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In seeking applications of holography to real materials,
thermoelectric conductivities are important observables
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The DC conductivity is particularly interesting.

[(j s (VT)/T]

Naively an IR observable, but depends on UV physics

e.g. CFT on Minkowski space:

Translational invariance = momentum conserved = o0pg =

More precisely,

Relo(w)] ~ d(w)



General framework for dissipating momentum:

r N
Holographic Lattices

CFT with a deformation by an operator that explicitly

\breaks translation invariance. )

* For example, consider D=4 black holes with bulk scalar field
D),
o(r,x’) — | -

Corresponds to a deformation of the CFT:

Lecrr — Lorpr + /d(x)




Holographic lattices are interesting

The lattice deformation can lead to:

* ‘Coherent metals’ aka Drude physics - smoothed out §(w)
[Hartnoll,Hoffman][...]

Arises when momentum is nearly conserved.
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Holographic lattices are interesting

The lattice deformation can lead to:

* ‘Coherent metals’ aka Drude physics - smoothed out §(w)
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Plan of talk

* Universal result in holography

r A
DC conductivity matrix is universally obtained exactly

by solving generalised linearised Navier-Stokes equations for an
incompressible auxiliary fluid on the curved black hole horizon

g _J

Hydrostatic fluid equations give exact statements about
correlation functions of CFT

Exact version of old membrane paradigm for black holes

* Various comments...

Consider hydrodynamic limit of holographic lattices: can extract
local currents. Use this to show that thermal backflow can occur



DC Conductivity and Navier-Stokes

lllustrate with D=4 Einstein-Maxwell Theory

S:/d‘lx\/fg[Rw—iF%...}

Holographic lattice: static, planar black hole that preserve time
reversal invariance T

e Behaviour at AdS boundary r — oc
ds® — r=2dr® + 1 |gpf (z)dt” + gif(m)dmidxj]

A — A (x)dt



DC Conductivity and Navier-Stokes

lllustrate with D=4 Einstein-Maxwell Theory

S:/d‘lx\/—fg[}zw—iﬁ’%...}

Holographic lattice: static, planar black hole that preserve time
reversal invariance T

e Behaviour at AdS boundary r — oc

ds® — r—2dr? + 7“2152 azidxj}

i.e. periodic sources for boundary 7%, 7% and J!
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e Setup: Perturb the black hole by DC sources FE;, (;

5(ds?) = 5gwda;“dx”@ttgdt@

SA = da,dz” € tEdz’ + tAtQ@

e Behaviour at AdS boundary:
The only sources are F; (; ¢ < —(VT)/T

* Behaviour at the horizon: perturbation is regular

* Naively: now solve full bulk perturbation. However...
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e Result |: Zero modes of the electric and heat currents at the
horizon are equal the zero modes of those in the CFT

. J

Extends early work of

lllustrate with electric currents:
Bulk equations of motion V " = (

Define the bulk electric current density as  J' = \/—gF*"

aiJi:O7 arji:ai(\/_gFji)

At AdS boundary, J*(x

)|so » is local current of dual CFT
Observe zero mode J' = /dsz’ is independent of radius

@ )

Tl = J This, in itself,is NOT a
T o membrane paradigm
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e Result 2: Obtain local currents J*(z)|g, Q'(z)|y ©n horizon
as functions of F; , (; and hence DC conductivity of CFT

\_ _J

Use Hamiltonian decomposition of equations of motion with
respect to the radial coordinate:

H=NH+N,H"+&C,

Evaluate constraints at the “stretched horizon”

( )
Find a decoupled sector for a subset of the perturbation
which forms a closed set of equations.

Moreover, they give J'|; and (Q)°|,

. J

This IS a membrane paradigm



Define

[ (W', pw) > (8gy, 69", 6a!") ]

Qp) = 47TT\@
J} = \/E[ah@ + 8@

Find:
0;Qp = 0
0;J, =0

—2VV v = (47T ¢; — V; p) + a\” (E; + V,w)

\ _/

Linear, time-independent, forced Navier-Stokes equations for a
charged, incompressible fluid on the curved black hole horizon



Comments |
* The formalism can be generalised from Einstein-Maxwell to

any theory of gravity in holography
E.g. Scalar fields ¢ give extra viscous terms appear in the Stokes

equatlons V]¢(O) VZ¢(O)UZ



Comments |
* The formalism can be generalised from Einstein-Maxwell to

any theory of gravity in holography

E.g. Scalar fields ¢ give extra viscous terms appear in the Stokes
equations v, gb(O)VZ- ¢(O)vi [Banks,Donos,|PG]

*Break T-reversal invariance [Donos,|PG,Griffin,Melgar]

Allow for equilibrium holographic
lattices with magnetic fields but also

local magnetisation currents and heat
magnetisation currents

JB) — ajM(B)ij

i B)ig
Q" = o;Mp”"

Find: extra Lorentz and Coriolis terms in Navier-Stokes eqs



Comments I

Generalise to higher derivative theories of gravity

e Result |: Zero modes of the electric and heat currents at the
horizon are equal the zero modes of those in the CFT

Introduce DC sources in a time independent way

Obtain result by doing a KK reduction on the time direction

e Result 2: Obtain local currents J'(z)|g, Q*(x)|o on horizon
as functions of £; , ¢; and hence DC conductivity of CFT

For the special case of Gauss-Bonnet gravity showed this is still
valid and obtain generalised higher derivative Navier-Stokes



For Gauss-Bonnet gravity in D dimensions

—2V' (85 Vi) = (8¢ — 4aG") (4T ¢ — Vip)
where

~ k l ~ k 1
SE =1 —a2(D — 4)(D — 1)] 86" + & |2h,; R* + 45 R"

(k1)
i L) T A



For Gauss-Bonnet gravity in D dimensions

—2V* (S

.l
J

Viv) = (85 — 4aG%) (4rT¢ — Vip)

where

gk (az(p —4)(D - )]0 Da [2h, B + 46" ) + 4R,

The « corrected shear viscosity
[Brigante,Liu,Myers,Shenker, Yaida]



Comments lll: Two interesting perturbative limits

L= Lcrr + h(z)O(x)
Take lattice to be periodic with = ~ x + 27L

Typical amplitude o

Largest wave number k4. = n/L

* a) Perturbative lattice: hq/ T2 << 1

Coherent metals with Drude peaks

Can prove a generalised Wiedemann-Franz law

e b) Hydrodynamic limit: k.. /T <<'1

Fluid-gravity also valid in this limit



b) Hydrodynamic limit =~ kmaez/T << 1

Holographic lattices with source for T"" only

Equivalent to CFT on curved manifold with metric £,

e.g consider
ds® = —dt* + h;j(z)dx"dx’
Two simplifications in hydro limit:

e Black hole horizon metric is the UV metric /i

* Solve Navier-Stokes equations using h;; gives local heat
currents QQ'(z) of CFT

Can also obtain this result from fluid gravity.
In fact this result is valid for non-holographic CFTs too



Thermal backflow for CFTs
Example: CFT on metric  ds® = —dt* + ®(x)dz"dx"

Equivalent to CFT with periodic isotropic spatial strain
Conformally equivalent to spatially varying temperature
ds® = —®(z) " dt* + dx'dz’

Small amplitude deformation ¢

“Ohmic” response 00 05 10 15 20

x>



Increase amplitude of ¢




Increase amplitude of ¢
Thermal back flow!
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Perhaps observable in graphene!

c.f. electric backflow discussed by

[Levitov,Falkovich] [Bandurin et al] [Moll,Kushwaha,Nandi,Schmidt,MacKenzie]



Final Comments

* Solve Navier-Stokes on black hole horizons
Gives, universally, DC thermoelectric conductivities for all T

Exact version of membrane paradigm
* Valid for higher derivative gravity

* Solve the Navier-Stokes equations perturbatively:

a) Perturbative lattices - small amplitude

b) Hydrodynamic limit - long wavelength.

Can connect to fluid gravity and hence relate our membrane
paradigm to fluid gravity

General DC result very obscure in fluid-gravity

Predict thermal backflow: observable?



