The String Field Theory vertex, gluing and wrapping

Romuald A. Janik

Jagiellonian University Kraków

work with Z. Bajnok

Outline

Introduction and motivation

Infinite and finite volume observables

Decompactifying Power law corrections Exponential wrapping corrections

Some standard relativistic observables

The exact (pp-wave) string vertex rewritten...

Finite volume regularization in the mirror channel

From octagon to the decompactified string vertex

From the decompactified to the full string vertex

Conclusions

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry
- These methods do not generalize to the interacting QFT case

- Handling QFT on a finite size cylinder is very difficult
- **First decompactify**
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in *L*)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- **First decompactify**
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in *L*)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- **First decompactify**
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

 Handling QFT on a finite size cylinder is very difficult

First decompactify

- 1. Now one can formulate crossing equations
- 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law
 - corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - 2. solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

- Handling QFT on a finite size cylinder is very difficult
- First decompactify
 - 1. Now one can formulate crossing equations
 - solve YBE, unitarity and crossing to get the S-matrix
- ► Handle large cylinders (≡ power law corrections in L)
 - Bethe ansatz equations
- Handle exponential corrections $\sim e^{-mL}$
 - 1. single wrapping: Lüscher corrections
 - 2. multiple wrapping: Thermodynamic Bethe Ansatz (TBA)

How to perform these steps for other observables (and for the string vertex)?

Two approaches:

- **1.** Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ asso. Komatsu. Vieira

Two approaches:

1. Decompactified string vertex

2. The hexagon approach

Bajnok, RJ Basso, Komatsu, Vieira

Two approaches:

1. Decompactified string vertex

2. The hexagon approach

Bajnok, RJ

Two approaches:

- 1. Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ

Two approaches:

- 1. Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ

Two approaches:

- 1. Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ

Two approaches:

- 1. Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ

Two approaches:

- 1. Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ

Two approaches:

- 1. Decompactified string vertex
- 2. The hexagon approach

Bajnok, RJ

DECOMPACTIFIED VERTEX

Decompactified string vertex

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- ▶ No full solution yet for $AdS_5 \times S^5$
- ▶ We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

Hexagon

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- ▶ No full solution yet for $AdS_5 \times S^5$
- ▶ We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 imes S^5$
- ▶ We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- ► We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- ► We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- ► We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

Hexagon

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime!

(wrapping appear at high loop orders)

'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- ► We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

Hexagon

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)

'half wrappings'

DECOMPACTIFIED VERTEX

- ► Axioms solved for pp-wave → reproduce the exact result (includes all wrappings w.r.t. size of the remaining closed string)
- Solutions exist for some relativistic integrable QFT's (like sinh-Gordon)
- No full solution yet for $AdS_5 \times S^5$
- We are still lacking a solution of ordinary form factor axioms for $AdS_5 \times S^5$

- Somewhat miraculously exact solution exists for AdS₅ × S⁵
- Efficient for calculations in the perturbative regime! (wrapping appear at high loop orders)
- 'half wrappings'

Based on

1. experience with form factors

Pozsgay, Takacs

$$\left\langle \varnothing | \mathcal{O}\left(0\right) | \theta_{1}, \theta_{2} \right\rangle_{L} = \frac{1}{\sqrt{\rho_{2} \cdot S(\theta_{1}, \theta_{2})}} \cdot \underbrace{f(\theta_{1}, \theta_{2})}_{\infty - \textit{volume form factor}}$$

where θ_1, θ_2 are solutions of the Bethe Ansatz equations on a size L cylinder

2. direct OPE coefficient calculations

- 1. Put in solutions of Bethe Ansatz equations as external particle momenta
- **2.** include appropriate jacobian factors to adjust for standard normalization of states in finite volume

Based on

1. experience with form factors

Pozsgay, Takacs

$$\left\langle \varnothing \left| \mathcal{O} \left(0 \right) \left| \theta_1, \theta_2 \right\rangle_L = \frac{1}{\sqrt{\rho_2 \cdot S(\theta_1, \theta_2)}} \cdot \underbrace{f(\theta_1, \theta_2)}_{\infty - \textit{volume form factor}}$$

where θ_1, θ_2 are solutions of the Bethe Ansatz equations on a size L cylinder

2. direct OPE coefficient calculations

- 1. Put in solutions of Bethe Ansatz equations as external particle momenta
- **2.** include appropriate jacobian factors to adjust for standard normalization of states in finite volume

Based on

1. experience with form factors

Pozsgay, Takacs

$$\left\langle \varnothing \left| \mathcal{O} \left(0 \right) \left| \theta_1, \theta_2 \right\rangle_L = \frac{1}{\sqrt{\rho_2 \cdot S(\theta_1, \theta_2)}} \cdot \underbrace{f(\theta_1, \theta_2)}_{\infty - \textit{volume form factor}}$$

where θ_1, θ_2 are solutions of the Bethe Ansatz equations on a size L cylinder

2. direct OPE coefficient calculations

- 1. Put in solutions of Bethe Ansatz equations as external particle momenta
- **2.** include appropriate jacobian factors to adjust for standard normalization of states in finite volume

Based on

1. experience with form factors

Pozsgay, Takacs

$$\left\langle \varnothing \left| \mathcal{O} \left(0 \right) \left| \theta_1, \theta_2 \right\rangle_L = \frac{1}{\sqrt{\rho_2 \cdot S(\theta_1, \theta_2)}} \cdot \underbrace{f(\theta_1, \theta_2)}_{\infty - \textit{volume form factor}}$$

where θ_1, θ_2 are solutions of the Bethe Ansatz equations on a size L cylinder

2. direct OPE coefficient calculations

- 1. Put in solutions of Bethe Ansatz equations as external particle momenta
- **2.** include appropriate jacobian factors to adjust for standard normalization of states in finite volume

Based on

1. experience with form factors

Pozsgay, Takacs

$$\left\langle \varnothing \left| \mathcal{O} \left(0 \right) \left| \theta_1, \theta_2 \right\rangle_L = \frac{1}{\sqrt{\rho_2 \cdot S(\theta_1, \theta_2)}} \cdot \underbrace{f(\theta_1, \theta_2)}_{\infty - \textit{volume form factor}}$$

where θ_1, θ_2 are solutions of the Bethe Ansatz equations on a size L cylinder

2. direct OPE coefficient calculations

- 1. Put in solutions of Bethe Ansatz equations as external particle momenta
- **2.** include appropriate jacobian factors to adjust for standard normalization of states in finite volume

Based on

1. experience with form factors

Pozsgay, Takacs

$$\left\langle \varnothing \left| \mathcal{O} \left(0 \right) \left| \theta_1, \theta_2 \right\rangle_L = \frac{1}{\sqrt{\rho_2 \cdot S(\theta_1, \theta_2)}} \cdot \underbrace{f(\theta_1, \theta_2)}_{\infty - \textit{volume form factor}} \right.$$

where θ_1, θ_2 are solutions of the Bethe Ansatz equations on a size L cylinder

2. direct OPE coefficient calculations

- 1. Put in solutions of Bethe Ansatz equations as external particle momenta
- **2.** include appropriate jacobian factors to adjust for standard normalization of states in finite volume

- Insert a summation over intermediate states on each edge Basso, Komatsu, Vieira
- At the wrapping order leads to formal divergent expressions
 Basso, Goncalves, Komatsu
- Especially subtle at higher wrapping orders

- Insert a summation over intermediate states on each edge Basso, Komatsu, Vieira
- At the wrapping order leads to formal divergent expressions
 Basso, Goncalves, Komatsu
- Especially subtle at higher wrapping orders

- Insert a summation over intermediate states on each edge Basso, Komatsu, Vieira
- At the wrapping order leads to formal divergent expressions
 Basso, Goncalves, Komatsu
- Especially subtle at higher wrapping orders

- Insert a summation over intermediate states on each edge Basso, Komatsu, Vieira
- At the wrapping order leads to formal divergent expressions
 Basso, Goncalves, Komatsu
- Especially subtle at higher wrapping orders

- Insert a summation over intermediate states on each edge Basso, Komatsu, Vieira
- At the wrapping order leads to formal divergent expressions
 Basso, Goncalves, Komatsu
- Especially subtle at higher wrapping orders

- Insert a summation over intermediate states on each edge Basso, Komatsu, Vieira
- At the wrapping order leads to formal divergent expressions
 Basso, Goncalves, Komatsu
- Especially subtle at higher wrapping orders

Look for guidance for other observables in relativistic setting

Ground state energy

 \triangleright Can be obtained from the large *R* limit of the partition function

 $Z \sim e^{-RE_0(L)}$

▶ For a free boson/fermion we have a simple formula

$$E_0(L) = \pm m \int_{-\infty}^{\infty} \frac{d heta}{2\pi} \cosh heta \log \left(1 \mp e^{-mL \cosh heta}
ight)$$

Expanding the above formula in a power series in e^{-mL cosh θ} gives multiple wrapping contributions to the ground state energy.

Remarkably, the exact formula in the interacting case has the same form

$$E_0(L) = -m \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} \cosh \theta \log \left(1 + e^{-\varepsilon(\theta)}\right)$$

Ground state energy

 \blacktriangleright Can be obtained from the large *R* limit of the partition function

 $Z \sim e^{-RE_0(L)}$

▶ For a free boson/fermion we have a simple formula

$$E_0(L) = \pm m \int_{-\infty}^{\infty} \frac{d heta}{2\pi} \cosh heta \log \left(1 \mp e^{-mL \cosh heta}
ight)$$

Expanding the above formula in a power series in e^{-mL cosh θ} gives multiple wrapping contributions to the ground state energy.

Remarkably, the exact formula in the interacting case has the same form

$$E_0(L) = -m \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} \cosh \theta \log \left(1 + e^{-\varepsilon(\theta)}\right)$$

Ground state energy

• Can be obtained from the large R limit of the partition function

 $Z \sim e^{-RE_0(L)}$

▶ For a free boson/fermion we have a simple formula

$$E_0(L) = \pm m \int_{-\infty}^{\infty} \frac{d heta}{2\pi} \cosh heta \log \left(1 \mp e^{-mL \cosh heta}
ight)$$

Expanding the above formula in a power series in e^{-mL cosh θ} gives multiple wrapping contributions to the ground state energy.

Remarkably, the exact formula in the interacting case has the same form

$$E_0(L) = -m \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} \cosh \theta \log \left(1 + e^{-\varepsilon(\theta)}\right)$$

Ground state energy

• Can be obtained from the large R limit of the partition function

 $Z \sim e^{-RE_0(L)}$

▶ For a free boson/fermion we have a simple formula

$$E_0(L) = \pm m \int_{-\infty}^{\infty} rac{d heta}{2\pi} \cosh heta \log \left(1 \mp e^{-mL \cosh heta}
ight)$$

Expanding the above formula in a power series in e^{-mL cosh θ} gives multiple wrapping contributions to the ground state energy.

Remarkably, the exact formula in the interacting case has the same form

$$E_0(L) = -m \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} \cosh \theta \log \left(1 + e^{-\varepsilon(\theta)}\right)$$

Ground state energy

• Can be obtained from the large R limit of the partition function

 $Z \sim e^{-RE_0(L)}$

▶ For a free boson/fermion we have a simple formula

$${\sf E}_0(L)=\pm m\int_{-\infty}^\infty {d heta\over 2\pi}\cosh heta\logig(1\mp e^{-mL\cosh heta}ig)$$

Expanding the above formula in a power series in e^{-mL cosh θ} gives multiple wrapping contributions to the ground state energy.

 Remarkably, the exact formula in the interacting case has the same form

$$E_0(L) = -m \int_{-\infty}^{\infty} \frac{d heta}{2\pi} \cosh heta \log \left(1 + e^{-arepsilon(heta)}
ight)$$

Ground state energy

 \blacktriangleright Can be obtained from the large *R* limit of the partition function

 $Z \sim e^{-RE_0(L)}$

▶ For a free boson/fermion we have a simple formula

$$E_0(L) = \pm m \int_{-\infty}^{\infty} rac{d heta}{2\pi} \cosh heta \log \left(1 \mp e^{-mL \cosh heta}
ight)$$

- Expanding the above formula in a power series in e^{-mL cosh θ} gives multiple wrapping contributions to the ground state energy.
- Remarkably, the exact formula in the interacting case has the same form

$$E_0(L) = -m \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} \cosh \theta \log \left(1 + e^{-\varepsilon(\theta)}\right)$$

1-pt function (LeClair Mussardo formula)

► For a free boson/fermion

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 \mp e^{mL \cosh \theta_k}} F_n^c(\theta_1, \dots, \theta_n)$$

- This formula already has a form of summation over infinite set of states
- However the measure factor is nontrivial and distinct from the one for the ground state energy
- Remarkably enough the above formula again generalizes to the interacting case

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 + e^{\varepsilon(\theta_k)}} F_n^c(\theta_1, \dots, \theta_n)$$

1-pt function (LeClair Mussardo formula)

► For a free boson/fermion

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 \mp e^{mL \cosh \theta_k}} F_n^c(\theta_1, \dots, \theta_n)$$

- This formula already has a form of summation over infinite set of states
- However the measure factor is nontrivial and distinct from the one for the ground state energy
- Remarkably enough the above formula again generalizes to the interacting case

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 + e^{\varepsilon(\theta_k)}} F_n^c(\theta_1, \dots, \theta_n)$$

1-pt function (LeClair Mussardo formula)

► For a free boson/fermion

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 \mp e^{mL \cosh \theta_k}} F_n^c(\theta_1, \dots, \theta_n)$$

- This formula already has a form of summation over infinite set of states
- However the measure factor is nontrivial and distinct from the one for the ground state energy
- Remarkably enough the above formula again generalizes to the interacting case

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 + e^{\varepsilon(\theta_k)}} F_n^c(\theta_1, \dots, \theta_n)$$

1-pt function (LeClair Mussardo formula)

► For a free boson/fermion

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 \mp e^{mL \cosh \theta_k}} F_n^c(\theta_1, \dots, \theta_n)$$

- This formula already has a form of summation over infinite set of states
- However the measure factor is nontrivial and distinct from the one for the ground state energy
- Remarkably enough the above formula again generalizes to the interacting case

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 + e^{\varepsilon(\theta_k)}} F_n^c(\theta_1, \dots, \theta_n)$$

1-pt function (LeClair Mussardo formula)

► For a free boson/fermion

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 \mp e^{mL \cosh \theta_k}} F_n^c(\theta_1, \dots, \theta_n)$$

- This formula already has a form of summation over infinite set of states
- However the measure factor is nontrivial and distinct from the one for the ground state energy
- Remarkably enough the above formula again generalizes to the interacting case

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 + e^{\varepsilon(\theta_k)}} F_n^c(\theta_1, \dots, \theta_n)$$

1-pt function (LeClair Mussardo formula)

► For a free boson/fermion

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 \mp e^{mL \cosh \theta_k}} F_n^c(\theta_1, \dots, \theta_n)$$

- This formula already has a form of summation over infinite set of states
- However the measure factor is nontrivial and distinct from the one for the ground state energy
- Remarkably enough the above formula again generalizes to the interacting case

$$\langle \mathcal{O} \rangle_L = \sum_{n=0}^{\infty} \int \prod_{k=1}^n \frac{d\theta_k}{2\pi} \frac{1}{1 + e^{\varepsilon(\theta_k)}} F_n^c(\theta_1, \dots, \theta_n)$$

From octagon to the string vertex

Octagon

Octagon with two particles on one edge(string):

$$O(heta_1, heta_2) = -rac{1}{2}rac{1}{\coshrac{ heta_1- heta_2}{2}}$$

Decompactified string vertex

The exact (decompactified) pp-wave Neumann coefficient with one string of finite size L takes the form

 $N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_L(\theta_1)d_L(\theta_2)$

• All wrapping corrections are contained in the functions $d_L(\theta)$

$$d_L(heta) = \exp\left\{\int_{-\infty}^{\infty} rac{du}{2\pi} rac{1}{\cosh(u- heta)} \log(1-e^{-mL\cosh u})
ight\}$$

From octagon to the string vertex

Octagon

Octagon with two particles on one edge(string):

$$O(heta_1, heta_2) = -rac{1}{2}rac{1}{\coshrac{ heta_1- heta_2}{2}}$$

Decompactified string vertex

The exact (decompactified) pp-wave Neumann coefficient with one string of finite size L takes the form

 $N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_L(\theta_1)d_L(\theta_2)$

All wrapping corrections are contained in the functions $d_L(\theta)$

$$d_L(heta) = \exp\left\{\int_{-\infty}^{\infty} rac{du}{2\pi} rac{1}{\cosh(u- heta)} \log(1-e^{-mL\cosh u})
ight\}$$
Octagon

Octagon with two particles on one edge(string):

$$O(heta_1, heta_2) = -rac{1}{2}rac{1}{\coshrac{ heta_1- heta_2}{2}}$$

Decompactified string vertex

The exact (decompactified) pp-wave Neumann coefficient with one string of finite size L takes the form

 $N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_L(\theta_1)d_L(\theta_2)$

All wrapping corrections are contained in the functions $d_L(\theta)$

$$d_L(heta) = \exp\left\{\int_{-\infty}^{\infty} rac{du}{2\pi} rac{1}{\cosh(u- heta)} \log(1-e^{-mL\cosh u})
ight\}$$

Octagon

Octagon with two particles on one edge(string):

$$O(heta_1, heta_2) = -rac{1}{2}rac{1}{\coshrac{ heta_1- heta_2}{2}}$$

Decompactified string vertex

The exact (decompactified) pp-wave Neumann coefficient with one string of finite size L takes the form

 $N_{L}^{\infty}(\theta_{1},\theta_{2})=O(\theta_{1},\theta_{2})d_{L}(\theta_{1})d_{L}(\theta_{2})$

All wrapping corrections are contained in the functions $d_L(\theta)$

$$d_L(heta) = \exp\left\{\int_{-\infty}^{\infty} rac{du}{2\pi} rac{1}{\cosh(u- heta)} \log(1-e^{-mL\cosh u})
ight\}$$

Octagon

Octagon with two particles on one edge(string):

$$O(heta_1, heta_2) = -rac{1}{2}rac{1}{\coshrac{ heta_1- heta_2}{2}}$$

Decompactified string vertex

The exact (decompactified) pp-wave Neumann coefficient with one string of finite size L takes the form

 $N_{L}^{\infty}(\theta_{1},\theta_{2})=O(\theta_{1},\theta_{2})d_{L}(\theta_{1})d_{L}(\theta_{2})$

• All wrapping corrections are contained in the functions $d_L(\theta)$

$$d_{L}(\theta) = \exp\left\{\int_{-\infty}^{\infty} \frac{du}{2\pi} \frac{1}{\cosh(u-\theta)} \log(1-e^{-mL\cosh u})\right\}$$

Finite size string vertex

▶ Neumann coefficient with string lengths L_1, L_2 and $L_3 = L_1 + L_2$

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

► This can be rewritten in terms of the decompactified one $N_{L_1}^{\infty}(\theta_1, \theta_2)$ as:

$$N_{L_1}^{L_2}(\theta_1,\theta_2) = \underbrace{\mathcal{O}(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)}_{\text{decompactified string vertex}} \cdot \frac{d_{L_2}(\theta_1)}{d_{L_1+L_2}(\theta_1)} \cdot \frac{d_{L_2}(\theta_2)}{d_{L_1+L_2}(\theta_2)}$$

Finite size string vertex

▶ Neumann coefficient with string lengths L_1, L_2 and $L_3 = L_1 + L_2$

$$N_{L_1}^{L_2}(\theta_1, \theta_2) = O(\theta_1, \theta_2) \cdot \frac{d_{L_1}(\theta_1)d_{L_2}(\theta_1)}{d_{L_3}(\theta_1)} \cdot \frac{d_{L_1}(\theta_2)d_{L_2}(\theta_2)}{d_{L_3}(\theta_2)}$$

This can be rewritten in terms of the decompactified one $N_{L_1}^{\infty}(\theta_1, \theta_2)$
as:

$$N_{L_1}^{L_2}(\theta_1, \theta_2) = \underbrace{\mathcal{O}(\theta_1, \theta_2) d_{L_1}(\theta_1) d_{L_1}(\theta_2)}_{\text{decompactified string vertex}} \cdot \frac{d_{L_2}(\theta_1)}{d_{L_1+L_2}(\theta_1)} \cdot \frac{d_{L_2}(\theta_2)}{d_{L_1+L_2}(\theta_2)}$$

Finite size string vertex

▶ Neumann coefficient with string lengths L_1, L_2 and $L_3 = L_1 + L_2$

$$N_{L_1}^{L_2}(\theta_1, \theta_2) = O(\theta_1, \theta_2) \cdot \frac{d_{L_1}(\theta_1)d_{L_2}(\theta_1)}{d_{L_3}(\theta_1)} \cdot \frac{d_{L_1}(\theta_2)d_{L_2}(\theta_2)}{d_{L_3}(\theta_2)}$$

This can be rewritten in terms of the decompactified one N[∞]_{L1}(θ₁, θ₂) as:

$$N_{L_1}^{L_2}(\theta_1, \theta_2) = \underbrace{O(\theta_1, \theta_2) d_{L_1}(\theta_1) d_{L_1}(\theta_2)}_{\text{decompactified string vertex}} \cdot \frac{d_{L_2}(\theta_1)}{d_{L_1+L_2}(\theta_1)} \cdot \frac{d_{L_2}(\theta_2)}{d_{L_1+L_2}(\theta_2)}$$

 Finite volume regularization in the mirror channel/cluster expansion Dorey, Fioravanti, Tateo, Rim
 iε prescription + careful handling of δ(0) divergences LeClair, Lesage, Sachdev, Saleur

 Finite volume regularization in the mirror channel/cluster expansion Dorey, Fioravanti, Tateo, Rim
 *i*ε prescription + careful handling of δ(0) divergences LeClair, Lesage, Sachdev, Saleur

 Finite volume regularization in the mirror channel/cluster expansion Dorey, Fioravanti, Tateo, Rim
 iε prescription + careful handling of δ(0) divergences LeClair, Lesage, Sachdev, Saleur

- 1. Finite volume regularization in the mirror channel/cluster expansion Dorey, Fioravanti, Tateo, Rim
- 2. $i\varepsilon$ prescription + careful handling of $\delta(0)$ divergences

LeClair, Lesage, Sachdev, Saleur

- 1. Finite volume regularization in the mirror channel/cluster expansion Dorey, Fioravanti, Tateo, Rim
- 2. $i\varepsilon$ prescription + careful handling of $\delta(0)$ divergences

LeClair, Lesage, Sachdev, Saleur

- We want to compute an observable for a cylinder of size L
- Compactify the mirror channel (vertical edge) to size R
- Sum over all multiparticle mirror state

$$1 + \sum_{n} e^{-E_n L} + \sum_{n_1 \ge n_2} e^{-E_{n_1} L - E_{n_2} L} + \dots$$

$$\sum_{n} \to R \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} m \cosh \theta$$

- We want to compute an observable for a cylinder of size L
- Compactify the mirror channel (vertical edge) to size R
- Sum over all multiparticle mirror state

$$\sum_{n} \to R \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} m \cosh \theta$$

- We want to compute an observable for a cylinder of size L
- Compactify the mirror channel (vertical edge) to size R
- Sum over all multiparticle mirror state

$$\sum_{n} \to R \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} m \cosh \theta$$

- We want to compute an observable for a cylinder of size L
- Compactify the mirror channel (vertical edge) to size R
- Sum over all multiparticle mirror state

$$\sum_{n} \to R \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} m \cosh \theta$$

- We want to compute an observable for a cylinder of size L
- Compactify the mirror channel (vertical edge) to size R
- Sum over all multiparticle mirror state

$$1 + \sum_{n} e^{-E_{n}L} + \sum_{n_{1} \ge n_{2}} e^{-E_{n_{1}}L - E_{n_{2}}L} + \dots$$

$$\sum_{n} \to R \int_{-\infty}^{\infty} \frac{d\theta}{2\pi} m \cosh \theta$$

Subtlety

• Care must be taken about diagonal terms:

$$\sum_{n_1 \ge n_2} = \frac{1}{2} \sum_{n_1, n_2} + \frac{1}{2} \sum_{n_1 = n_2}$$

▶ The latter term survives in the large *R* limit!

It can be thought of as a particle going twice around the cylinder

- It is these terms which give rise to the log(1 − e^{-mL cosh θ}) measure factor in the formula for ground state energy...
- The evaluation of observables sandwiched between such degenerate states is very nontrivial due to disconnected pieces...

Subtlety

Care must be taken about diagonal terms:

$$\sum_{n_1 \ge n_2} = \frac{1}{2} \sum_{n_1, n_2} + \frac{1}{2} \sum_{n_1 = n_2}$$

▶ The latter term survives in the large *R* limit!

It can be thought of as a particle going twice around the cylinder

- It is these terms which give rise to the log(1 − e^{-mL cosh θ}) measure factor in the formula for ground state energy...
- The evaluation of observables sandwiched between such degenerate states is very nontrivial due to disconnected pieces...

Subtlety

Care must be taken about diagonal terms:

$$\sum_{n_1 \ge n_2} = \frac{1}{2} \sum_{n_1, n_2} + \frac{1}{2} \sum_{n_1 = n_2}$$

The latter term survives in the large R limit!

It can be thought of as a particle going twice around the cylinder

- It is these terms which give rise to the log(1 − e^{-mL cosh θ}) measure factor in the formula for ground state energy...
- The evaluation of observables sandwiched between such degenerate states is very nontrivial due to disconnected pieces...

Subtlety

Care must be taken about diagonal terms:

$$\sum_{n_1 \ge n_2} = \frac{1}{2} \sum_{n_1, n_2} + \frac{1}{2} \sum_{n_1 = n_2}$$

- ► The latter term survives in the large *R* limit!
- It can be thought of as a particle going twice around the cylinder

- It is these terms which give rise to the log(1 − e^{-mL cosh θ}) measure factor in the formula for ground state energy...
- The evaluation of observables sandwiched between such degenerate states is very nontrivial due to disconnected pieces...

Subtlety

Care must be taken about diagonal terms:

$$\sum_{n_1 \ge n_2} = \frac{1}{2} \sum_{n_1, n_2} + \frac{1}{2} \sum_{n_1 = n_2}$$

- ► The latter term survives in the large *R* limit!
- It can be thought of as a particle going twice around the cylinder

- It is these terms which give rise to the log(1 − e^{-mL cosh θ}) measure factor in the formula for ground state energy...
- The evaluation of observables sandwiched between such degenerate states is very nontrivial due to disconnected pieces...

Subtlety

Care must be taken about diagonal terms:

$$\sum_{n_1 \ge n_2} = \frac{1}{2} \sum_{n_1, n_2} + \frac{1}{2} \sum_{n_1 = n_2}$$

- ► The latter term survives in the large *R* limit!
- It can be thought of as a particle going twice around the cylinder

- It is these terms which give rise to the log(1 − e^{-mL cosh θ}) measure factor in the formula for ground state energy...
- The evaluation of observables sandwiched between such degenerate states is very nontrivial due to disconnected pieces...

$$Z \langle \mathcal{X} \rangle_{L} = \langle \emptyset | \mathcal{X} | \emptyset \rangle_{R} + \sum_{n_{1}} \langle n_{1} | \mathcal{X} | n_{1} \rangle_{R} e^{-E_{n_{1}}L} + \frac{1}{2} \sum_{n_{1}, n_{2}} \langle n_{1}n_{2} | \mathcal{X} | n_{2}n_{1} \rangle_{R} e^{-(E_{n_{1}}+E_{n_{2}})L} + \frac{1}{2} \sum_{n_{1}} \langle n_{1}n_{1} | \mathcal{X} | n_{1}n_{1} \rangle_{R} e^{-2E_{n_{1}}L} + \dots$$

We need a prescription for the expectation values

 $\langle n_1 n_2 | \mathcal{X} | n_2 n_1 \rangle_R = \sum (measure \ factor) \cdot (\infty \text{-volume quantity})$

$$\langle n_1 | \mathcal{O} | n_1 \rangle_R = \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$

$$\langle n_1 n_2 | \mathcal{O} | n_2 n_1 \rangle_R = \frac{F_2^c(\theta_1, \theta_2)}{R^2 E_1 E_2} + \frac{F_1^c(\theta_1)}{RE_1} + \frac{F_1^c(\theta_2)}{RE_2} + F_0^c$$

$$\langle n_1 n_1 | \mathcal{O} | n_1 n_1 \rangle_R = 0 + 2 \cdot \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$
The 2 leads to a change of $log(1 - e^{-mL\cosh\theta})$ into $/(1 - e^{mL\cosh\theta})$ in the LeClair-Mussardo formula

$$Z \langle \mathcal{X} \rangle_{L} = \langle \emptyset | \mathcal{X} | \emptyset \rangle_{R} + \sum_{n_{1}} \langle n_{1} | \mathcal{X} | n_{1} \rangle_{R} e^{-E_{n_{1}}L} + \frac{1}{2} \sum_{n_{1}, n_{2}} \langle n_{1}n_{2} | \mathcal{X} | n_{2}n_{1} \rangle_{R} e^{-(E_{n_{1}}+E_{n_{2}})L} + \frac{1}{2} \sum_{n_{1}} \langle n_{1}n_{1} | \mathcal{X} | n_{1}n_{1} \rangle_{R} e^{-2E_{n_{1}}L} + \dots$$

We need a prescription for the expectation values

 $\langle n_1 n_2 | \mathcal{X} | n_2 n_1 \rangle_R = \sum (measure \ factor) \cdot (\infty \text{-volume quantity})$

$$\langle n_1 | \mathcal{O} | n_1 \rangle_R = \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$

$$\langle n_1 n_2 | \mathcal{O} | n_2 n_1 \rangle_R = \frac{F_2^c(\theta_1, \theta_2)}{R^2 E_1 E_2} + \frac{F_1^c(\theta_1)}{RE_1} + \frac{F_1^c(\theta_2)}{RE_2} + F_0^c$$

$$\langle n_1 n_1 | \mathcal{O} | n_1 n_1 \rangle_R = 0 + 2 \cdot \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$
The 2 leads to a change of $log(1 - e^{-mL\cosh\theta})$ into $/(1 - e^{mL\cosh\theta})$ in the LeClair-Mussardo formula

$$Z \langle \mathcal{X} \rangle_{L} = \langle \emptyset | \mathcal{X} | \emptyset \rangle_{R} + \sum_{n_{1}} \langle n_{1} | \mathcal{X} | n_{1} \rangle_{R} e^{-E_{n_{1}}L} + \frac{1}{2} \sum_{n_{1}, n_{2}} \langle n_{1}n_{2} | \mathcal{X} | n_{2}n_{1} \rangle_{R} e^{-(E_{n_{1}}+E_{n_{2}})L} + \frac{1}{2} \sum_{n_{1}} \langle n_{1}n_{1} | \mathcal{X} | n_{1}n_{1} \rangle_{R} e^{-2E_{n_{1}}L} + \dots$$

We need a prescription for the expectation values

 $\langle n_1 n_2 | \mathcal{X} | n_2 n_1 \rangle_R = \sum (measure \ factor) \cdot (\infty$ -volume quantity)

$$Z \langle \mathcal{X} \rangle_{L} = \langle \emptyset | \mathcal{X} | \emptyset \rangle_{R} + \sum_{n_{1}} \langle n_{1} | \mathcal{X} | n_{1} \rangle_{R} e^{-E_{n_{1}}L} + \frac{1}{2} \sum_{n_{1}, n_{2}} \langle n_{1}n_{2} | \mathcal{X} | n_{2}n_{1} \rangle_{R} e^{-(E_{n_{1}}+E_{n_{2}})L} + \frac{1}{2} \sum_{n_{1}} \langle n_{1}n_{1} | \mathcal{X} | n_{1}n_{1} \rangle_{R} e^{-2E_{n_{1}}L} + \dots$$

We need a prescription for the expectation values

 $\langle n_1 n_2 | \mathcal{X} | n_2 n_1 \rangle_R = \sum (measure \ factor) \cdot (\infty$ -volume quantity)

$$\langle n_1 | \mathcal{O} | n_1 \rangle_R = \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$

$$\langle n_1 n_2 | \mathcal{O} | n_2 n_1 \rangle_R = \frac{F_2^c(\theta_1, \theta_2)}{R^2 E_1 E_2} + \frac{F_1^c(\theta_1)}{RE_1} + \frac{F_1^c(\theta_2)}{RE_2} + F_0^c$$

$$\langle n_1 n_1 | \mathcal{O} | n_1 n_1 \rangle_R = 0 + 2 \cdot \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$
The 2 leads to a change of $log(1 - e^{-mL\cosh\theta})$ into $/(1 - e^{mL\cosh\theta})$ in the LeClair-Mussardo formula

$$Z \langle \mathcal{X} \rangle_{L} = \langle \emptyset | \mathcal{X} | \emptyset \rangle_{R} + \sum_{n_{1}} \langle n_{1} | \mathcal{X} | n_{1} \rangle_{R} e^{-E_{n_{1}}L} + \frac{1}{2} \sum_{n_{1}, n_{2}} \langle n_{1}n_{2} | \mathcal{X} | n_{2}n_{1} \rangle_{R} e^{-(E_{n_{1}}+E_{n_{2}})L} + \frac{1}{2} \sum_{n_{1}} \langle n_{1}n_{1} | \mathcal{X} | n_{1}n_{1} \rangle_{R} e^{-2E_{n_{1}}L} + \dots$$

We need a prescription for the expectation values

 $\langle n_1 n_2 | \mathcal{X} | n_2 n_1 \rangle_R = \sum (measure \ factor) \cdot (\infty$ -volume quantity)

▶ For a local operator (LeClair-Mussardo formula) we have

$$\langle n_1 | \mathcal{O} | n_1 \rangle_R = \frac{F_1^c(\theta_1)}{RE_1} + F_0^c \langle n_1 n_2 | \mathcal{O} | n_2 n_1 \rangle_R = \frac{F_2^c(\theta_1, \theta_2)}{R^2 E_1 E_2} + \frac{F_1^c(\theta_1)}{RE_1} + \frac{F_1^c(\theta_2)}{RE_2} + F_0^c \langle n_1 n_1 | \mathcal{O} | n_1 n_1 \rangle_R = 0 + 2 \cdot \frac{F_1^c(\theta_1)}{RE_1} + F_0^c \models \text{ The 2 leads to a change of } log(1 - e^{-mL\cosh\theta}) \text{ into}$$

18 / 24

$$Z \langle \mathcal{X} \rangle_{L} = \langle \emptyset | \mathcal{X} | \emptyset \rangle_{R} + \sum_{n_{1}} \langle n_{1} | \mathcal{X} | n_{1} \rangle_{R} e^{-E_{n_{1}}L} + \frac{1}{2} \sum_{n_{1}, n_{2}} \langle n_{1}n_{2} | \mathcal{X} | n_{2}n_{1} \rangle_{R} e^{-(E_{n_{1}}+E_{n_{2}})L} + \frac{1}{2} \sum_{n_{1}} \langle n_{1}n_{1} | \mathcal{X} | n_{1}n_{1} \rangle_{R} e^{-2E_{n_{1}}L} + \dots$$

We need a prescription for the expectation values

 $\langle n_1 n_2 | \mathcal{X} | n_2 n_1 \rangle_R = \sum (measure \ factor) \cdot (\infty$ -volume quantity)

$$\langle n_1 | \mathcal{O} | n_1 \rangle_R = \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$

$$\langle n_1 n_2 | \mathcal{O} | n_2 n_1 \rangle_R = \frac{F_2^c(\theta_1, \theta_2)}{R^2 E_1 E_2} + \frac{F_1^c(\theta_1)}{RE_1} + \frac{F_1^c(\theta_2)}{RE_2} + F_0^c$$

$$\langle n_1 n_1 | \mathcal{O} | n_1 n_1 \rangle_R = 0 + 2 \cdot \frac{F_1^c(\theta_1)}{RE_1} + F_0^c$$

$$\geq \text{ The 2 leads to a change of } \log(1 - e^{-mL\cosh\theta}) \text{ into }$$

$$1/(1 - e^{mL\cosh\theta}) \text{ in the LeClair-Mussardo formula}$$

Question: How does the octagon and decompactified string vertex fit into this framework?

Aim:

$$O(\theta_1, \theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1, \theta_2) = O(\theta_1, \theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxiliary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple factorized form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2} \left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

Aim:

$$O(\theta_1, \theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1, \theta_2) = O(\theta_1, \theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxiliary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple factorized form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2} \left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

Aim:

$$O(\theta_1,\theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxiliary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple factorized form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2} \left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

Aim:

$$O(\theta_1,\theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2) d_L(\theta_1) d_L(\theta_2)$$

We need to evaluate the octagon for two external particles and the set of auxillary particles on the mirror edges

- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple factorized form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2} \left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

Aim:

$$O(\theta_1,\theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxillary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple *factorized* form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2} \left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

Aim:

$$O(\theta_1,\theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxillary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple factorized form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2} \left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

Aim:

$$O(\theta_1,\theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxillary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple *factorized* form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2}\left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$
Aim:

$$O(\theta_1,\theta_2) = -\frac{1}{2} \frac{1}{\cosh \frac{\theta_1 - \theta_2}{2}} \quad \rightarrow \quad N_L^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2) d_L(\theta_1) d_L(\theta_2)$$

- We need to evaluate the octagon for two external particles and the set of auxillary particles on the mirror edges
- These will have rapidities θ_1, θ_2 and $u_i^{\pm} = u_i \pm i \frac{3\pi}{2}$
- Evaluate by Wick contractions
- Remarkably the connected part has a very simple *factorized* form e.g.

$$O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) = O(\theta_{1},\theta_{2})\prod_{i=1}^{2}\left(\frac{-1}{\cosh(u_{i}-\theta_{1})} + \frac{-1}{\cosh(u_{i}-\theta_{2})}\right)$$

> The factorized form leads naturally to an exponentiation...

We assume expectation values without disconnected terms

$$\langle \emptyset | \mathcal{O}^{\theta_{1},\theta_{2}} | \emptyset \rangle_{R} = O(\theta_{1},\theta_{2}) \langle n_{1} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{1} \rangle_{R} = \frac{1}{RE_{1}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{1}^{+}) \langle n_{1}n_{2} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{2}n_{1} \rangle_{R} = \frac{1}{R^{2}E_{1}E_{2}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) \langle n_{1}n_{1} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{1}n_{1} \rangle_{R} = \frac{1}{RE_{1}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{1}^{+})$$

The above expressions lead to the exact answer for the decompactified string vertex with one string being of size L

$$\begin{split} N_L^{\infty}(\theta_1, \theta_2) &= O(\theta_1, \theta_2) \cdot \underbrace{e^{\int_{-\infty}^{\infty} \frac{du}{2\pi} \frac{1}{\cosh(u-\theta_1)} \log(1-e^{-mL\cosh u})}}_{d_L(\theta_1)} \cdot (\theta_1 \to \theta_2) \\ &= O(\theta_1, \theta_2) d_L(\theta_1) d_L(\theta_2) \end{split}$$

We assume expectation values without disconnected terms

$$\langle \emptyset | \mathcal{O}^{\theta_{1},\theta_{2}} | \emptyset \rangle_{R} = O(\theta_{1},\theta_{2}) \langle n_{1} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{1} \rangle_{R} = \frac{1}{RE_{1}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{1}^{+}) \langle n_{1}n_{2} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{2}n_{1} \rangle_{R} = \frac{1}{R^{2}E_{1}E_{2}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) \langle n_{1}n_{1} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{1}n_{1} \rangle_{R} = \frac{1}{RE_{1}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{1}^{+})$$

The above expressions lead to the exact answer for the decompactified string vertex with one string being of size L

$$\begin{split} N_L^{\infty}(\theta_1, \theta_2) &= O(\theta_1, \theta_2) \cdot \underbrace{e^{\int_{-\infty}^{\infty} \frac{du}{2\pi} \frac{1}{\cosh(u-\theta_1)} \log(1-e^{-mL\cosh u})}}_{d_L(\theta_1)} \cdot (\theta_1 \to \theta_2) \\ &= O(\theta_1, \theta_2) d_L(\theta_1) d_L(\theta_2) \end{split}$$

We assume expectation values without disconnected terms

$$\langle \emptyset | \mathcal{O}^{\theta_{1},\theta_{2}} | \emptyset \rangle_{R} = O(\theta_{1},\theta_{2}) \langle n_{1} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{1} \rangle_{R} = \frac{1}{RE_{1}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{1}^{+}) \langle n_{1}n_{2} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{2}n_{1} \rangle_{R} = \frac{1}{R^{2}E_{1}E_{2}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{2}^{-},u_{2}^{+},u_{1}^{+}) \langle n_{1}n_{1} | \mathcal{O}^{\theta_{1},\theta_{2}} | n_{1}n_{1} \rangle_{R} = \frac{1}{RE_{1}} O^{c}(\theta_{1},\theta_{2},u_{1}^{-},u_{1}^{+})$$

The above expressions lead to the exact answer for the decompactified string vertex with one string being of size L

$$N_{L}^{\infty}(\theta_{1},\theta_{2}) = O(\theta_{1},\theta_{2}) \cdot \underbrace{e^{\int_{-\infty}^{\infty} \frac{du}{2\pi} \frac{1}{\cosh(u-\theta_{1})} \log(1-e^{-mL\cosh u})}}_{d_{L}(\theta_{1})} \cdot (\theta_{1} \to \theta_{2})$$
$$= O(\theta_{1},\theta_{2})d_{L}(\theta_{1})d_{L}(\theta_{2})$$

Now perform Wick contractions using

 $N_{L_1}^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)$

Similar factorization holds..

► New ingredient:

$$d_{L_1}(u^+)d_{L_1}(u^-) = \frac{mL_1}{2\pi^2} \left(1 - e^{-mL_1\cosh u}\right)$$

$$\langle n_1 n_1 | \mathcal{N}_{L_1}^{\theta_1, \theta_2} | n_1 n_1 \rangle_R = \frac{1}{RE_1} O(\theta_1, \theta_2) \left(\frac{-1}{\cosh(u_1 - \theta_1)} + \frac{-1}{\cosh(u_1 - \theta_2)} \right) \times \\ \times d_{2L_1}(u_1^+) d_{2L_1}(u_1^-)$$

Now perform Wick contractions using

 $N_{L_1}^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)$

Similar factorization holds..

► New ingredient:

$$d_{L_1}(u^+)d_{L_1}(u^-) = \frac{mL_1}{2\pi^2} \left(1 - e^{-mL_1\cosh u}\right)$$

$$\langle n_1 n_1 | \mathcal{N}_{L_1}^{\theta_1, \theta_2} | n_1 n_1 \rangle_R = \frac{1}{RE_1} O(\theta_1, \theta_2) \left(\frac{-1}{\cosh(u_1 - \theta_1)} + \frac{-1}{\cosh(u_1 - \theta_2)} \right) \times \\ \times d_{2L_1}(u_1^+) d_{2L_1}(u_1^-)$$

Now perform Wick contractions using

 $N_{L_1}^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)$

Similar factorization holds..

► New ingredient:

$$d_{L_1}(u^+)d_{L_1}(u^-) = \frac{mL_1}{2\pi^2} \left(1 - e^{-mL_1\cosh u}\right)$$

$$\langle n_1 n_1 | \mathcal{N}_{L_1}^{\theta_1, \theta_2} | n_1 n_1 \rangle_R = \frac{1}{RE_1} O(\theta_1, \theta_2) \left(\frac{-1}{\cosh(u_1 - \theta_1)} + \frac{-1}{\cosh(u_1 - \theta_2)} \right) \times \\ \times d_{2L_1}(u_1^+) d_{2L_1}(u_1^-)$$

Now perform Wick contractions using

 $N_{L_1}^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)$

Similar factorization holds...

► New ingredient:

$$d_{L_1}(u^+)d_{L_1}(u^-) = \frac{mL_1}{2\pi^2} \left(1 - e^{-mL_1\cosh u}\right)$$

$$\langle n_1 n_1 | \mathcal{N}_{L_1}^{\theta_1, \theta_2} | n_1 n_1 \rangle_R = \frac{1}{RE_1} O(\theta_1, \theta_2) \left(\frac{-1}{\cosh(u_1 - \theta_1)} + \frac{-1}{\cosh(u_1 - \theta_2)} \right) \times \\ \times d_{2L_1}(u_1^+) d_{2L_1}(u_1^-)$$

Now perform Wick contractions using

 $N_{L_1}^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)$

Similar factorization holds...

New ingredient:

$$d_{L_1}(u^+)d_{L_1}(u^-) = \frac{mL_1}{2\pi^2} \left(1 - e^{-mL_1\cosh u}\right)$$

We make now a modified assumption

 $\langle n_1 n_1 | \mathcal{N}_{L_1}^{\theta_1, \theta_2} | n_1 n_1 \rangle_R = \frac{1}{RE_1} O(\theta_1, \theta_2) \left(\frac{-1}{\cosh(u_1 - \theta_1)} + \frac{-1}{\cosh(u_1 - \theta_2)} \right) \times \\ \times d_{2L_1}(u_1^+) d_{2L_1}(u_1^-)$

Now perform Wick contractions using

 $N_{L_1}^{\infty}(\theta_1,\theta_2) = O(\theta_1,\theta_2)d_{L_1}(\theta_1)d_{L_1}(\theta_2)$

Similar factorization holds...

New ingredient:

$$d_{L_1}(u^+)d_{L_1}(u^-) = \frac{mL_1}{2\pi^2} \left(1 - e^{-mL_1\cosh u}\right)$$

$$\langle n_1 n_1 | \mathcal{N}_{L_1}^{\theta_1, \theta_2} | n_1 n_1 \rangle_R = \frac{1}{RE_1} O(\theta_1, \theta_2) \left(\frac{-1}{\cosh(u_1 - \theta_1)} + \frac{-1}{\cosh(u_1 - \theta_2)} \right) \times \\ \times d_{2L_1}(u_1^+) d_{2L_1}(u_1^-)$$

Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- **2.** However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

 Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- **2.** However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

 Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- **2.** However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

 Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- **2.** However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

 Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- **2.** However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

 Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- 2. However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

 Repeating the summation over multiple wrapping states lead to the full finite size string vertex Neumann coefficient

$$N_{L_1}^{L_2}(heta_1, heta_2) = O(heta_1, heta_2) \cdot rac{d_{L_1}(heta_1)d_{L_2}(heta_1)}{d_{L_3}(heta_1)} \cdot rac{d_{L_1}(heta_2)d_{L_2}(heta_2)}{d_{L_3}(heta_2)}$$

- 1. We have not derived the formulas for the (asymptotic) finite volume expectation values (note hoewver that even in the Le Clair-Mussardo case such expressions are conjectural)
- **2.** However it is far from trivial that such a simple choice exists which reproduces the exact finite volume expressions
- We are currently investigating the *i*ε prescription calculation which seems to be more predictive... work in progress

- The structure of multiple wrapping is surprisingly subtle even for free boson theories!
- This is especially so in the case of nontrivial topologies octagon, decompactified vertex and the full finite volume vertex
- Still many open questions remain...
- Solution of form factor axioms for $AdS_5 \times S^5$...
- Resumming the hexagons into an octagon see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS

The structure of multiple wrapping is surprisingly subtle even for free boson theories!

- This is especially so in the case of nontrivial topologies octagon, decompactified vertex and the full finite volume vertex
- Still many open questions remain...
- Solution of form factor axioms for $AdS_5 \times S^5$..
- Resumming the hexagons into an octagon see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS

- The structure of multiple wrapping is surprisingly subtle even for free boson theories!
- This is especially so in the case of nontrivial topologies octagon, decompactified vertex and the full finite volume vertex
- Still many open questions remain...
- Solution of form factor axioms for $AdS_5 \times S^5$..
- Resumming the hexagons into an octagon see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS

- The structure of multiple wrapping is surprisingly subtle even for free boson theories!
- This is especially so in the case of nontrivial topologies octagon, decompactified vertex and the full finite volume vertex
- Still many open questions remain...
- Solution of form factor axioms for AdS₅ × S⁵..
- Resumming the hexagons into an octagon see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS

- The structure of multiple wrapping is surprisingly subtle even for free boson theories!
- This is especially so in the case of nontrivial topologies octagon, decompactified vertex and the full finite volume vertex
- Still many open questions remain...
- Solution of form factor axioms for $AdS_5 \times S^5$...
- Resumming the hexagons into an octagon see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS

- The structure of multiple wrapping is surprisingly subtle even for free boson theories!
- This is especially so in the case of nontrivial topologies octagon, decompactified vertex and the full finite volume vertex
- Still many open questions remain...
- Solution of form factor axioms for $AdS_5 \times S^5$...
- Resumming the hexagons into an octagon see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS