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Motivation

» We have a very good understanding of
the spectrum of a string on AdSs x S°

» This is due to the integrability of the
worldsheet theory

Key question:

» How to describe string interactions for
a generic integrable worldsheet theory
» Previously we knew how to proceed only
for a free worldsheet theory
> massless free bosons and fermions in
the case of flat spacetime
» massive free bosons and fermions in
the case of pp-wave background
geometry

» These methods do not generalize to the
interacting QFT case
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size of the cylinder L = J charge under a U(1)g subgroup

» Handling QFT on a finite size cylinder is
very difficult
» First decompactify
1. Now one can formulate crossing
equations
2. solve YBE, unitarity and crossing to
get the S-matrix

» Handle large cylinders (= power law
corrections in L)
— Bethe ansatz equations

» Handle exponential corrections
o e—mL
1. single wrapping: Liischer corrections
2. multiple wrapping: Thermodynamic

Bethe Ansatz (TBA)
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How to perform these steps for other observables (and for the
string vertex)?
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Decompactifying the string vertex
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Decompactified string vertex

DECOmMPACTIRIED VERTEX
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Decompactified string vertex

» Axioms solved for pp-wave
— reproduce the exact result
(includes all wrappings w.r.t. size of the
remaining closed string)
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DECOmMPACTIRIED VERTEX

Two IHEXACGNS‘

Decompactified string vertex

» Axioms solved for pp-wave

>

>

>

— reproduce the exact result
(includes all wrappings w.r.t. size of the
remaining closed string)

Solutions exist for some relativistic
integrable QFT's (like sinh-Gordon)

No full solution yet for AdSs x S5

We are still lacking a solution of ordinary
form factor axioms for AdSs x S

Hexagon

>

>

Somewhat miraculously exact solution
exists for AdSs x S°

Efficient for calculations in the
perturbative regimel!
(wrapping appear at high loop orders)

‘half wrappings'
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Power law corrections

Based on
1. experience with form factors Pozsgay, Takacs
1
(2|0(0)[61,02), = ——r—="  f(01,02)
L \/[)2’5(91,92) N——

oo—volume form factor

where 61,0, are solutions of the Bethe Ansatz equations on a size L
cylinder
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Based on
1. experience with form factors Pozsgay, Takacs
1
(2]0(0)[61,02), = ————=="-  f(01,02)
L %% 5(91, 92) N——

oo—volume form factor
where 61,0, are solutions of the Bethe Ansatz equations on a size L
cylinder
2. direct OPE coefficient calculations

it seems that we only should:

1. Put in solutions of Bethe Ansatz equations as external particle
momenta

2. include appropriate jacobian factors to adjust for standard
normalization of states in finite volume
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Gluing back...

» Insert a summation over
— intermediate states on each
edge Basso, Komatsu, Vieira

SFT vEerex DEcompacTIRIED Veerex » At the wrapping order leads to
T formal divergent expressions
Basso, Goncalves, Komatsu

> Especially subtle at higher
wrapping orders

‘OCTAGON'

Question: Can we understand the gluing back and multiple wrapping in
this case?
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Look for guidance for other observables in relativistic setting
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Standard relativistic observables

Ground state energy

» Can be obtained from the large R limit of the partition function

7 ~ e—RE(L)

» For a free boson/fermion we have a simple formula

°° do
E L — i _ h9| 1 —mlL cosh 6
o(L) m/_w27rcos og(l¥e )
» Expanding the above formula in a power series in e~ ™-%sh 0 giyes

multiple wrapping contributions to the ground state energy.

» Remarkably, the exact formula in the interacting case has the same
form

Eo(L) = —m/ 99 cosh o log (1 + efsw))

oo 2T

where ¢(6) is a solution of the relevant TBA equation.
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» For a free boson /fermion

doy
L_Z/H o WF (01,...,60,)

where F5(61,...,0,) is the infinite volume (connected) diagonal
form factor of the operator O.

» This formula already has a form of summation over infinite set of
states

» However the measure factor is nontrivial and distinct from the one
for the ground state energy

» Remarkably enough the above formula again generalizes to the
interacting case

do, 1 .
L_Z/H 27 1 et 7 (P1:e-6n)
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Octagon

» Octagon with two particles on one edge(string):

1 1

O 02) = =3 con oz

Decompactified string vertex

» The exact (decompactified) pp-wave Neumann coefficient with one
string of finite size L takes the form

NP2 (61,02) = O(61,0,)d,(61)d.(62)

» All wrapping corrections are contained in the functions d;(6)

_ * du 1 —mL cosh u
du(0) = exp {/Oc 27 cosh(u — 0)|Og(1 ¢ )}
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From octagon to the string vertex

Finite size string vertex
» Neumann coefficient with string lengths L;,L, and L3 = Ly + Ly
d,(01)d1,(01) du,(02)du,(62)

di,(61) di,(02)

> This can be rewritten in terms of the decompactified one N/(01,05)
as:

Np2(01,02) = O(61,02) -

dLZ(el) . dL2(92)
diyv1,(01)  diyr1,(62)

N (61,02) = O(61,02)dy, (61)d0, (62) -

decompactified string vertex
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Two ways of understanding these formulas:

1. Finite volume regularization in the mirror channel/cluster expansion
Dorey, Fioravanti, Tateo, Rim

2. ie prescription + careful handling of §(0) divergences
LeClair, Lesage, Sachdev, Saleur

Concentrate on free massive boson (pp-wave in the SFT case)
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Finite volume regularization in the mirror channel

» We want to compute an observable for a
cylinder of size L

v

Compactify the mirror channel (vertical
edge) to size R

» Sum over all multiparticle mirror state

1+Ze—EnL+ Z e—EnlL—E,,2L+.“

ni>n

Take the limit R — oo

< do
Z%R/ —mcosh 6
- oo 2T

v
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Finite volume regularization in the mirror channel

Subtlety

» Care must be taken about diagonal terms:

IESDIEDS

n>ny ny,n2 ni=ny

v

The latter term survives in the large R limit!

v

It can be thought of as a particle going twice around the cylinder

~ e—2mL cosh 0

—mL cosh 0)

v

It is these terms which give rise to the log(1 — e measure

factor in the formula for ground state energy...

v

The evaluation of observables sandwiched between such degenerate
states is very nontrivial due to disconnected pieces...
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Z(X), =X D)+ (m|X|n)ge Ents

ny

1 3 1 -
+§ Z (nimp| X |many)g e (En1+En2)L+§Z (nym| X |nyny)p e 2B Ly

ni,m m
» We need a prescription for the expectation values

(nino| X |nam) g = Z (measure factor) - (oo-volume quantity)

> For a local operator (LeClair-Mussardo formula) we have

Fi(61)
n|O|n = 1 + F§
< 1| | 1>R RE]_ 0
_ F5(01,02) | FE(61) | Ff(62) | .
(nnp| O|mnm)p = RPELE, + RE, + RE, + F§
Fe(0
<n1n1|O|n1n1>R = O—FZM—FF&-

RE;
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Expectation values

Z(X), =X D)+ (m|X|n)ge Ents

ny

1 3 1 -
+§ Z (nimp| X |many)g e (En1+En2)L+§Z (nym| X |nyny)p e 2B Ly

ny,m m
» We need a prescription for the expectation values
(nino| X |nam) g = Z (measure factor) - (oo-volume quantity)

> For a local operator (LeClair-Mussardo formula) we have

Fi(61)

<n1|0|n1>R = RE]_ +F0C
F5(01,65) | Fi(0h) | Fi(02)
(ninp| O |many)p R2E,E, + RE, + RE, + Fo
Fe(0
<n1n1|(9|n1n1>R = 0+2M+F5
RE;
» The 2 leads to a change of log(1 — e~™t<sh?) into

1/(1 — e™-<osh9) in the LeClair-Mussardo formula
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Question: How does the octagon and decompactified string vertex fit
into this framework?
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From the octagon to the decompactified vertex

Aim:

1 1

00, — NEO(Gl, 92) = 0(61, 02)dL(91)d1_(02)
2

061, 02) = 2 cosh

» We need to evaluate the octagon for two external particles and the
set of auxillary particles on the mirror edges

» These will have rapidities 01, 6, and u,-jE = u + /'37”

» Evaluate by Wick contractions
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From the octagon to the decompactified vertex

Aim:

1 1
0(01702) = 3

dcontzt 0 NE(n02) = O(0h. 6:)d(61)d (02)

» We need to evaluate the octagon for two external particles and the
set of auxillary particles on the mirror edges

» These will have rapidities 01, 6, and u,-jE = u + /'37”
» Evaluate by Wick contractions

» Remarkably the connected part has a very simple factorized form e.g.

2

_ 1 -1
O (0, 02y, iy, v, u) = O(By, 92)1—[ (cosh(u- —61) * cosh(u; — 02))
i1 i i
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From the octagon to the decompactified vertex
Aim:

1 1
0(01702) = 3

dcontzt 0 NE(n02) = O(0h. 6:)d(61)d (02)

» We need to evaluate the octagon for two external particles and the
set of auxillary particles on the mirror edges

» These will have rapidities 01, 6, and u,-jE = u + /'37”
» Evaluate by Wick contractions

» Remarkably the connected part has a very simple factorized form e.g.

2

-1 -1
0%, b2, up, 1y, w7, ) = O(6h, 02)1—[ (cosh(u- —61) * cosh(u; — 92))
i=1 1 1

» The factorized form leads naturally to an exponentiation...
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From the octagon to the decompactified vertex
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From the octagon to the decompactified vertex

» We assume expectation values without disconnected terms

@00y = 0O(61,62)

1 _
(m|O%% ) = RT_r_—IOC(el,@L uy, uy)
1 _
(mno| O%% o) = R2E,E, O (61, 02, Uy, iy, g, )
1 _
<n1n1| 091’02 |n1n1)R = 7OC(91,92, Uy ,Uf_)

RE;
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From the octagon to the decompactified vertex

» We assume expectation values without disconnected terms

@0 0"%|0), = 0(61,6,)

1 _
<”1| oot |n1>R = R—EIOC(91792, t 7“:?_)
1 o
(nimo| oo lm2m)p = R2E E, 0%(61,02, uy ,uy “;rv ”ir)
1 _
(mm| O%% i), = EOC(91,927 uy, uy)

» The above expressions lead to the exact answer for the
decompactified string vertex with one string being of size L

—mL cosh u)

o 1 log(l—
0(91’ 92) . effoo 27 cosh(u—67) og(1—e

dL(01)

N(LX)(91792) (91 — 92)

= O(by,02)d.(61)dL(62)
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From the decompactified to the full string vertex
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From the decompactified to the full string vertex
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SFET vEetex DECOMPACTIRIED VERTEX
» Now perform Wick contractions using

NE (01, 62) = O(61,02)d1, (61)dy, (62)

» Similar factorization holds..
> New ingredient:

mL
dLl(U+)d[_1(U7) = 27721 (1 _ eile cosh u)
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From the decompactified to the full string vertex

-

SFET vEetex DECOMPACTIRIED VERTEX

v

Now perform Wick contractions using

NEY(01,02) = O(01,02)dy, (01)dL, (02)

v

Similar factorization holds..

v

New ingredient:

mL
d’-l(U+)dL1(u7) — ?21 (1 o emel cosh u)

» We make now a modified assumption

01,02 — i -1 -1
{mm | Ny [mm) g = RE, 0(61,62) cosh(uy — 61) - cosh(ur — 62) )

X d2L1(ui~_)d2L1(u17)
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From the decompactified to the full string vertex
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From the decompactified to the full string vertex

» Repeating the summation over multiple wrapping states lead to the
full finite size string vertex Neumann coefficient

di, (01)di, (1)  di, (02)d, (62)
di(f1)  di(62)

N2 (01, 62) = O(61,62) -
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From the decompactified to the full string vertex
» Repeating the summation over multiple wrapping states lead to the
full finite size string vertex Neumann coefficient

NE(61,0,) = 0(61,05) - 2o (32)(?12)(91) 4L (55)(222)(92)

Some loose ends

1. We have not derived the formulas for the (asymptotic) finite volume
expectation values (note hoewver that even in the Le Clair-Mussardo
case such expressions are conjectural)

2. However it is far from trivial that such a simple choice exists which
reproduces the exact finite volume expressions
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From the decompactified to the full string vertex

» Repeating the summation over multiple wrapping states lead to the
full finite size string vertex Neumann coefficient

di,(01)d1,(01)  diy(02)du,(62)

N7 (61,02) = O(0r.62) di,(61) di,(62)
3 3

Some loose ends

1. We have not derived the formulas for the (asymptotic) finite volume
expectation values (note hoewver that even in the Le Clair-Mussardo
case such expressions are conjectural)

2. However it is far from trivial that such a simple choice exists which
reproduces the exact finite volume expressions

3. We are currently investigating the /e prescription calculation which
seems to be more predictive... work in progress
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Conclusions

» The structure of multiple wrapping is surprisingly subtle even for free
boson theories!

» This is especially so in the case of nontrivial topologies — octagon,
decompactified vertex and the full finite volume vertex

» Still many open questions remain...
» Solution of form factor axioms for AdSs x S°..

» Resumming the hexagons into an octagon
see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS
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