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Plan

Goal: Understanding the D3-brane sector in F-theory.
I. F-theory in a Flash

# Geometric progress

# 8d, 6d, 4d, 2d

II. D3-brane Sector:
# D3sin F/Mbs in M
# Defect theories
# New chiral 2d (0, 2) Theories



[. F-theory in a Flash



F-theory and Elliptic Fibrations

F-theory on an elliptically fibered Calabi-Yau Y] , resultsin NV =1 vacua
in RY24-1 with 7 = Cy + ie~? axio-dilaton and B the spacetime of Type
IIB string theory:

T
T T
lo ° ‘é E, = Y ,

: i
Bs_g4

= [E, fibers = Tori C/Z & 77 with marked point O. There exists a
“zero section” og: B—E, :b— O

= For such fibrations there is a Weierstrass form with O = [0, 1, 1]

y? =% + frw' + gu®  w,z,y] € P(1,2,3)



Effective Theory from M/F duality

Vol(E-)=Ry Ra—0 .

M-theory on Y5_4 > F-theory on Yg_4
Ryl 1
Rar~ % —0
R1-d-2 L N =1 Gauge Theory

with Gravity on R}4~1



Gauge bosons and Singular Fibers

Reduce M-theory 3-form along (1,1) forms w*'!) in fiber:
Cs=w"AA
Additional (1,1) forms from singularities:
e Elliptic curve is y*? = z° + frw* 4+ gw® singular if
A=4f+27¢9° =0
Here A depends on base:

A(z)=0(z") < z=0issurface S C B

e Kodaira fibers from resolutions of singular fibrations

e Physics:
Syncs with 7-branes intuition in IIB, which sources Fy and
T ~ log(z — x¢) undergoes monodromy SL2Z



F-theory and Singular Fibers: Codim 1

Kodaira classification of singular fibers: Resolution of singularities results
in collection of rational curves P! which intersect in ADE-type Dynkin
diagrams:

Affine roots of g <+ Fibral rational curves
(1,

1

L= o Roots
Resolution

Gauge bosons from C3 = A; Aw Y and wrapped M2




F-theory and Singular Fibers: Codim 2

Codim 2: Roots can split into weights of matter representation R of g:

Weights

/
Roots

E.g. SU(n), fundamental weights L;: a; = L; + (—L;11).

How exactly this happens: as systematically understood as Kodaira in
codim 1 [Hayashi, Lawrie, Dave Morrison, SSN]



F-theory on elliptic CY

F-theory on an elliptically fibered Calabi-Yau

E, =Y/ ;,— Bs_4

R1,2d—1

results in N =1 vacua in with the geometric singularities above

codim ¢ in the base have the following physical interpretation:

Codim¢ P's in Fiber 7-brane Gauge Theory
1 Simple roots Gauge algebra g
2 Weights for Reps R Matter in R
3 Splitting gauge invariantly Cubic interactions
4 Further gauge invariant splitting  Quartic interactions



2n-dimensional F-theory Vacua

Fiber geometry relatively universal. Base B
# 8d: K3, Geometry highly constrained B; = P! etc.

# 6d: Classification of N = (1,0) SCFTs, Geometry of B, constrained
(Grassi, Gross)+ Anomalies

# 4d: N =1, MSSM/GUTs, Geometry of B3 largely unconstrained and
freedom of Fluxes

# 2d: N = (0,2) gauge theories + gravity, Geometry of B, largely
unconstrained, freedom of Fluxes and necessity of D3-branes
(tadpole).



I1. D3-brane Sector in F-theory



4d N = 4 SYM with varying 7

F-theory is IIB with varying 7, where there is also a self-duality group
S Ly7, which descends upon D3-branes to the Montonen-Olive duality
group of N =4 SYM.

4d N =4 SYM has an S LsZ duality group acting on the complexified
coupling
0 4w at + b

- — _ % ;
4 27T+Zg2’ 7 cT +d

ad — bc = 1 and integral. Incidentally: the gauge group G maps to the
Langlands dual group G".

Usually, we consider 7 constant in the 4d spacetime.

Coming from F-theory, it’s very natural to ask whether we can define a
version of N = 4 SYM with varying 7, compatible with the SL>Z action.

= Network of 3d walls, 2d and 0d duality defects in NV = 4.



Duality Defects

Variation of 7 without singular loci are trivial. So the interesting physics
will happen along the 4d space-time where 7 is singular.

= around such singular loci, 7 will undergo an SL>Z monodromy.

Usual lore: 7 as the complex structure of an elliptic curve E-
= Lift to M5-branes

= Setup: elliptic fibration over the 4d spacetime with N = 4 SYM in the
bulk and duality defects (2d), which can intersect in 0d.



Key: M5-brane point of view

{6d (2,0) theory on E, x R*} = {N =4 SYM on R* with coupling 7 }
So the setup that we will study is:

{6d (2,0) theory on a singular elliptic fibration }
={4d N =4 SYM with varying 7 and duality defects}




Setups:

# Setup 1:
T varies over 4d space (with Benjamin Assel)
= Y3 elliptic three-fold C elliptic CY4

# Setup 2:

T varies onver a 2d space: 2d (0, p) scfts (with C. Lawrie, T. Weigand)
= D3s on curves in the base of CYn.

In both setups: M5-brane point of view will be instrumental.



The 6d (2,0) Theory

# Lorentz and R-symmetry:
SO(1,5)r, x Sp(4)r C OSp(6]4)

# Tensor multiplet:
By : (15,1) with selfduality H = dB = *¢H
™. (1,5)
P (4,4)

# Abelian EOMs:



Setup 1: M5-branes on Elliptic 3-folds
[Assel, SSN]

An elliptic fibration E; — Y3 — B (Y not CY) has metric

1
ds? = — ((dz + Ty dy)* + 73dy?) + g, dbdb” .

Pick a frame e“ for the base B and

1
4 5
= ——(dx + 11 d ——\/7d-
e _2( -+ 1y)7 € 2aY

Let Y5 be a Kéhler three-fold, so the holonomy is reduced to U(3):
SO(6)L — U(S)L
4 53, P1_53.

On a curve space: Killing spinor equation with Vj; connection
(Var = Afp)n =0

R-symmetry background = constant spinor wrt twisted connection.



Mb5-branes on Elliptic 3-folds: Twist

# Standard geometric twist: U (1) with U(1)r
Sp(4)R — SU(Q)R X U(l)R
4 —2,:P2 1.

# Topological Twist

TU(l)twist — (TU(l)L o 3TU(1)R)
implies that the supercharge decomposes as

SO(6)L X Sp(4)R — SU(3)L X SU(Q)R X U(l)twist X U(l)R

(474> — (372)—2,1 D (372)4,—1 D (172>—6,1 D (172>0,—1

= (1,2)p,—1 give two scalar supercharges



Now consider 6d spacetime as E, — Y3 — By with coordinates 2°,--- | z°,

and (z*, x°) the directions of the elliptic fiber.
The spin connection along U(1)y, is

1
6

and the twist corresponds to turning on the background gauge field

QU(l)L _ (QOl 4+ 923 + Q45>’

AVMDr — 30U

The base B, is Kdhler as well, so the holonomy lies in
U(l), x SU(2), C U(3) with the U(1) generators given by

T, =1y + 2145

Key: SO(2)45 rotation is along the fiber, and the non-trivial fibration is
characterized through a connection in this SO(2),45 direction and the spin
connection is




Duality Twist

This means: from the 4d point of view the topological twisting requires

87‘1
AD:wD:— - e?

47’2

The associated U(1) is in fact what is known as the “bonus symmetry” of
abelian N = 4 SYM [Intrilligator] and we recovered the duality twist of
N=4 SYM [Martucci] from the M5-brane theory.

The bonus symmetry exists for the abelian NV = 4 SYM and acts as follows
on the supercharges for ab — cd =1

Q™ — ez IQ™ | er+d

_ | ~ where ei(7) —

Qm N G%a(v)Qm |C7'—|—d|
TR D St LLG2D VN G s LSO

| F++F
FE  Femp® gl \/5( X )

2



Duality Twisted N =4 SYM from 6d

6d topological twist + dim reduction to B gives an N = 4 SYM with
varying 7 over a Kadhler base B

1 .
St[c])t(all) = 1 BT2F2 NxFoy —ar1ho N\ Iy

8 q o ! IR’ ~ q ~
+ — / c%up(m) X(0,0)a — 8w(170) N P,2)a — 04 *w(o,l) X(0,0)a + 5A¢(o,1) N P(2,0)é
B
1 _ _
_ / 0 AN*x00aa + 28“40(2’0) A *8/\5(0,2)
4 B

and non-abelian extension (see paper with Ben Assel).

The twisted fields are form fields and sections of the A bundle specified
by the charges:

(:l:> o ~ 1" ~ « T o ~cy
Fy ¥ 72,00 9(0,2) X,) X(0,0) ¢(1,0) ¢(0,1) Po,2) P2,0)

LY 2 0 -2 2 0 —2 0 2 0 -2



Singular Elliptic Curves and Defects

We can describe the elliptic fibration by E in terms of a Weierstrass
model

y' =2+ fr+g
f and g sections K 1;2/ ~ and the singular loci are

A=4f34+27¢*=0.

Close to a singular locus 25 =0, 7 ~ ilog z2 + - - - with a branch-cut in the
complex plane 2. For the M5 this is relevant along A N B:




Gauge theoretic description of walls and defects

Locally we can cut up B = UB; and W;; 3d walls between these regions,
where 7 has a branch-cut.

Define
Fp=1F+irxF

then the action of v € SLyZ monodromy on the gauge field is

(FQ,FD)| =), FO)]

This maps the gauge part Sp = —= [, F A Fp to itself, except for an
offset on the 3d wall (see also [Ganor])
sy = (49 AF — 40 A FS)

¢ 47T Wij

E.g. v =T* this is a level k CS term.



Chiral Duality Defects

The wall action 57 is neither supersymmetric nor gauge invariant. At the
boundary of the wall W = C this induces chiral dofs: e.g. for the T wall
this is simply a chiral WZW model with 3;,7 =1, --- , k, with x2d3; = d3;
[Witten]

" i
SC:;_S_W‘/C*Q(dBZ—A)/\(dBZ—A)_E/CBZF

Under gauge transformations A — A + dA, 8; — B; + A this generates
[ F A which cancels the anomaly from the 3d wall.



Duality Defects from M5-branes

From the elliptic fibration and M5-brane we can apply this to any ~:

T3

h

Ty
i —

Singular fibers resolve into collections of S* = P's, intersecting in affine
ADE Dynkin diagrams.
Each resolution spheres gives rise to an w(!*!) form, along which we can

expand B
k—1 | |
AB =3 (D:bidz Awfy 1) + O:bidZ Ay ) )
i=1
Imposing self-duality, and redefining the basis of chiral modes b; with the
”section” of the elliptic fibration, identifies these modes with ;.



Point-defects

These chiral (0,2) supersymmetric defects can intersect at points
Pog={20a=23=2=0}=C,NCg=BNA,NAg
Geometrically: Kodaira fiber P's become further reducible P} — C, + C_
'/ ‘

C
C

Duality defects form network and at intersections:

(/c++/c>B: PZ;B - B+ B-=5

Such point-intersections are generic e.g. in CY4.



Example:

D3-branes wrapping B> intersecting discriminant loci in

A1 NB=C+ SU(n) AsNB=C + SU(m)
E.g. fibers are given in terms of simple roots F;, 7 =0,1,--- ,n—1and Fj,
3=0,1,---,m — 1 and there are chiral modes localized on each curve
C: B;, i=0,1,2,3,4, C: B;,  i=0,1,2

~

The fibers in codim 2 split as, e.g. for SU(5) and SU (3): CZ?; =+(L;, + L,).
(Fy — Fy+C5,

F, - F (I, —>F6+C{5
C: F —=Cl+05,

QY

Fy —Cf +F3+Cj,
Fy — Iy | Fr = CL +Fi+C5,




In codim 3 the SU(5) and SU(3) singularities collide at points P = CNC
in B:

(3

and likewise

= Fc(5§,+5+5§1+61+6;2+5;3+53+B{5+Bﬂ)‘
p P

= F@<B;5+Bg+ﬁa+ﬁs+ﬁgg+6;2+ﬂl+B§1)

p P

Locally, this enhances the flavor symmetry of the 2d chiral models to
SU(n+m).

More generally: What happens for v € SL2Z? Defect theory will be chiral
cft, with flavor symmetry dictated by the singular fiber geometry.



Setup 2: New 2d (0,2) Theories

Consider now N =4 SYM on R"! x C, with 7-varying only over the
curve C:

SO(1,4)p — SO(1,1)L xU(1)
and to preserve supersymmetry, consider U(1)r C SU(4)r:
SO(4)r xU(1)g CY3 Duality-Twist: (0,4)
SUAr — SURrxU)rxSO2)r CY,4 Duality-Twist: (0, 2)
SUB)r xU(1)r CY5 Duality-Twist: (0, 2)

Geometric embedding corresponds to D3-branes on C' x R with

C C B,,—1 = Base of the elliptic C'Y,,

CY,, Duality-Twist:

, 1 , 1
Téwmt — §<TC T TR) TtDw1st — i(TD T TR) .



Example: C'Y;-Duality Twist of N =4 SYM

SU(2)r x SO(1,1);, x ULt x U(1)Y™S x SO(2)r x U(1)g
A 120400D1-20400P10,1,,00PL0,—1,4,0,0
= U4 Cv_DPDaDa

¢ 10,0,020D10,00-20D201101P29 1 101

1999 PR
=dDgDPDY
e 2p 11,0011, ®P 001,192 113001101, P11 10,11

=t DYy BV Dp- DA B P

e 2y 11 3001110, 0®P 001192 91 1 0P T10-11,-1DP 111010

1
) 2

=i Dy BV BP- D A_DB_.
Geometric identification:

: : 1 1
e a1,

and ¢p charge give power of Lp = K5'|¢



Fermions | Bosons (0,2) Multiplet Zero-mode Cohomology

Chiral

n i . . h°(C, Neyb,)

oy @ Conjugate Chiral

Wy a Chiral 0

. h°(C,Kc®Lp)=9g—1+4+c1(B3)-C

(1 a Conjugate Chiral
Chiral

T+ 9 O(C) = 1

Y+ g Conjugate Chiral

p— — Fermi ) 0

_ . | W (C,Neys,) = h(C, Noyp,) — c1(Bs) - C

p— — Conjugate Fermi

_ — Fermi

’ h(C)=g

B — Conjguate Fermi

A

- o Vector 0

A v_




Central Charges

From the N = 4 with duality twist, the zero modes contribute

cr =3(g +c1(B3) - C+h°(C,NgB,))
cL =3(9+h°(C,Ngyp,)) +c1(Bs) - C
However, this neglets the contributions from the singularities (unless B3

is Calabi-Yau itself and the fibration is trivial).

Quick F-theory excursion: singular loci of 7 correspond to 7-branes, and
additional defect modes are 3 — 7 strings.

Direct computation from 6d (2,0) or anomalies, on the elliptic surface
E, — C times R*! (much like in the earlier discussion) yields

dcgetects — 8¢ (B) - C.



Discussion of other cases:

# C'Y3 Duality twist N = (0,4):
cr=3C-CN?+3c;(B)-CN.+6, ¢ =3C-CN-+6¢c;(B)-CN.+6

This is dual to Mb5-branes on elliptic surfaces in CY three-folds, i.e.
MSW-string. Computation of elliptic genera see e.g. [Haghighat,
Murthy, Vandoren, Vafa].

# CY5 Duality twist:

Cr, = 3(g + hO(C, NC/B4) — 1) -+ 961(34) -C
cr =3(g+c1(Ba)-C+1h°(C,Ngyp,) — 1)

Application to 2d (0, 2) vacua from CY; compactifications of F-theory
[SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole
cancellation requires D3-branes wrapped on curves in the class

1
C= ﬂ04(Y5)\B4



BPS-equations and Hitchin moduli space

For 7 constant, N = 4 SYM on C x R"! with Vafa-Witten twist, gives rise
to a sigma-model into the Hitchin moduli space, which for the abelian
case is just flat connections [Bershadsky, Johansen, Sadov, Vafa].

In all duality-twisted theories the BPS equations imply

1/-
Fa=g (QL\( Taa) — O ( 72@)) =0
where the internal components of the gauge field a, a are

Vma c QYN C, L)
V120 € T(Q"(C,Kc ® Lp))

In particular, for this abelian setup, the theory is a sigma-model into
U(1)p-twisted flat connections. — duality twisted Hitchin moduli space



Non-abelian Generalizations

We have seen: M5-brane point of view is useful in systematically
assessing the contributions from singularities of 7, i.e. 2d defects.

# So far this was N = 4 with U(1) gauge group. To non-abelianize,
there is a conceptual problem: bonus U(1)p is only known to exist in
abelian N = 4, so the direct dimensional reduction from 4d is not
really possible.

# Start instead in 6d and reduce on an elliptic fibration: as shown in
[Assel, SSN] this theory can be non-abelianized. E.g. C' C K37 get
non-abelian version of the heterotic string.

# M2-branes on C x R give rise to Super-QM: i.e. twisted version of the
Bagger-Lambert-Gustavsson theory on C.



Summary

# MBD5 on an elliptic three-fold give rise to N=4 SYM with varying 7, and
a network of intersecting duality defects.

# If T varies only over a curve, we get 2d (0, p) scfts from this, which
correspond to N=4 on a curve with varying 7. These correspond to
MS5-branes on elliptic surfaces. Example: MSW-string in CY3.
These 2d (0,p) SCFTs have interesting “F-theory” AdS-duals, i.e.
varying-7 IIB solutions [Haghigat, Murthy, Vafa, Vandoren]
[Couzens, Martelli, SSN, Wong]

AdS3 x 83 x CY7

Similarly: AdSs solutions for 2d (0,2) theories from CY4 in F-theory.



