θ

2π
+ i

4π

g2
, τ → aτ + b

cτ + d
,

ad− bc = 1 and integral. Incidentally: the gauge group G maps to the
Langlands dual group G∨.

Usually, we consider τ constant in the 4d spacetime.

Coming from F-theory, it’s very natural to ask whether we can define a
version of N = 4 SYM with varying τ , compatible with the SL2Z action.

⇒ Network of 3d walls, 2d and 0d duality defects in N = 4.



Duality Defects

Variation of τ without singular loci are trivial. So the interesting physics
will happen along the 4d space-time where τ is singular.

⇒ around such singular loci, τ will undergo an SL2Z monodromy.

Usual lore: τ as the complex structure of an elliptic curve Eτ
⇒ Lift to M5-branes

⇒ Setup: elliptic fibration over the 4d spacetime with N = 4 SYM in the
bulk and duality defects (2d), which can intersect in 0d.



Key: M5-brane point of view

{6d (2,0) theory on Eτ ×R4} = {N = 4 SYM on R4 with coupling τ }

So the setup that we will study is:

{6d (2,0) theory on a singular elliptic fibration}
= { 4d N = 4 SYM with varying τ and duality defects}

B2
M3

Y3

X4



Setups:

# Setup 1:
τ varies over 4d space (with Benjamin Assel)
⇒ Y3 elliptic three-fold ⊂ elliptic CY4

# Setup 2:
τ varies onver a 2d space: 2d (0, p) scfts (with C. Lawrie, T. Weigand)
⇒ D3s on curves in the base of CYn.

In both setups: M5-brane point of view will be instrumental.



The 6d (2,0) Theory

# Lorentz and R-symmetry:

SO(1,5)L × Sp(4)R ⊂ OSp(6|4)

# Tensor multiplet:

BMN : (15,1) with selfdualityH = dB = ∗6H

Φm̂n̂ : (1,5)

ρm̂ : (4̄,4)

# Abelian EOMs:

H− = dH = 0 , ∂2Φm̂n̂ = 0 , /∂ρm̂ = 0 .



Setup 1: M5-branes on Elliptic 3-folds
[Assel, SSN]

An elliptic fibration Eτ → Y3→ B (Y not CY) has metric

ds2
Y =

1

τ2

(
(dx+ τ1dy)2 + τ2

2 dy
2
)

+ gBµνdb
µdbν .

Pick a frame ea for the base B and

e4 =
1
√
τ2

(dx+ τ1dy) , e5 =
√
τ2dy .

Let Y3 be a Kähler three-fold, so the holonomy is reduced to U(3)L:

SO(6)L→ U(3)L

4→ 31 ⊕ 1−3 .

On a curve space: Killing spinor equation with∇M connection

(∇M −ARM )η = 0

R-symmetry background⇒ constant spinor wrt twisted connection.



M5-branes on Elliptic 3-folds: Twist

# Standard geometric twist: U(1)L with U(1)R

Sp(4)R → SU(2)R ×U(1)R

4→ 21 ⊕ 2−1 .

# Topological Twist

TU(1)twist = (TU(1)L − 3TU(1)R)

implies that the supercharge decomposes as

SO(6)L × Sp(4)R → SU(3)L × SU(2)R ×U(1)twist ×U(1)R

(4,4) → (3,2)−2,1 ⊕ (3,2)4,−1 ⊕ (1,2)−6,1 ⊕ (1,2)0,−1

⇒ (1,2)0,−1 give two scalar supercharges



Now consider 6d spacetime as Eτ → Y3→ B2 with coordinates x0, · · · , x5,
and (x4, x5) the directions of the elliptic fiber.

The spin connection along U(1)L is

ΩU(1)L = −1

6
(Ω01 + Ω23 + Ω45) ,

and the twist corresponds to turning on the background gauge field

AU(1)R = −3ΩU(1)L .

The base B2 is Kähler as well, so the holonomy lies in
U(1)` × SU(2)` ⊂ U(3)L with the U(1) generators given by

TL = T` + 2T45

Key: SO(2)45 rotation is along the fiber, and the non-trivial fibration is
characterized through a connection in this SO(2)45 direction and the spin
connection is

AD = ωD = −∂aτ1
4τ2

ea



Duality Twist

This means: from the 4d point of view the topological twisting requires

AD = ωD = −∂aτ1
4τ2

ea

The associated U(1) is in fact what is known as the ”bonus symmetry” of
abelian N = 4 SYM [Intrilligator] and we recovered the duality twist of
N=4 SYM [Martucci] from the M5-brane theory.

The bonus symmetry exists for the abelian N = 4 SYM and acts as follows
on the supercharges for ab− cd = 1

Qṁ → e−
i
2α(γ)Qṁ

Q̃m → e
i
2α(γ)Q̃m

where eiα(γ) =
cτ + d

|cτ + d|

φî → φî , λṁ+ → e−
i
2α(γ)λṁ+ , λm− → e

i
2α(γ)λm−

F (±)
µν → e∓iα(γ)F (±)

µν F (±) ≡
√
τ2

(
F ± ?F

2

)



Duality Twisted N = 4 SYM from 6d

6d topological twist + dim reduction to B gives an N = 4 SYM with
varying τ over a Kähler base B

S
U(1)
total =

1

4π

∫
B

τ2F2 ∧ ?F2 − iτ1F2 ∧ F2

+
8

π

∫
B

∂̄ ? ψα(1,0) χ(0,0)α − ∂ψα(1,0) ∧ ρ(0,2)α − ∂A ? ψ̃α̇(0,1) χ̃(0,0)α̇ + ∂̄Aψ̃
α̇
(0,1) ∧ ρ̃(2,0)α̇

− 1

4π

∫
B

∂̄ϕαα̇ ∧ ?∂ϕαα̇ + 2∂̄Aσ(2,0) ∧ ?∂Aσ̃(0,2)

and non-abelian extension (see paper with Ben Assel).

The twisted fields are form fields and sections of the AD bundle specified
by the charges:

F
(±)
2 ϕαα̇ σ(2,0) σ̃(0,2) χα(0,0) χ̃α̇(0,0) ψα(1,0) ψ̃α̇(0,1) ρα(0,2) ρ̃α̇(2,0)

L
q/2
D ∓2 0 −2 2 0 −2 0 2 0 −2



Singular Elliptic Curves and Defects

We can describe the elliptic fibration by Eτ in terms of a Weierstrass
model

y2 = x3 + fx+ g

f and g sections K−2/−3
B and the singular loci are

∆ = 4f3 + 27g2 = 0 .

Close to a singular locus z2 = 0, τ ∼ i log z2 + · · · with a branch-cut in the
complex plane z2. For the M5 this is relevant along ∆∩B:

z1

C

z2

1=0
τ γτ

W
γ

B2



Gauge theoretic description of walls and defects

Locally we can cut up B = ∪Bi and Wij 3d walls between these regions,
where τ has a branch-cut.

Define
FD = τ1F + iτ2 ? F

then the action of γ ∈ SL2Z monodromy on the gauge field is

(F
(j)
D , F (j))

∣∣∣
Wij

= γ(F
(i)
D , F (i))

∣∣∣
Wij

This maps the gauge part SF = − i
4π

∫
B
F ∧ FD to itself, except for an

offset on the 3d wall (see also [Ganor])

SγWij
= − i

4π

∫
Wij

(
A(i) ∧ F (i)

D −A
(j) ∧ F (j)

D

)
E.g. γ = T k this is a level k CS term.



Chiral Duality Defects

The wall action Sγ is neither supersymmetric nor gauge invariant. At the
boundary of the wall ∂W = C this induces chiral dofs: e.g. for the T k wall
this is simply a chiral WZW model with βi, i = 1, · · · , k, with ?2dβi = idβi

[Witten]

SC =
k∑
i=1

− 1

8π

∫
C
?2(dβi −A)∧ (dβi −A)− i

4π

∫
C
βiF

Under gauge transformations A→ A+ dΛ, βi→ βi + Λ this generates∫
FΛ which cancels the anomaly from the 3d wall.



Duality Defects from M5-branes

From the elliptic fibration and M5-brane we can apply this to any γ:

τ1 τ3

τ2

B

Singular fibers resolve into collections of S2 = P1s, intersecting in affine
ADE Dynkin diagrams.
Each resolution spheres gives rise to an ω(1,1) form, along which we can
expand B

dB =
k−1∑
i=1

(
∂zbidz ∧ ωi(1,1) + ∂z̄bidz̄ ∧ ωi(1,1)

)
Imposing self-duality, and redefining the basis of chiral modes bi with the
”section” of the elliptic fibration, identifies these modes with βi.



Point-defects

These chiral (0,2) supersymmetric defects can intersect at points

Pαβ = {zα = zβ = z = 0} = Cα ∩ Cβ = B ∩∆α ∩∆β

Geometrically: Kodaira fiber P1s become further reducible P1
i → C+ +C−

C
-

B

C
+

PC'

C= B   
U

Duality defects form network and at intersections:(∫
C+

+

∫
C−

)
B =

∫
P1
i

B → β+ + β− = βi

Such point-intersections are generic e.g. in CY4.



Example:

D3-branes wrapping B2 intersecting discriminant loci in

∆1 ∩B = C ↔ SU(n) ∆2 ∩B = C̃ ↔ SU(m)

E.g. fibers are given in terms of simple roots Fi, i = 0,1, · · · , n− 1 and F̃j ,
j = 0,1, · · · ,m− 1 and there are chiral modes localized on each curve

C : βi , i = 0,1,2,3,4 , C̃ : β̃i , i = 0,1,2

The fibers in codim 2 split as, e.g. for SU(5) and SU(3): C±ij ≡ ±(Li + L̃j).

C :



F0 → F ′0 +C−
3̃1

F1 → F1

F2 → C+
2̃2

+C−
2̃3

F3 → F3

F4 → C−
1̃5

+C+
1̃4

C̃ :


F̃0 → F̃ ′0 +C−

1̃5

F̃1 → C+
1̃4

+ F3 +C−
2̃3

F̃2 → C+
2̃2

+ F1 +C−
3̃1



In codim 3 the SU(5) and SU(3) singularities collide at points P = C ∩ C̃
in B:(

FC

4∑
i=0

βi

)∣∣∣∣∣
P

= FC

(
β+

3̃5
+ β−

3̃1
+ β1 + β+

2̃2
+ β−

2̃3
+ β3 + β−

1̃5
+ β+

1̃4

)∣∣∣∣
P

and likewise(
FC̃

2∑
i=0

β̃i

)∣∣∣∣∣
P

= FC̃

(
β+

3̃5
+ β−

1̃5
+ β+

1̃4
+ β3 + β−

2̃3
+ β+

2̃2
+ β1 + β−

3̃1

)∣∣∣∣
P

Locally, this enhances the flavor symmetry of the 2d chiral models to
SU(n+m).

More generally: What happens for γ ∈ SL2Z? Defect theory will be chiral
cft, with flavor symmetry dictated by the singular fiber geometry.



Setup 2: New 2d (0,2) Theories

Consider now N = 4 SYM on R1,1 ×C, with τ -varying only over the
curve C:

SO(1,4)L → SO(1,1)L ×U(1)L

and to preserve supersymmetry, consider U(1)R ⊂ SU(4)R:

SU(4)R →

SO(4)T ×U(1)R CY3 Duality-Twist: (0,4)

SU(2)R ×U(1)R × SO(2)T CY4 Duality-Twist: (0,2)

SU(3)R ×U(1)R CY5 Duality-Twist: (0,2)

Geometric embedding corresponds to D3-branes on C ×R1,1 with

C ⊂ Bn−1 = Base of the elliptic CYn

CYn Duality-Twist:

T twist
C =

1

2
(TC + TR) T twist

D =
1

2
(TD + TR) .



Example: CY4-Duality Twist of N = 4 SYM

SU(2)R × SO(1,1)L ×U(1)twist
C ×U(1)twist

D × SO(2)T ×U(1)R

A : 12,0,∗,0,0 ⊕ 1−2,0,∗,0,0 ⊕ 10,1,∗,0,0 ⊕ 10,−1,∗,0,0

= v+ ⊕ v− ⊕ ā⊕ a

φ : 10,0,0,2,0 ⊕ 10,0,0,−2,0 ⊕ 20, 12 ,
1
2 ,0,1
⊕ 20,− 1

2 ,−
1
2 ,0,−1

= ḡ⊕ g⊕ϕ⊕ ϕ̄

Ψ : 21, 12 ,
1
2 ,1,0
⊕ 11,1,1,−1,1 ⊕ 11,0,0,−1,−1 ⊕ 2−1,− 1

2 ,
1
2 ,1,0
⊕ 1−1,0,1,−1,1 ⊕ 1−1,−1,0,−1,−1

= µ+ ⊕ψ+ ⊕ γ+ ⊕ ρ− ⊕ λ− ⊕ β−

Ψ̃ : 21,− 1
2 ,−

1
2 ,−1,0 ⊕ 11,−1,−1,1,−1 ⊕ 11,0,0,1,1 ⊕ 2−1, 12 ,−

1
2 ,−1,0 ⊕ 1−1,0,−1,1,−1 ⊕ 1−1,1,0,1,1

= µ̃+ ⊕ ψ̃+ ⊕ γ̃+ ⊕ ρ̃− ⊕ λ̃− ⊕ β̃− .
Geometric identification:

NC/B3
: (qtwist

C , qtwist
D ) =

(
−1

2
,−1

2

)
and qD charge give power of LD = K−1

B |C



Fermions Bosons (0,2) Multiplet Zero-mode Cohomology

µ+ ϕ Chiral
h0(C,NC/B3

)
µ̃+ ϕ̄ Conjugate Chiral

ψ̃+ a Chiral
h0(C,KC ⊗LD) = g− 1 + c1(B3) ·C

ψ̃+ ā Conjugate Chiral

γ+ g Chiral
h0(C) = 1

γ̃+ ḡ Conjugate Chiral

ρ− — Fermi
h1(C,NC/B3

) = h0(C,NC/B3
)− c1(B3) ·C

ρ̃− — Conjugate Fermi

β− — Fermi
h1(C) = g

β̃− — Conjguate Fermi

λ− v+
Vector 0

λ̃− v−



Central Charges

From the N = 4 with duality twist, the zero modes contribute

cR =3(g+ c1(B3) ·C + h0(C,NC/B3
))

cL =3(g+ h0(C,NC/B3
)) + c1(B3) ·C

However, this neglets the contributions from the singularities (unless B3

is Calabi-Yau itself and the fibration is trivial).

Quick F-theory excursion: singular loci of τ correspond to 7-branes, and
additional defect modes are 3− 7 strings.

Direct computation from 6d (2,0) or anomalies, on the elliptic surface
Eτ → C times R1,1 (much like in the earlier discussion) yields

δcdefects
L = 8c1(B) ·C.



Discussion of other cases:

# CY3 Duality twist N = (0,4):

cR = 3C ·CN2
c + 3c1(B) ·CNc+ 6 , cL = 3C ·CN2

c + 6c1(B) ·CNc+ 6

This is dual to M5-branes on elliptic surfaces in CY three-folds, i.e.
MSW-string. Computation of elliptic genera see e.g. [Haghighat,
Murthy, Vandoren, Vafa].

# CY5 Duality twist:

cL = 3(g+ h0(C,NC/B4
)− 1) + 9c1(B4) ·C

cR = 3(g+ c1(B4) ·C + h0(C,NC/B4
)− 1)

Application to 2d (0,2) vacua from CY5 compactifications of F-theory
[SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole
cancellation requires D3-branes wrapped on curves in the class

C =
1

24
c4(Y5)|B4



BPS-equations and Hitchin moduli space

For τ constant, N = 4 SYM on C ×R1,1 with Vafa-Witten twist, gives rise
to a sigma-model into the Hitchin moduli space, which for the abelian
case is just flat connections [Bershadsky, Johansen, Sadov, Vafa].

In all duality-twisted theories the BPS equations imply

FA =
1

2

(
∂̄A(
√
τ2a)− ∂A(

√
τ2ā)

)
= 0

where the internal components of the gauge field a, ā are
√
τ2ā ∈ Γ(Ω0,1(C,L−1

D ))
√
τ2a ∈ Γ(Ω0,0(C,KC ⊗LD))

In particular, for this abelian setup, the theory is a sigma-model into
U(1)D-twisted flat connections. → duality twisted Hitchin moduli space



Non-abelian Generalizations

We have seen: M5-brane point of view is useful in systematically
assessing the contributions from singularities of τ , i.e. 2d defects.

# So far this was N = 4 with U(1) gauge group. To non-abelianize,
there is a conceptual problem: bonus U(1)D is only known to exist in
abelian N = 4, so the direct dimensional reduction from 4d is not
really possible.

# Start instead in 6d and reduce on an elliptic fibration: as shown in
[Assel, SSN] this theory can be non-abelianized. E.g. C ⊂K3τ get
non-abelian version of the heterotic string.

# M2-branes on C ×R give rise to Super-QM: i.e. twisted version of the
Bagger-Lambert-Gustavsson theory on C.



Summary

# M5 on an elliptic three-fold give rise to N=4 SYM with varying τ , and
a network of intersecting duality defects.

# If τ varies only over a curve, we get 2d (0, p) scfts from this, which
correspond to N=4 on a curve with varying τ . These correspond to
M5-branes on elliptic surfaces. Example: MSW-string in CY3.
These 2d (0, p) SCFTs have interesting ”F-theory” AdS-duals, i.e.
varying-τ IIB solutions [Haghigat, Murthy, Vafa, Vandoren]
[Couzens, Martelli, SSN, Wong]

AdS3 × S3 ×CY τ3

Similarly: AdS3 solutions for 2d (0,2) theories from CY4 in F-theory.


