Strings, Fields and Geometry

MENTO DI "GIUSEPPE OCCHIALINI"

THE STRING THEORY UNIVERSE

Strings and Things

- Fundamental strings: D=10 Superstrings, D=26 Bosonic Strings, D=6 Little Strings
- T-duality, double field theory formulation
- 1-Branes. BPS: D-strings. Magnetic strings in D=5 SYM, Self-dual strings in D=2 (2,0) theory
- Effective string field theory description
- BPS 1-branes: stringy fields
- Double Field Theory for Little Strings

(2,0) SCFT in 6-D

- Abelian case: 2-form B, H=*H, 5 scalars
- ADE gauge group: no local field theory
- On S¹, gives 5D SYM $g_{YM}^2 = R$
- Coulomb branch: BPS strings
- \cdot 6D strings \rightarrow 5D W-bosons and monopole-strings
- On T², 4D SYM, S-duality from T² diffeos.

Non-abelian (2,0) tensor multiplets

6-D (2,0) theory with fields taking values in 3-algebra Has vector field taking values in 3-algebra Lambert and Papageorgakis

CMH and Lambert Variant with fields taking values in Lie algebra Has vector field Cm

Field equations imply C is constant, and all fields annihilated by $C^m \nabla_m$

Choose vev for C and dimensionally reduce in C direction: get 5-D SYM

5D SYM dressed up in 6D

Strings on a Torus

- States: momentum p, winding w
- String: Infinite set of fields $\psi(p,w)$
- Fourier transform to doubled space: $\psi(x,\tilde x)$
- "Double Field Theory" from closed string field theory. Some non-locality in doubled space
- Subsector? e.g. $g_{ij}(x,\tilde{x}),\,\, b_{ij}(x,\tilde{x}),\,\, \phi(x,\tilde{x})$
- T-duality is a manifest symmetry

Double Field Theory CMH & Zwiebach

- Double field theory on doubled torus
- General solution of string theory: involves doubled fields $\psi(x, \tilde{x})$
- *Real* dependence on *full* doubled geometry, dual dimensions not auxiliary or gauge artifact. Double geom. *physical* and *dynamical*
- *Strong constraint* restricts to subsector in which extra coordinates auxiliary: get conventional field theory locally. Recover Siegel's duality covariant formulation of (super)gravity

 $\Delta \equiv$ ∂^2 $\partial x^i\partial \tilde x_i$ $\Delta \psi = 0$

Weak constraint. Each field is sum of terms each depending on half the coordinates. Intrinsically non-local, as p,w mutually non-local

Strong constraint truncates to sector where all fields depend on same half of the coordinates. Truncates to local theory in doubled space.

DFT gives $O(D,D)$ covariant formulation

O(D,D) Covariant Notation

$$
X^{M} \equiv \begin{pmatrix} \tilde{x}_{i} \\ x^{i} \end{pmatrix} \qquad \eta_{MN} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}
$$

$$
\Delta \equiv \frac{\partial^{2}}{\partial x^{i} \partial \tilde{x}_{i}} = \frac{1}{2} \partial^{M} \partial_{M}
$$

Generalised Metric Formulation

Hohm, H &Z

 \mathcal{H}_{MN} = $g^{ij} - g^{ik}b_{kj}$
 $b_{ik}g^{kj} - g_{ij} - b_{ik}g^{kl}b_{lj}$ *.*

2 Metrics on double space \mathcal{H}_{M} , η_{MN}

Eff. String Field Theory

Field in loop space $\Phi[X(\sigma)]$

Functional of loop $X^m(\sigma)$

Action is functional integral $\int DX^m(\sigma)L$

e.g.
\n
$$
L = \int d\sigma \left(\frac{1}{e(\sigma)} \frac{\delta \Phi}{\delta X^m(\sigma)} \frac{\delta \Phi}{\delta X^m(\sigma)} + \frac{1}{\alpha'} e(\sigma) \Phi^2 + \dots \right)
$$
\n
$$
e = \sqrt{X'^2} \qquad X'^m = \frac{dX^m}{d\sigma}
$$

Abelian Symmetry

\n
$$
\Phi \to e^{i\alpha} \Phi \qquad \alpha[X(\sigma)]
$$
\n
$$
\alpha = \int d\sigma \Lambda_m(X(\sigma)) X'^m
$$
\nReparameterisation invariant.

1-form on space-time $\Lambda_m(X)$ $\delta B_{mn} = \partial_m \Lambda_n - \partial_n \Lambda_m$ $\frac{\mathcal{D}\Phi}{\mathcal{D}X^m(\sigma)} \to e^{i\alpha} \frac{\mathcal{D}\Phi}{\mathcal{D}X^m(\sigma)}$ uses 2-form gauge field *Bmn*(*X*) Covariant derivative

 $\frac{D\Phi}{\sqrt{2}}$ $\mathcal{D}X^{m}(\sigma)$ = $\delta \Phi$ $\frac{\partial \mathbf{\Psi}}{\partial X^m(\sigma)} -iB_{mn}{X'}^m\Phi$

$$
X^m(\sigma) = x^m + w^m \sigma + \sum_n a_n^m e^{in\sigma}
$$

Closed Strings $\sigma \sim \sigma + 2\pi$ If X^m periodic $X^m \sim X^m + 2\pi R_m$ then w^m is winding with winding number n_m

$$
w^m = n_m R_m
$$

String field becomes function

$$
\Phi[X(\sigma)] \to \phi(x^m, w^m, a_n^m)
$$

Can also formally consider infinite strings in wm direction $\sigma \in \mathbb{R}$

Reparameterisation invariant if

$$
{X'}^m(\sigma)\frac{\delta\Phi[X(\sigma)]}{\delta X^m(\sigma)}=0
$$

Straight Strings

$$
X^m(\sigma) = x^m + w^m \sigma
$$

No oscillations. Typically "ground state"

$$
\Phi[X(\sigma)] \to \phi(x^m, w^m)
$$

Reparameterisation invariance condition becomes

$$
w^m \frac{\partial \phi}{\partial x^m} = 0 \qquad \text{or} \qquad w^m p_m \phi = 0
$$

Field in D-1 dimensional transverse space

$$
x^m = (x^{\mu}, y), w^m = (0, w) \qquad \text{gives} \qquad \phi(x^{\mu})
$$

Supersymmetric Strings

BPS 1-branes in supersymmetric theories have Green-Schwarz effective action Hughes,Liu, Polchinski

Strings in superspace give effective string fields

$$
\Phi[X(\sigma),\Theta(\sigma)]
$$

BPS configurations

$$
X^m(\sigma) = x^m + w^m \sigma \qquad \Theta(\sigma) = \theta
$$

 BPS Fields $\phi(x^m, w^m, \theta)$

Expanding in fermion zero modes gives supermultiplet of straight strings Multiplet of D-1 dimensional fields

Stringy Fields

Multiplet of fields $\phi(x^m, w^m)$

For spacetime $\mathbb{R}^{n,1} \times T^d$ get finite energy only if w^m is torus vector, giving winding mode

For fields with same wm, dimensional reduction in wm direction gives field theory in D-1 dimensional transverse space.

Gives interpretation of Lambert-Papageorgakis theory with vector Cm as stringy fields with wm=Cm

U(N) Little String Theory

- N NS5-branes in limit $g_s \to 0$, *M_s* fixed
- IIA: N M5-branes on S^1 , $R \rightarrow 0$, $M_s^2 = M_p^3 R$ fixed
- IIB: N D5-branes in limit $g_s \to \infty$, M_{*s*} fixed
- Low energy effective theory $|E| << M_S$
- IIB: (1,1) SUSY D=6 U(N) SYM $g_{YM}^2 = M_s^2$
- IIA: (2,0) U(N) SCFT

Little T-duality

- IIA LST on $S¹$ radius R = IIB LST on $S¹$ radius 1/R
- Momentum modes of IIB LST= winding modes of IIA LST. Massive YM multiplets, KK modes of D=6 SYM.
- Momentum modes of IIA LST= winding modes of IIB LST. Massive tensor multiplets, KK modes of $D=6$ (2,0) theory.
- On T^d , T-duality $O(d, d; \mathbb{Z})$

U(1) IIA LST

D=6 (2,0) multiplet $E << M_S$ $B_{mn}, \phi^i, \lambda^a$ $H = *H$ On S¹, radius R, m'th KK mode has momentum $p =$ *m R*

$$
x^m = (x^\mu, y) \qquad B_{mn} = (B_{\mu\nu}, B_{\mu y} = C_\mu)
$$

5-D Massive multiplet, mass p $B_{\mu\nu}^{(p)}, C_{\mu}^{(p)}, \phi^{(p)}, \lambda^{(p)}$

 $*dB^{(p)} = pB^{(p)} + dC^{(p)}$ $p = 0:$ $*dB^{(0)} = dC^{(0)}$ Dual potentials $p \neq 0: C^{(p)}$ Stucekelberg field

U(1) IIB LST

D=6 (1,1) multiplet $E \ll M_S$

On S¹, radius \tilde{R} , \tilde{m} 'th KK mode has momentum $\tilde{p} =$ \tilde{m} \tilde{R}

$$
x^m = (x^{\mu}, \tilde{y}) \qquad \tilde{A}_m = (\tilde{A}_{\mu}, \tilde{\chi} = \tilde{A}_{\tilde{y}})
$$

5-D Massive multiplet, mass \tilde{p} $\tilde{A}_{\mu}^{(\tilde{p})}, \tilde{\chi}^{(\tilde{p})}, \tilde{\varphi}^{(\tilde{p})}, \tilde{\psi}^{(\tilde{p})}$ $S \sim$ z
Zanada
Zanada $(\tilde{F}^{(\tilde{p})})^2 + (\tilde{p}\tilde{A}^{(\tilde{p})} + d\tilde{\chi}^{(\tilde{p})})^2$

 $\tilde{p}=0:$ Massless vector + scalar

 $\tilde{p} \neq 0 : \chi^{(\tilde{p})}$ Stucekelberg field

IIA LST Modes

$$
\begin{array}{ll}\text{domentum modes: tensor multis} \\ B^{(p)} & p = \frac{m}{R}\end{array}
$$

Winding modes: vector mults

$$
A^{(w)} \qquad w = nR \qquad w \neq 0
$$

IIB LST Momentum modes: vector mults $\tilde{p}=$ \tilde{m} $\tilde{A}^{(\tilde{p})}$ $\tilde{p} = \frac{m}{\tilde{R}}$

Winding modes: tensor mults

 $\tilde{B}^{(\tilde{w})}$ $\tilde{w} = \tilde{n}\tilde{R}$ $\tilde{w} \neq 0$

IIA LST MOMENTUM MULTS

$$
\begin{array}{ll}\text{domentum modes: tensor multis} \\ B^{(p)} & p = \frac{m}{R}\end{array}
$$

Winding modes: vector mults

$$
A^{(w)} \qquad w = nR \qquad w \neq 0
$$

IIB LST Momentum modes: vector mults $\tilde{p}=$ \tilde{m} $\tilde{A}^{(\tilde{p})}$ $\tilde{p} = \frac{m}{\tilde{R}}$

Winding modes: tensor mults

$$
\tilde{B}^{(\tilde{w})} \qquad \tilde{w} = \tilde{n}\tilde{R} \qquad \tilde{w} \neq 0
$$

 $Include$ $\tilde{B}^{(0)}, A^0$ $d\tilde{B}^{(0)} = *d\tilde{A}^{(0)}, dA^{(0)} = *dB^{(0)}$

IIA LST Momentum modes: tensor mults $B^{(p)}$ *p* = *m R*

Winding modes: vector mults

$$
A^{(w)} \qquad w = nR
$$

IB LST Momentum modes: vector multis
\n
$$
\tilde{A}^{(\tilde{p})}
$$
\n
$$
\tilde{p} = \frac{\tilde{m}}{\tilde{R}}
$$

Winding modes: tensor mults

 $\tilde{B}^{(\tilde{w})}$ $\tilde{w} = \tilde{n}\tilde{R}$

 $d\tilde{B}^{(0)} = *d\tilde{A}^{(0)}, dA^{(0)} = *dB^{(0)}$

IIA LST Momentum modes: tensor mults $B^{(p)}$ *p* = *m R*

Winding modes: vector mults

$$
A^{(w)} \qquad w = nR
$$

IIB LST Momentum modes: vector mults Winding modes: tensor mults $\tilde{p}=$ \tilde{m} $\tilde{A}^{(\tilde{p})}$ $\tilde{p} = \frac{m}{\tilde{R}}$ $\tilde{B}^{(\tilde{w})}$ $\tilde{w} = \tilde{n}\tilde{R}$

Dual formulations of same system

 $\tilde{R}=% \begin{bmatrix} \tilde{R}, & \tilde{R}, & \tilde{R}, \ \tilde{R}, & \tilde{R}, & \tilde{R}, \end{bmatrix} \begin{bmatrix} \tilde{R}, & \tilde{R}, &$ 1 *R* $\tilde{w} = p, \; \tilde{p} = w \qquad \tilde{B}^{(\tilde{w})} = B^{(p)}, \; \tilde{A}^{(\tilde{p})} = A^{(w)}$ Momentum modes can be combined to 6-D fields

$$
B(x^{\mu}, y) = \sum_{p} B^{(p)}(x^{\mu})e^{ipy}
$$
Winding modes
$$
A^{(w)}(x^{\mu})
$$

On T^d, winding modes specified by lattice vector w^m

Winding field $A(x^m, w^m)$ $w^m\frac{\partial}{\partial x^m}$ ∂x^m $A=0$ $A = A(x^m + \sigma w^m)$

6-D fields + winding fields

Dimensionally reduce in wm direction: 5-D field on transverse space. Get 5-D supermultiplet.

Winding fields combine to form 6-D fields in dual space

$$
A(x^{\mu}, \tilde{y}) = \sum_{w} A^{(\tilde{p})}(x^{\mu})e^{iw\tilde{y}}
$$

Weakly constrained DFT $B(x^{\mu}, y), A(x^{\mu}, \tilde{y})$
IIB LST: $\tilde{A}(x^{\mu}, y), \tilde{B}(x^{\mu}, \tilde{y})$

Combine into field on doubled space $X^M = (x^\mu, y, \tilde{y})$

$$
B_{MN}(X^{P}) \qquad \partial_{y}\partial_{\tilde{y}}B = 0
$$

\n
$$
B = B^{0}(x^{\mu}) + B^{+}(x^{\mu}, y) + B^{-}(x^{\mu}, \tilde{y})
$$

\n
$$
B^{+}(x^{\mu}, y) \sim B(x^{\mu}, y), \tilde{A}(x^{\mu}, y)
$$

\n
$$
B^{-}(x^{\mu}, \tilde{y}) \sim A(x^{\mu}, \tilde{y}), \tilde{B}(x^{\mu}, \tilde{y})
$$

$$
B^{+}_{\mu\nu} = B_{\mu\nu}, B^{+}_{\mu y} = B_{\mu y} = C_{\mu}, B^{+}_{\mu \tilde{y}} = \tilde{A}_{\mu}, B^{+}_{y\tilde{y}} = \tilde{\chi}
$$

$$
B_{\mu\nu}^- = \tilde{B}_{\mu\nu}, B_{\mu\tilde{y}}^- = \tilde{C}_{\mu}, B_{\mu y}^- = A_{\mu}, B_{\tilde{y}y}^- = A_{\tilde{y}} = \chi
$$

$$
H_{MNP}=\partial_{[M}B_{NP]}
$$

Metric

$$
\mathcal{H}_{MN}dX^M dX^N = \eta_{\mu\nu}dx^\mu dx^\nu + R^2dy^2 + R^{-2}d\tilde{y}^2
$$

Action

$$
S \sim \int d^7 X\ H_{MNP} H^{MNP}
$$

Constraints

 $*H^+ = d\tilde{y} \wedge H^+ \quad *H^- = dy \wedge H^ *H^0 = d\tilde{y} \wedge H^0 = dy \wedge H^0$

Fully Doubled Formulation

Theory on T⁶ gives doubled theory on T¹² $\;\; B_{PQ}(X^M)$

Metric of signature (10,2) $\mathcal{H}_{MN} \sim diag(q, q^{-1})$ $S \sim$ z
Z $d^{12}X\,H_{MNP}H^{MNP}$

Metric, signature (6,6) η_{MN}

Constraint $\eta^{MN}\partial_M\partial_N B_{PO} = 0$

B is sum of terms, each depending on half the coordinates

For each term, there is a split $T^{12} \rightarrow T^6 + \tilde{T}^6$

$$
X^M \to \begin{pmatrix} x^m \\ \tilde{x}_m \end{pmatrix}
$$

 x^m coordinates on T⁶ that is null wrt η_{MN} and signature (5,1) wrt ${\cal H}_{MN}$

Volume form
$$
\Omega = \frac{1}{6!} \epsilon_{m_1...m_6} dx^{m_1} \wedge ... dx^{m_6}
$$

Fields depend on x $B^{\Omega}(x^m)$

$$
H^{\Omega} = (\Omega) \wedge H
$$

Sum of such terms for different choices of Ω

Non-abelian interactions?

IIB LST: multiplets $\tilde{A}(x^m)$ with 6D SYM interactions

IIA LST: multiplets $A(x^m, w^m)$ with 5D SYM interactions

Tensor multiplets $B(x^m), \ \tilde{B}(x^m, w^m)$ still problematic

Interaction between A and B multiplets involves interaction between momentum and winding, so expected to be non-local. Doubled picture might help?

(2,0) Theory?

Subsector of IIA LST, no T-duality

Consider Coulomb branch, with gauge group broken to U(1)r

Compactified on S1, get 5D SYM with U(1)r massless subsector. W-boson and monopole string for each root.

Lifts to 6D: r massless abelian tensor multiplets Multiplet of stringy fields for each root.

Conclusions

- *Stringy fields* give description of winding states, interpretation of Lambert-Papageorgakis multiplet
- Combine with fields to give local fields in doubled space
- Theory of particles and strings
- Generalisation to brane fields
- Weakly constrained DFT non-local, as p,w mutually nonlocal. In LST etc, these give electric and magnetic charges. Can DFT non-locality help with understanding (2,0) SCFT and LST non-locality?