Black Holes and Thermoelectric Transport

Jerome Gauntlett

Aristomenis Donos Elliot Banks, Tom Griffin, Luis Melgar

European Research Council

Established by the European Commission

In seeking applications of holography to real materials, thermoelectric conductivities are important observables

$$\left(\begin{array}{c}J^{i}\\Q^{i}\end{array}\right) = \left(\begin{array}{cc}\sigma^{ij} & T\alpha^{ij}\\T\bar{\alpha}^{ij} & T\bar{\kappa}^{ij}\end{array}\right) \left(\begin{array}{c}E_{j}\\\zeta_{j}\end{array}\right)$$
$$\zeta \leftrightarrow -(\nabla T)/T$$

- The DC conductivity is particularly interesting.
- Naively an IR observable, but depends on UV physics
- e.g. CFT on Minkowski space:

Translational invariance \Rightarrow momentum conserved $\Rightarrow \sigma_{DC} = \infty$

More precisely, $Re[\sigma(\omega)] \sim \delta(\omega)$

General framework for dissipating momentum:

Holographic Lattices

CFT with a deformation by an operator that explicitly breaks translation invariance.

[Horowitz, Santos, Tong] [.....]

• For example, consider D=4 black holes with bulk scalar field

$$\phi(r, x^i) \to \underbrace{\phi_s(x^i)}_r + \frac{v(x^i)}{r^2} + \dots \qquad r \to \infty$$

Corresponds to a deformation of the CFT:

$$L_{CFT} \rightarrow L_{CFT} + \int dx \phi_s(x) \phi(x)$$

Holographic lattices are interesting

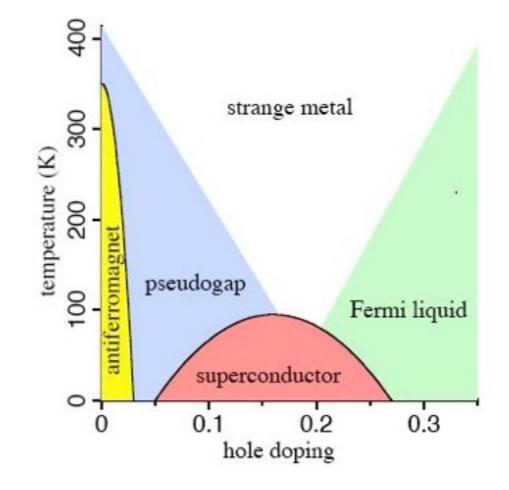
The lattice deformation can lead to:

• 'Coherent metals' aka Drude physics - smoothed out $\delta(\omega)$ [Hartnoll,Hoffman][...]

Arises when momentum is nearly conserved.

Novel 'incoherent' metals
 [Donos, JPG][Gouteraux][....]

Insulators and M-I transitions
 [Donos,Hartnoll][Donos,JPG][.....]



Holographic lattices are interesting

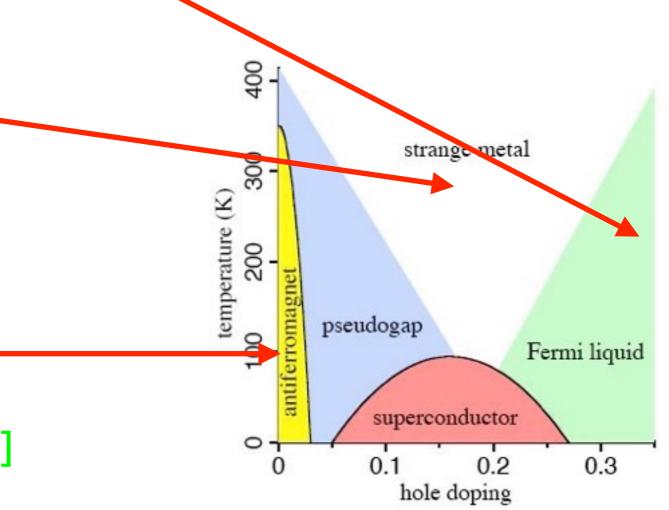
The lattice deformation can lead to:

• 'Coherent metals' aka Drude physics - smoothed out $\delta(\omega)$ [Hartnoll,Hoffman][...]

Arises when momentum is nearly conserved.

Novel 'incoherent' metals
 [Donos, JPG][Gouteraux][....]

Insulators and M-I transitions
 [Donos,Hartnoll][Donos,JPG][.....]



Plan of talk

• Universal result in holography

DC conductivity matrix is universally obtained exactly by solving generalised linearised Navier-Stokes equations for an incompressible auxiliary fluid on the curved black hole horizon

[Donos,JPG]

Hydrostatic fluid equations give exact statements about correlation functions of CFT

Exact version of old membrane paradigm for black holes

• Various comments...

Consider hydrodynamic limit of holographic lattices: can extract local currents. Use this to show that thermal backflow can occur

DC Conductivity and Navier-Stokes

Illustrate with D=4 Einstein-Maxwell Theory

$$S = \int d^4x \sqrt{-g} \Big[R + 6 - \frac{1}{4} F^2 + \dots \Big]$$

Holographic lattice: static, planar black hole that preserve time reversal invariance T

• Behaviour at AdS boundary $r \to \infty$

 $ds^{2} \rightarrow r^{-2}dr^{2} + r^{2} \left[g_{tt}^{\infty}(x)dt^{2} + g_{ij}^{\infty}(x)dx^{i}dx^{j}\right]$ $A \rightarrow A_{t}^{\infty}(x)dt$

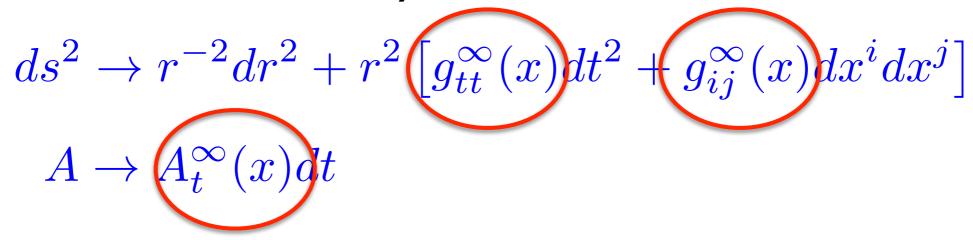
DC Conductivity and Navier-Stokes

Illustrate with D=4 Einstein-Maxwell Theory

$$S = \int d^4x \sqrt{-g} \Big[R + 6 - \frac{1}{4} F^2 + \dots \Big]$$

Holographic lattice: static, planar black hole that preserve time reversal invariance T

• Behaviour at AdS boundary $r \to \infty$



i.e. periodic sources for boundary T^{tt} , T^{ij} and J^t

• Setup: Perturb the black hole by DC sources E_i , ζ_i

$$\delta(ds^2) = \delta g_{\mu\nu} dx^{\mu} dx^{\nu} + 2tg_{tt}\zeta_i dt dx^i$$
$$\delta A = \delta a_{\mu} dx^{\mu} \leftarrow tE_i dx^i + tA_t\zeta_i dx^i$$

• Behaviour at AdS boundary:

The only sources are $E_i \quad \zeta_i \qquad \zeta \leftrightarrow -(\nabla T)/T$

• Behaviour at the horizon: perturbation is regular

• Naively: now solve full bulk perturbation. However...

• Result I: Zero modes of the electric and heat currents at the horizon are equal the zero modes of those in the CFT

> Extends early work of [Kovtun,Son,Starinets] [lqbal, Liu]

Illustrate with electric currents:

Bulk equations of motion $\nabla_{\mu}F^{\mu\nu} = 0$

Define the bulk electric current density as $J^i = \sqrt{-q}F^{ir}$

$$\partial_i J^i = 0, \qquad \partial_r J^i = \partial_j \left(\sqrt{-g} F^{ji} \right)$$

At AdS boundary, $J^{i}(x)|_{\infty}$, is local current of dual CFT Observe zero mode $\overline{J}^i = \int d^2x J^i$ is independent of radius

$$\bar{J}^i|_{\infty} = \bar{J}_0^i$$

This, in itself, is NOT a membrane paradigm

• Result 2: Obtain local currents $J^i(x)|_0$, $Q^i(x)|_0$ on horizon as functions of E_i , ζ_i and hence DC conductivity of CFT

Use Hamiltonian decomposition of equations of motion with respect to the radial coordinate:

 $\mathcal{H} = N H + N_{\mu} H^{\mu} + \Phi C \,,$

Evaluate constraints at the "stretched horizon"

Find a decoupled sector for a subset of the perturbation which forms a closed set of equations. Moreover, they give $J^i|_0$ and $Q^i|_0$ [Donos, [PG]]

This IS a membrane paradigm

Define

$$(v^i, p, w) \quad \leftrightarrow \quad (\delta g_{it}^{(0)}, \delta g_{rt}^{(0)}, \delta a_t^{(0)})$$

$$Q_0^i = 4\pi T \sqrt{hv^i}$$
$$J_0^i = \sqrt{h} [a_i^{(0)} v^i + h^{ij} (E_j + \partial_j w)]$$

$$\partial_i Q_0^i = 0$$

$$\partial_i J_0^i = 0$$

$$-2\nabla^i \nabla_{(i} v_{j)} = (4\pi T \zeta_j - \nabla_j p) + a_t^{(0)} (E_j + \nabla_j w)$$

Linear, time-independent, forced Navier-Stokes equations for a charged, incompressible fluid on the curved black hole horizon

Comments I

• The formalism can be generalised from Einstein-Maxwell to any theory of gravity in holography

E.g. Scalar fields ϕ give extra viscous terms appear in the Stokes equations [Banks,Donos,JPG] $\nabla_i \phi^{(0)} \nabla_i \phi^{(0)} v^i$

Comments I

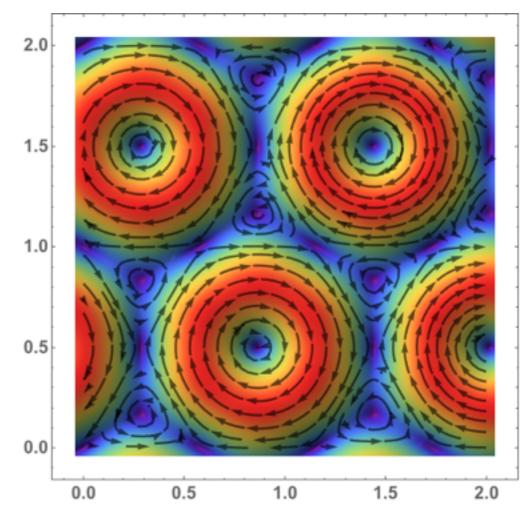
• The formalism can be generalised from Einstein-Maxwell to any theory of gravity in holography E.g. Scalar fields ϕ give extra viscous terms appear in the Stokes equations $\nabla_i \phi^{(0)} \nabla_i \phi^{(0)} v^i$ [Banks,Donos,JPG]

• Break T-reversal invariance [Donos, JPG, Griffin, Melgar]

Allow for equilibrium holographic lattices with magnetic fields but also local magnetisation currents and heat magnetisation currents

$$J_{\infty}^{(B)i} = \partial_j M^{(B)ij}$$
$$Q_{\infty}^{(B)i} = \partial_j M_T^{(B)ij}$$

Find: extra Lorentz and Coriolis terms in Navier-Stokes eqs



Comments II

Generalise to higher derivative theories of gravity

• Result I: Zero modes of the electric and heat currents at the horizon are equal the zero modes of those in the CFT

Introduce DC sources in a time independent way Obtain result by doing a KK reduction on the time direction

• Result 2: Obtain local currents $J^i(x)|_0$, $Q^i(x)|_0$ on horizon as functions of E_i , ζ_i and hence DC conductivity of CFT

For the special case of Gauss-Bonnet gravity showed this is still valid and obtain generalised higher derivative Navier-Stokes

For Gauss-Bonnet gravity in D dimensions

$$\nabla_i (\delta^i_j - 4\tilde{\alpha} G^i_j) v^j = 0$$

$$-2\nabla^{i}\left(S_{ij}^{kl}\nabla_{k}v_{l}\right) = \left(\delta_{j}^{i} - 4\tilde{\alpha}G_{j}^{i}\right)\left(4\pi T\zeta_{i} - \nabla_{i}p\right)$$

where

$$S_{ij}^{kl} = \left[1 - \tilde{\alpha}2(D-4)(D-1)\right]\delta_i^{(k}\delta_j^{(l)} + \tilde{\alpha}\left[2h_{ij}R^{kl} + 4\delta_{(i}^{(k}R_{j)}^{(l)} + 4R_i^{(k}\beta_j^{(l)}\right]$$

For Gauss-Bonnet gravity in D dimensions

$$\nabla_i (\delta^i_j - 4\tilde{\alpha} G^i_j) v^j = 0$$

$$-2\nabla^{i}\left(S_{ij}^{kl}\nabla_{k}v_{l}\right) = \left(\delta_{j}^{i} - 4\tilde{\alpha}G_{j}^{i}\right)\left(4\pi T\zeta_{i} - \nabla_{i}p\right)$$

where

$$S_{ij}^{kl} \in [1 - \tilde{\alpha}2(D - 4)(D - 1)] \,\delta_i^{(k}\delta_j^{l)} + \tilde{\alpha} \left[2h_{ij}R^{kl} + 4\delta_{(i}^{(k}R_{j)}^{l)} + 4R_i^{(k}\delta_j^{l)}\right]$$

The $\tilde{\alpha}$ corrected shear viscosity [Brigante,Liu,Myers,Shenker,Yaida]

Comments III: Two interesting perturbative limits

 $\mathcal{L} = \mathcal{L}_{CFT} + h(x)\mathcal{O}(x)$

Take lattice to be periodic with $x \sim x + 2\pi L$ Typical amplitude h_0

Largest wave number $k_{max} = n/L$

- a) Perturbative lattice: $h_0/T^{d-\Delta} << 1$ Coherent metals with Drude peaks Can prove a generalised Wiedemann-Franz law
- b) Hydrodynamic limit: $k_{max}/T << 1$ Fluid-gravity also valid in this limit

b) Hydrodynamic limit $k_{max}/T << 1$

Holographic lattices with source for $T^{\mu\nu}$ only Equivalent to CFT on curved manifold with metric $h_{\mu\nu}$

e.g consider

$$ds^2 = -dt^2 + h_{ij}(x)dx^i dx^j$$

Two simplifications in hydro limit: [Banks,Donos,JPG,Griffin,Melgar]

- Black hole horizon metric is the UV metric h_{ij}
- Solve Navier-Stokes equations using h_{ij} gives local heat currents $Q^i(x)$ of CFT

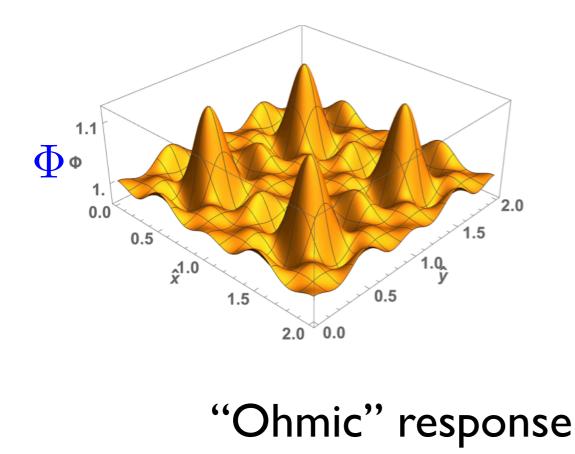
Can also obtain this result from fluid gravity. In fact this result is valid for non-holographic CFTs too Thermal backflow for CFTs Example: CFT on metric $ds^2 = -dt^2 + \Phi(x)dx^i dx^i$

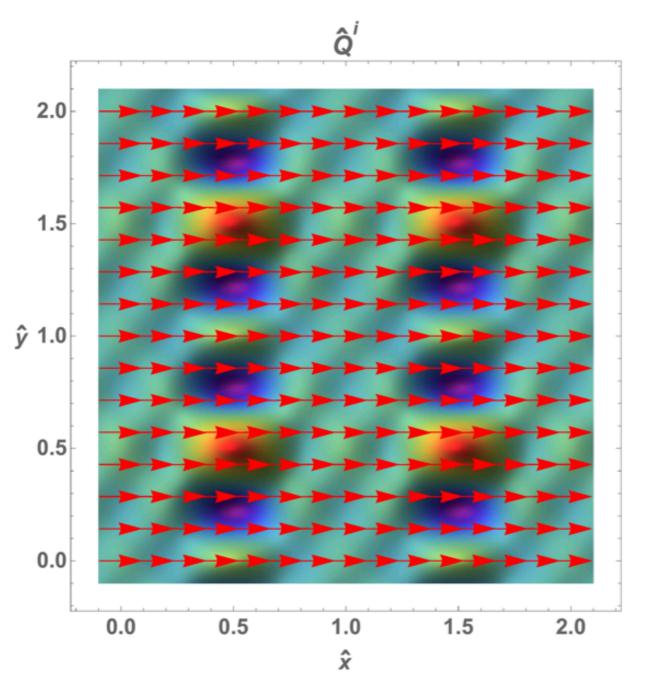
Equivalent to CFT with periodic isotropic spatial strain

Conformally equivalent to spatially varying temperature

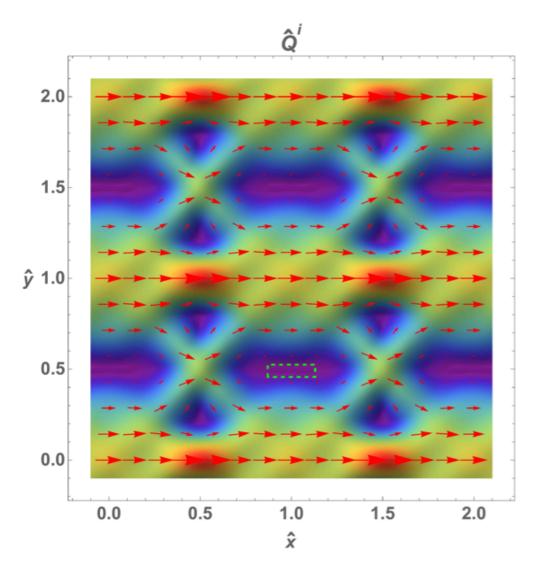
 $ds^2 = -\Phi(x)^{-1}dt^2 + dx^i dx^i$

Small amplitude deformation Φ



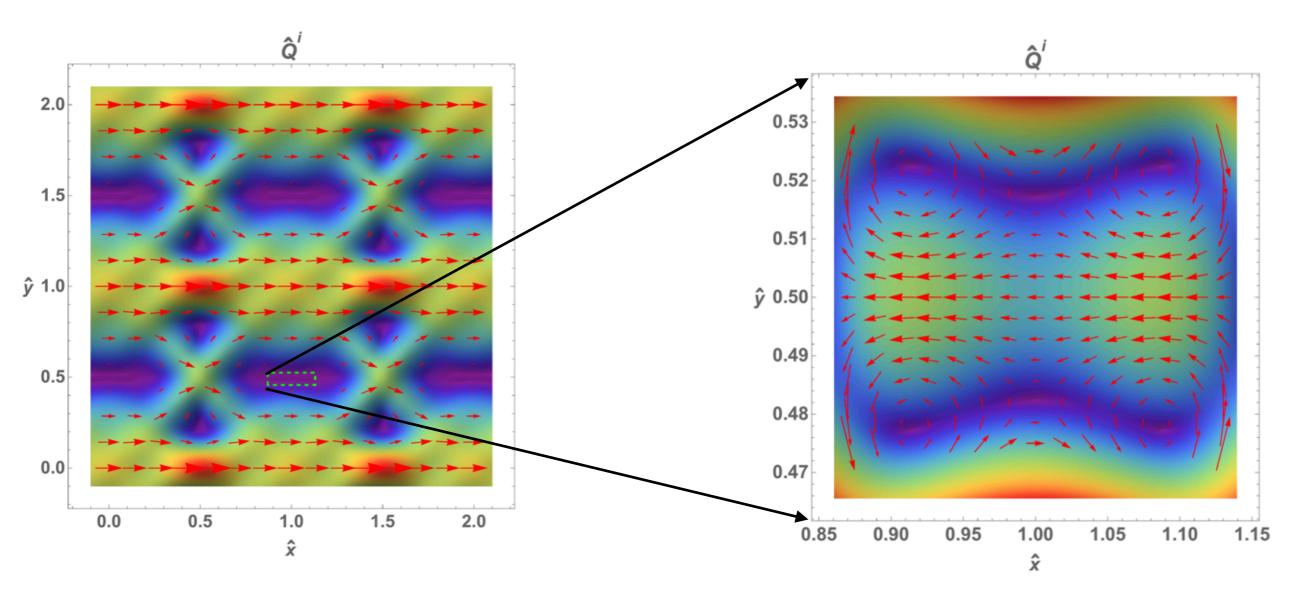


Increase amplitude of Φ



Increase amplitude of Φ

Thermal back flow!



Perhaps observable in graphene?

c.f. electric backflow discussed by

[Levitov,Falkovich] [Bandurin et al] [Moll,Kushwaha,Nandi,Schmidt,MacKenzie]

Final Comments

- Solve Navier-Stokes on black hole horizons
 Gives, universally, DC thermoelectric conductivities for all T
 Exact version of membrane paradigm
- Valid for higher derivative gravity
- Solve the Navier-Stokes equations perturbatively:
 - a) Perturbative lattices small amplitude
 - b) Hydrodynamic limit long wavelength.

Can connect to fluid gravity and hence relate our membrane paradigm to fluid gravity

- General DC result very obscure in fluid-gravity
- Predict thermal backflow: observable?