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Dissipative hydrodynamics in superspace

We want to understand hydrodynamics from first principles.

Hydrodynamics is a thermal system out-of-equilibrium the Schwinger-Keldysh
partition function is the natural formalism
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The symmetries of the Schwinger-Keldysh effective action will be implemented using
superspace techniques. Our construction complements existing formulations.



The Schwinger-Keldysh
partition function




Dissipative hydrodynamics in superspace

The symmetries of the Schwinger-Keldysh partition function can be deduced from its
microscopic representation
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1) Topological Schwinger-Keldysh symmetry:
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Dissipative hydrodynamics in superspace

For thermal states there is yet another symmetry of the Schwinger-Keldysh partition

function
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Dissipative hydrodynamics in superspace

The IR degrees of freedom are maps between target spaces and a worldvolume manifold.

4) Symmetries are doubled
e FEach of the two target spaces is endowed with a set of symmetries

e A worldvolume manifold is convenient to compare source/operators
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The superspace
implementation of the
symmetries




Dissipative hydrodynamics in superspace

A topological sector can be implemented using a BRST-type symmetry, in the same way
as for (Witten-type) topological QFTs

1. There exists a scalar, Grassmannian, nilpotent charge Q

2. The action S and observables are Q-closed

3. The operator belonging to the topological sector is Q-exact
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The Schwinger-Keldysh partition function has 2 topological sectors for @, and@®_
hence we may use 2 Grassmannian charges: QQsx and Qx s
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Dissipative hydrodynamics in superspace

The action of the nilpotent charges can be geometrized in superspace
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The most general low-energy Schwinger-Keldysh effective action is a functional of
superfields, bosonic derivatives and superderivatives in superspace

The reality condition (2)
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Full KMS symmetry
The topological Schwinger-Keldysh (1) and KMS (3bis) symmetries (3)



Dissipative hydrodynamics in superspace

Let us for example consider a probe U(1) gauge field:

_ 1 1)
Bi P— RBT@ —+ (ghOStS) + QQABaz AR_l = §C0th (%) 255

The most general action up to quadratic order in field expansion:
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Fluctuation-dissipation relations are also satisfied
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Conclusions




Dissipative hydrodynamics in superspace

We used the symmetries of the microscopic Schwinger-Keldysh partition function to
constrain the form of effective field theories for thermal states using superspace.

e Compared to previous literature:
o Our arguments for the topological Schwinger-Keldysh and KMS symmetries are
given a priori.
o We impose 2 supercharges only.
o We implement the full KMS symmetry which accounts for the
fluctuation-dissipation relations.
o We work beyond the classical statistical limit.

e OQutlook:

A complete effective action?
Entropy current?
o Generalization to out-of-time ordered correlators (important for detecting
chaos)
AdS/CFT embedding? Where would be the ghosts?
Applications to turbulence, cosmology,...
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