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Motivation

I We have a very good understanding of
the spectrum of a string on AdS5 × S5

I This is due to the integrability of the
worldsheet theory

Key question:

I How to describe string interactions for
a generic integrable worldsheet theory

I Previously we knew how to proceed only
for a free worldsheet theory

I massless free bosons and fermions in
the case of flat spacetime

I massive free bosons and fermions in
the case of pp-wave background
geometry

I These methods do not generalize to the
interacting QFT case
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size of the cylinder L ≡ J charge under a U(1)R subgroup

I Handling QFT on a finite size cylinder is
very difficult

I First decompactify
1. Now one can formulate crossing

equations
2. solve YBE, unitarity and crossing to

get the S-matrix

I Handle large cylinders (≡ power law
corrections in L)
– Bethe ansatz equations

I Handle exponential corrections
∼ e−mL

1. single wrapping: Lüscher corrections
2. multiple wrapping: Thermodynamic

Bethe Ansatz (TBA)
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2. multiple wrapping: Thermodynamic

Bethe Ansatz (TBA)

4 / 24



size of the cylinder L ≡ J charge under a U(1)R subgroup

I Handling QFT on a finite size cylinder is
very difficult

I First decompactify
1. Now one can formulate crossing

equations
2. solve YBE, unitarity and crossing to

get the S-matrix

I Handle large cylinders (≡ power law
corrections in L)
– Bethe ansatz equations

I Handle exponential corrections
∼ e−mL

1. single wrapping: Lüscher corrections
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How to perform these steps for other observables (and for the
string vertex)?
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Decompactifying the string vertex

Two approaches:

1. Decompactified string vertex Bajnok, RJ

2. The hexagon approach Basso, Komatsu, Vieira
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Decompactified string vertex
I Axioms solved for pp-wave
−→ reproduce the exact result
(includes all wrappings w.r.t. size of the
remaining closed string)

I Solutions exist for some relativistic
integrable QFT’s (like sinh-Gordon)

I No full solution yet for AdS5 × S5

I We are still lacking a solution of ordinary
form factor axioms for AdS5 × S5

Hexagon
I Somewhat miraculously exact solution

exists for AdS5 × S5

I Efficient for calculations in the
perturbative regime!
(wrapping appear at high loop orders)

I ‘half wrappings’
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Power law corrections

Based on

1. experience with form factors Pozsgay, Takacs

〈∅|O (0) |θ1, θ2〉L =
1√

ρ2 · S(θ1, θ2)
· f (θ1, θ2)︸ ︷︷ ︸
∞−volume form factor

where θ1, θ2 are solutions of the Bethe Ansatz equations on a size L
cylinder

2. direct OPE coefficient calculations

it seems that we only should:

1. Put in solutions of Bethe Ansatz equations as external particle
momenta

2. include appropriate jacobian factors to adjust for standard
normalization of states in finite volume
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Gluing back...

I Insert a summation over
intermediate states on each
edge Basso, Komatsu, Vieira

I At the wrapping order leads to
formal divergent expressions

Basso, Goncalves, Komatsu

I Especially subtle at higher
wrapping orders

Question: Can we understand the gluing back and multiple wrapping in
this case?
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Look for guidance for other observables in relativistic setting
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Standard relativistic observables

Ground state energy

I Can be obtained from the large R limit of the partition function

Z ∼ e−RE0(L)

I For a free boson/fermion we have a simple formula

E0(L) = ±m
∫ ∞
−∞

dθ
2π

cosh θ log
(
1∓ e−mL cosh θ)

I Expanding the above formula in a power series in e−mL cosh θ gives
multiple wrapping contributions to the ground state energy.

I Remarkably, the exact formula in the interacting case has the same
form

E0(L) = −m
∫ ∞
−∞

dθ
2π

cosh θ log
(

1 + e−ε(θ)
)

where ε(θ) is a solution of the relevant TBA equation.
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I Remarkably, the exact formula in the interacting case has the same
form

E0(L) = −m
∫ ∞
−∞

dθ
2π

cosh θ log
(

1 + e−ε(θ)
)

where ε(θ) is a solution of the relevant TBA equation.
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Standard relativistic observables
1-pt function (LeClair Mussardo formula)

I For a free boson/fermion

〈O〉L =
∞∑

n=0

∫ n∏
k=1

dθk

2π
1

1∓ emL cosh θk
F c

n (θ1, . . . , θn)

where F c
n (θ1, . . . , θn) is the infinite volume (connected) diagonal

form factor of the operator O.
I This formula already has a form of summation over infinite set of

states
I However the measure factor is nontrivial and distinct from the one

for the ground state energy
I Remarkably enough the above formula again generalizes to the

interacting case

〈O〉L =
∞∑

n=0

∫ n∏
k=1

dθk

2π
1

1 + eε(θk )
F c

n (θ1, . . . , θn)
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From octagon to the string vertex

Octagon

I Octagon with two particles on one edge(string):

O(θ1, θ2) = −
1
2

1

cosh θ1−θ2
2

Decompactified string vertex
I The exact (decompactified) pp-wave Neumann coefficient with one

string of finite size L takes the form

N∞L (θ1, θ2) = O(θ1, θ2)dL(θ1)dL(θ2)

I All wrapping corrections are contained in the functions dL(θ)

dL(θ) = exp
{∫ ∞
−∞

du
2π

1
cosh(u − θ)

log(1− e−mL cosh u)

}
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From octagon to the string vertex

Finite size string vertex

I Neumann coefficient with string lengths L1,L2 and L3 = L1 + L2

NL2
L1
(θ1, θ2) = O(θ1, θ2) ·

dL1(θ1)dL2(θ1)

dL3(θ1)
· dL1(θ2)dL2(θ2)

dL3(θ2)

I This can be rewritten in terms of the decompactified one N∞L1 (θ1, θ2)
as:

NL2
L1
(θ1, θ2) = O(θ1, θ2)dL1(θ1)dL1(θ2)︸ ︷︷ ︸

decompactified string vertex

· dL2(θ1)

dL1+L2(θ1)
· dL2(θ2)

dL1+L2(θ2)
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Two ways of understanding these formulas:

1. Finite volume regularization in the mirror channel/cluster expansion
Dorey, Fioravanti, Tateo, Rim

2. iε prescription + careful handling of δ(0) divergences
LeClair, Lesage, Sachdev, Saleur

Concentrate on free massive boson (pp-wave in the SFT case)
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Finite volume regularization in the mirror channel

I We want to compute an observable for a
cylinder of size L

I Compactify the mirror channel (vertical
edge) to size R

I Sum over all multiparticle mirror state

1 +
∑

n

e−EnL +
∑

n1≥n2

e−En1L−En2L + . . .

I Take the limit R →∞∑
n

→ R
∫ ∞
−∞

dθ
2π
m cosh θ
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Finite volume regularization in the mirror channel

Subtlety

I Care must be taken about diagonal terms:∑
n1≥n2

=
1
2

∑
n1,n2

+
1
2

∑
n1=n2

I The latter term survives in the large R limit!
I It can be thought of as a particle going twice around the cylinder

∼ e−2mL cosh θ

I It is these terms which give rise to the log(1− e−mL cosh θ) measure
factor in the formula for ground state energy...

I The evaluation of observables sandwiched between such degenerate
states is very nontrivial due to disconnected pieces...
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Expectation values

Z 〈X 〉L = 〈∅| X |∅〉R +
∑

n1

〈n1| X |n1〉R e
−En1L+

+
1
2

∑
n1,n2

〈n1n2| X |n2n1〉R e
−(En1+En2 )L+

1
2

∑
n1

〈n1n1| X |n1n1〉R e
−2En1L+. . .

I We need a prescription for the expectation values

〈n1n2| X |n2n1〉R =
∑

(measure factor) · (∞-volume quantity)

I For a local operator (LeClair-Mussardo formula) we have

〈n1| O |n1〉R =
F c
1 (θ1)

RE1
+ F c
0

〈n1n2| O |n2n1〉R =
F c
2 (θ1, θ2)

R2E1E2
+
F c
1 (θ1)

RE1
+
F c
1 (θ2)

RE2
+ F c
0

〈n1n1| O |n1n1〉R = 0 + 2 · F
c
1 (θ1)

RE1
+ F c
0

I The 2 leads to a change of log(1− e−mL cosh θ) into
1/(1− emL cosh θ) in the LeClair-Mussardo formula
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∑

(measure factor) · (∞-volume quantity)

I For a local operator (LeClair-Mussardo formula) we have

〈n1| O |n1〉R =
F c
1 (θ1)

RE1
+ F c
0

〈n1n2| O |n2n1〉R =
F c
2 (θ1, θ2)

R2E1E2
+
F c
1 (θ1)

RE1
+
F c
1 (θ2)

RE2
+ F c
0

〈n1n1| O |n1n1〉R = 0 + 2 · F
c
1 (θ1)

RE1
+ F c
0

I The 2 leads to a change of log(1− e−mL cosh θ) into
1/(1− emL cosh θ) in the LeClair-Mussardo formula
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Question: How does the octagon and decompactified string vertex fit
into this framework?
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From the octagon to the decompactified vertex

Aim:

O(θ1, θ2) = −
1
2

1

cosh θ1−θ2
2

→ N∞L (θ1, θ2) = O(θ1, θ2)dL(θ1)dL(θ2)

I We need to evaluate the octagon for two external particles and the
set of auxillary particles on the mirror edges

I These will have rapidities θ1, θ2 and u±i = ui ± i 3π2
I Evaluate by Wick contractions
I Remarkably the connected part has a very simple factorized form e.g.

Oc(θ1, θ2, u
−
1 , u

−
2 , u

+
2 , u

+
1 ) = O(θ1, θ2)

2∏
i=1

(
−1

cosh(ui − θ1)
+

−1
cosh(ui − θ2)

)
I The factorized form leads naturally to an exponentiation...
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From the octagon to the decompactified vertex

I We assume expectation values without disconnected terms

〈∅|Oθ1,θ2 |∅〉R = O(θ1, θ2)

〈n1| Oθ1,θ2 |n1〉R =
1
RE1
Oc(θ1, θ2, u

−
1 , u

+
1 )

〈n1n2| Oθ1,θ2 |n2n1〉R =
1

R2E1E2
Oc(θ1, θ2, u

−
1 , u

−
2 , u

+
2 , u

+
1 )

〈n1n1| Oθ1,θ2 |n1n1〉R =
1
RE1
Oc(θ1, θ2, u

−
1 , u

+
1 )

I The above expressions lead to the exact answer for the
decompactified string vertex with one string being of size L

N∞L (θ1, θ2) = O(θ1, θ2) · e
∫∞
−∞

du
2π

1
cosh(u−θ1)

log(1−e−mL cosh u)︸ ︷︷ ︸
dL(θ1)

·(θ1 → θ2)

= O(θ1, θ2)dL(θ1)dL(θ2)
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From the decompactified to the full string vertex

I Now perform Wick contractions using

N∞L1 (θ1, θ2) = O(θ1, θ2)dL1(θ1)dL1(θ2)

I Similar factorization holds..
I New ingredient:

dL1(u
+)dL1(u

−) =
mL1
2π2

(
1− e−mL1 cosh u)

I We make now a modified assumption

〈n1n1| N θ1,θ2
L1
|n1n1〉R =

1
RE1
O(θ1, θ2)

(
−1

cosh(u1 − θ1)
+

−1
cosh(u1 − θ2)

)
×

×d2L1(u
+
1 )d2L1(u

−
1 )
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From the decompactified to the full string vertex

I Repeating the summation over multiple wrapping states lead to the
full finite size string vertex Neumann coefficient

NL2
L1
(θ1, θ2) = O(θ1, θ2) ·

dL1(θ1)dL2(θ1)

dL3(θ1)
· dL1(θ2)dL2(θ2)

dL3(θ2)

Some loose ends

1. We have not derived the formulas for the (asymptotic) finite volume
expectation values (note hoewver that even in the Le Clair-Mussardo
case such expressions are conjectural)

2. However it is far from trivial that such a simple choice exists which
reproduces the exact finite volume expressions

3. We are currently investigating the iε prescription calculation which
seems to be more predictive... work in progress
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Conclusions

I The structure of multiple wrapping is surprisingly subtle even for free
boson theories!

I This is especially so in the case of nontrivial topologies – octagon,
decompactified vertex and the full finite volume vertex

I Still many open questions remain...
I Solution of form factor axioms for AdS5 × S5..
I Resumming the hexagons into an octagon

see Basso, Goncalves, Komatsu for hexagon+single wrapping in AdS
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