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GW150914

⌫ ⌘ m1m2

(m1 + m2)2
= 0.2466

GW150914 parameters:

Symmetric mass ratio

2

m1 = 35.7M�

m2 = 29.1M�

Mf = 61.8M�

a1 ⌘ S1/(m2
1) = 0.31+0.48

�0.28

a2 ⌘ S2/(m2
2) = 0.46+0.48

�0.42

af ⌘
Jf

M2
f

= 0.67

q ⌘ m1

m2
= 1.27

strain =
�L

L

lunedì 20 febbraio 17



THE THEORY...
Is needed to compute waveform templates for characterizing
the source (GWs were detected...but WHAT was detected?)

Theory is needed to study the 2-body problem in General Relativity
(dynamics & gravitational wave emission)

Theory:  SYNERGY between 

                          Analytical and Numerical General Relativity
                                              (AR/NR)

3

Rµ⌫ �
1
2
gµ⌫R =

8⇡G

c4
Tµ⌫
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UBER GRAVITATIONSWELLEN (EINSTEIN, 1918)

4

gij = �ij + hij

hij is transverse and traceless and 
propagates at the speed of light
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GRAVITATIONAL WAVES: TWO HELICITY STATES s = ±2
Massless, two helicity states,
i.e., two transverse-traceless (TT) tensor polarizations propagating at v = c

hij = h+(xixj � yiyj) + h�(xiyj + y1xj)

h+

h�
gµ� = �µ� + hµ�

h̄µ� = hµ� �
1
2
�µ�h

⇤⇥⇤
⇥h̄µ� = �16⇥G

c4
Tµ�
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GRAVITATIONAL WAVES: PIONEERING THEIR 
DETECTION 

Joseph Weber (1919-2000)

General Relativity and Gravitational Waves
(Interscience Publishers, NY, 1961)

�L

L
� hijn

inj
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LASER INTERFEROMETER GW DETECTORS

Virgo (IT)

7
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HOW TO DETECT & MEASURE: 
MATCHED FILTERING!

To extract/do parameter estimation of the GW signal from detector’s output 
(lost in broadband noise             )Sn(f)

�output|htemplate⇥ =
�

df

Sn(f)
o(f)h�template(f)

Detector’s output Template of
expected 
GW signal

Need waveform templates!

8
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GW150914

9

was so loud that it could be seen with the naked eye...

pass-band 
filtering
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OBSERVED GRAVITATIONAL WAVE SIGNALS

29M� + 35M�

23M� + 13M�

14M� + 7.5M�

                             
BH radii: 

from 30 Hz (sec)

' 20� 100 km
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BINARY SYSTEMS:
NEWTONIAN PRELIMINARIES

11
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GWS FROM COMPACT BINARIES: BASICS

12

Newtonian binary systems in circular orbits: Kepler’s law

M = m1 + m2
v2

c2
=

GM

c2R
=

�
GM�

c3

⇥2/3

GM = �2R3

Einstein (1918) quadrupole formula: GW luminosity (energy flux)

x =
�v

c

⇥2

� =
µ

M
=

m1m2

M2

Pgw =
dEgw

dt
=

32
5

c5

G
�2x5
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GWS FROM COMPACT BINARIES: BASICS 

13

Eorbital = Ekinetic + Epotential = �1
2

m1m2

R
= �1

2
µx

Balance argument

dEorbital

dt
= PGW =

dEGW

dt

f22
GW =

1
⇥

�
5

256�

⇥3/8 �
1

t� tcoalescence

⇥3/8

⇥GW
22 = 2�fGW

22 = 2�orbital

MONOTONICALLY GROWING FREQUENCY: CHIRP!
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BBHS: WAVEFORM OVERWIEV
h+ � ih⇥ =

1
r

X

�m

h�m �2Y�m(�,⇥)
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e.g: equal-mass BBH, aligned-spins
�1 = �2 = +0.98

•SXS (Simulating eXtreme Spacetimes) collaboration
•www.blackholes.org
•Free catalog of waveforms (downloadable)

(quasi-adiabatic) inspiral:
2 BHs, quasi-circular orbit

plunge
(nonadiabatic)

merger (1 BH forms)

ringdown (1BH is oscillating)

ringdown

merger
plunge

h
�
m1, m2, ⇧S1, ⇧S2

⇥
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BINARY NEUTRON STARS (BNS)?
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15

See:
Damour&Nagar, PRD 2009
Damour&Nagar, PRD 2010
Damour,Nagar et al., PRL 2011
Bini,Damour&Faye, PRD2012
Bini&Damour, PRD 2014
Bernuzzi, Nagar, et al, PRL 2014
Bernuzzi, Nagar, Dietrich, PRL 2015
Bernuzzi, Nagar, Dietrich & Damour,PRL, 2015

•Tidal effects

•Love numbers (tidal “polarization” constants)

•EOS dependence & “universality”

•EOB/NR for BNS

All BNS need is Love!
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FAST CHIRP: COULD GW150914 BE A BNS?

16

The merger occurs at frequencies too low to be a “standard” BNS
GW frequency grows fro 35Hz to 150Hz around peak (factor 4) over the observed 8GWs cycles
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But the final answer is that consistency 
was found between inspiral and ringdown!

Merger

35Hz

150Hz

Proposal for improved analysis with “more” ringdown: Del Pozzo&Nagar, arXiv:1606.03952
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Brady, Craighton & Thorne, 1998

Numerical Relativity: >= 2005 (F. Pretorius, Campanelli et al., Baker et al.)
Most accurate data: Caltech-Cornell spectral code: M. Scheel et al., 2008  (SXS collaboration)

Effective-One-Body (Buonanno & Damour (2000)
PN-resummation (Damour,Iyer, Sathyaprakash (1998)

Inspiral (PN methods) Ringdown 
(perturbation theory)

Merger: 
Numerical Relativity

Spectral code
Extrapolation (radius & 
resolution)

Phase error:
< 0.02 rad (inspiral)
<0.1    rad (ringdown)

TEMPLATES FOR GWS FROM BBH COALESCENCE
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EFFECTIVE ONE BODY (EOB): 2000

18

Numerical Relativity was not working (yet...)
EOB formalism was predictive, qualitatively and semi-quantitatively correct (10%)

•Blurred transition from inspiral to plunge

•Final black-hole mass

•Final black hole spin

•Complete waveform
A. Buonanno & T. Damour, PRD 59 (1999) 084006
A. Buonanno & T. Damour, PRD 62 (2000) 064015

⌫ =
m1m2

(m1 + m2)2
=

µ

M> 2005: Developing EOB & interfacing with NR
             2 groups did (and are doing) it
- A.Buonanno et al. (AEI)
- T.Damour & AN + (>2005)
 

lunedì 20 febbraio 17



PRECURSOR-BURST-RINGDOWN STRUCTURE :1972

19

PRECURSOR: Quadrupole formula
(Ruffini-Wheeler approximation)

BURST: the particle crosses
the “light-ring”, r=3M

RINGDOWN: QNMs tail
Spacetime oscillations

Davis, Ruffini & Tiomno: radial plunge of a test-particle onto a Schwarzschild black 
hole (Regge-Wheeler-Zerilli BH perturbation theory)
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IMPORTANCE OF AN ANALYTICAL FORMALISM

20

Theoretical: physical understanding of the coalescence process, especially in 
complicated situations (e.g., precessing spins).

Practical: need many thousands of accurate GWs templates for detection and 
data analysis. Need analytical templates:                    

Solution: synergy between analytical & numerical relativity

Perturbation Theory
Post-Newtonian (PN)

Strong-field information

      EOBNR models

Numerical Relativity:
(SUPERCOMPUTERS)

h
�
m1, m2, ⇧S1, ⇧S2

⇥

Resummed 
PN theory:

EOB (LAPTOP)

Complementary route: IMRPhenom models
PN_glue_NR, EOB_glue_NR hybrids (glued waveforms) 
to build phenomenological templates [Khan et al., 2015] 

v2

c2 ⌧ 1
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BBH & BNS COALESCENCE: NUMERICAL RELATIVITY

21

Multi-patch grid structure
(Llama FD code, Pollney & Reisswig)

•Formulation of Einstein equations (BSSN, harmonic, Z4c,...)
•Setting up initial data (solution of the constraints)
•Gauge choice
•Numerical approach (finite-differencing (FD, e.g. Llama) vs spectral (SpEC,SXS))
•High-order FD operators
•Treatment of BH singularity (excision vs punctures)
•Wave extraction problem on finite-size grids (Cauchy-Characteristic vs extrapolation)
•Huge computational resources (mass-ratios 1:10; spin)
•Adaptive-mesh-refinement
•Error budget (convergence rates are far from clean...)
•For BNS: further complications due to GR-Hydrodynamics for matter
•Months of running/analysis to get one accurate waveform....

Numerical relativity is complicated & computationally expensive:
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[PRL 111 (2013) 241104]

But (at least) 250.000 templates were used...
•www.blackholes.org
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ANALYTICALLY: MOTION AND GW IN GR

Hamiltonian: conservative part of the dynamics

Radiation reaction: mechanical energy/angular momentum goes away in GWs and 
                              backreacts on the system. 

                              The (closed) orbit CIRCULARIZES and SHRiNks with time

Waveform

23

General Relativity is NONLINEAR!

Post-Newtonian (PN) approximation: expansion in 
v2

c2
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PROBLEM OF MOTION IN GENERAL RELATIVITY

24

‣post-Minkowskian (Einstein 1916)
‣post-Newtonian (Droste 1916)
‣Matching of asymptotic expansions: body zone/near zone/wave zone
‣Numerical Relativity  

Approximation
methods

One-chart versus Multi-chart approaches

Coupling between Einstein field equations and equations of motion

Strongly self-gravitating bodies: neutron stars or black holes 

Skeletonized:               point-masses  ? delta-functions in GR

Multipolar Expansion

Need to go to very high-orders of approximation

Use a “cocktail”: PM, PN, MPM, MAE, EFT,an. reg., dim. reg.,...

Tµ⇥

QFT-like
calculations
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POST-NEWTONIAN HAMILTONIAN (C.O.M)

q = q1 � q2

p = p1 = �p2
25

...and 4PN too, [Damour, Jaranowski&Schaefer 2014/2015] - 4 loop calculation

Newton     (0PN)

(1PN, 1938)               - [Einstein-Infeld-Hoffman]      

(2PN, 1982/83)                 - [Damour-Deruelle]

(3PN, 2000)     - [Damour, Jaranowski,Schaefer]
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PN-EXPANDED (CIRCULAR) ENERGY FLUX (3.5PN)

26

C = �E = 0.5772156649...

dE

dt
= �L balance equation

Mechanical loss GW luminosity

Newtonian 
quadrupole 
formula
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TAYLOR-EXPANDED (CIRCULAR) 3PN WAVEFORM

x = (M�)2/3 � v2/c2

� =
m1m2

M2

M = m1 + m2

Blanchet, Iyer&Joguet, 02; Blanchet, Damour, Iyer&Esposito-Farese, 04; Kidder07; Blanchet et al.,08

27
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EFFECTIVE-ONE-BODY (EOB)
approach to the general relativistic two-body problem

28
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STRUCTURE OF THE EOB FORMALISM

EOB Hamiltonian

Resummed (BD99)

PN dynamics
(DD81,D82,DJS01,IF03,BDIF
04)

EOB Rad. Reac. force

F̂�HEOB

Factorized waveform

h⇧m = h(N,⇥)
⇧m ĥ(⇥)

⇧m

ĥ(⇥)
⇧m = Ŝ(⇥)

effT⇧mei��m�⇧
⇧m

Resummed (DN07,DIN08)Resummed (DIS98)

BH perturbations 
RW57, Z70, Z72

hEOB
�m = �(tm � t)hinsplunge

�m (t) + �(t� tm)hringdown
�m (t)

hringdown
⇤m (t) =

�

N

C+
Ne��+

N (t�tm)

EOB waveform

PN waveform
BD89, B95&05,ABIQ04,

PN rad losses
WW76, BDIWW95, BDEFI 
05

Matching at 
merger time

⇥N = �N + i⇤N

QNMs spectrum

BNS: tides
(Love numbers)

29

Phenomenological fit
to NR postmerger 

phase
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TWO-BODY/EOB “CORRESPONDENCE”:
THINK QUANTUM-MECHNICALLY (J.A. WHEELER)

30

1:1 map
(m1, m2)

µ =
m1m2

m1 + m2

ge�
µ⇥

Sommerfeld’s 
“Old Quantum Mechanics”
(action-angle variables &
  Delaunay Hamiltonian)

J = ⌃� =
1
2�

�
p�d⇥

N = n� = Ir + J

Ir =
1
2�

�
prdr

Real 2-body system
(in the c.o.m. frame)

An effective particle
in some effective metric

Hclassical(q, p) Equantum(Ia = nah) = f�1[Equantum
e� (Ie�

a = nah)]

E = f(E)

Hclassical(Ia)

µ2 + gµ⇥
e�

⇥Se�

⇥xµ

⇥Se�

⇥x⇥
+O(p4) = 0
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THE 2-BODY HAMILTONIAN [2PN]

31

The 2-body Hamiltonian at 2PN (c.o.m. frame)

Hrelative
2PN (q,p) = H0(q,p) +

1
c2

H2(q,p) +
1
c4

H4(q,p)

The Newtonian limit

H0(q,p) =
p2

2µ
+

GMµ

|q|
4 additional terms at 1PN
7 additional terms at 2PN
11 additional terms at 3PN

Rewrite the c.o.m. (reduced, non-relativistic) energy using action variables
Obtain the 2PN “quantum” energy levels: Delaunay Hamiltonian [Damour-Schaefer 
1988]

ENR
2PN = �1

2
µ

�2

n2

⇤
1 +

�2

c2

�c11

n⇥
+

c20

n2

⇥
+

�4

c4

� c13

n⇥3
+

c22

n2⇥2
+

c31

n3⇥
+

c40

n4

⇥⌅

Erelativistic
2PN (n, �) = Mc2 + ENR

2PN(n, �)

Balmer formula!
� = (GMµ)/�
N = n�
e � µ

Ze � GM
En = �µ

2
e4

�2n2
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THE EOB ENERGY MAP

Simple energy map:

HEOB = M

⇤
1 + 2�

�
Ĥe� � 1

⇥EOB Hamiltonian: M = m1 + m2

Real 2-body system
(PN-expanded Hamiltonian
  in the c.o.m. frame)

An effective particle
in some effective metric1:1 map

µ =
m1m2

m1 + m2

ge�
µ⇥

Ĥe� =
He�

µ

� =
µ

M

(m1, m2)

Ee� =
E2

real �m2
1 �m2

2

2M

32
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EXPLICIT FORM OF THE EOB HAMILTONIAN

33

EOB Hamiltonian

All functions are a   -dependent deformation of the Schwarzschild ones�

A(r) = 1� 2u + 2�u3 + a4�u4

u = GM/(c2R)

Ĥe� �

⇧⌅⌅⇤p2
r� + A(r)

�
1 +

p2
�

r2
+ z3

p4
r�

r2

⇥

Contribution at 3PN

Simple effective Hamiltonian:

a4 =
94
3
� 41

32
�2 ⇥ 18.6879027

A(r)B(r) = 1� 6�u2 + 2(3� � 26)�u3

Crucial EOB radial potential

pr� =
�

A

B

⇥1/2

pr

HEOB = M

⇤
1 + 2�

�
Ĥe� � 1

⇥
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EFFECTIVE POTENTIALS

34

Newtonian gravity (any mass ratio): 
circular orbits are always stable. No plunge.

Test-body on Schwarzschild black hole: 

last stable orbit (LSO) at r=6M; plunge

EOB, Black-hole binary, any mass ratio: 

last stable orbit (LSO) at r<6M plunge

W e↵
Newt = 1� 2

r
+

p2
'

r2

W e↵
Schwarzschild =

✓
1� 2

r

◆ 
1 +

p2
'

r2

!

W e↵
EOB = A(r; ⌫)

 
1 +

p2
'

r2

!

0 10 20 30 40

0.85

0.90

0.95

1.00

1.05

0 10 20 30 40

0.90

0.95

1.00

1.05

-deformation of the Schwarzschild case!⌫
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HAMILTON’S EQUATIONS & RADIATION REACTION

‣The system must radiate angular momentum
‣How?Use PN-based (Taylor-expanded) radiation 
   reaction force (ang-mom flux)
‣Need flux resummation

 Plus horizon contribution [AN&Akcay2012]

Ĥ0
e�(r, p�; �) =

⇧⌅⌅⇤A(r; �)

�
1 +

p2
�

r2

⇥

Circular orbit

     Last-Stable-Orbit (LSO): r < 6M

Plunge

F̂Taylor
� = �32

5
��5r4

�F̂Taylor(v�)
Resummation multipole by multipole
(Damour&Nagar 2007,
 Damour, Iyer & Nagar 2008,
 Damour & Nagar, 2009)

ṙ =
�

A

B

⇥1/2 ⇥ĤEOB

⇥pr�

�̇ =
⇥ĤEOB

⇥p�
⇥ �

ṗr� = �
�

A

B

⇥1/2 ⇥ĤEOB

⇥r
+ F̂r�

ṗ� = F̂�

35
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USE OF PADE APPROXIMANTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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1PN
2PN
3PN
P 1

3 [A3PN]
P 1

4 [A4PN(a5 = 0)]
P 1

5 [A5PN(a5 = 0, a6 = 0)]

•Continuity with Schwarzschild metric: A(r) needs to have a zero
•Simple (possible) prescription: use a Padé representation of the potential

A(r) = P 1
3 [A3PN(r)] =

1 + n1u

1 + d1u + d2u2 + d3u3

36
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MULTIPOLAR WAVEFORM RESUMMATION 

Newtonian x PN x NQC
Next-to-quasi-circular correction

PN-correction

  Resummation of the waveform (and flux) multipole by multipole (CRUCIAL!)
  [Damour&Nagar 2007, Damour, Iyer, Nagar 2008]

ĥ(⇥)
⇤m = Ŝ(⇥)

e� T⇤mei��m�⇤
⇤m

The “Tail factor”

Effective source:
EOB (effective) energy (even-parity modes)
EOB angular momentum (odd-parity modes)

T⇥m =
�(⇥ + 1� 2iˆ̂k)

�(⇥ + 1)
e�̂̂ke2iˆ̂k ln(2kr0)

Resums an infinite number of leading logarithms 
in tail effects (hereditary contributions) 

Remnant phase and 
modulus corrections:
“improved” PN series

37
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4PN analytically complete + 5PN logarithmic term in the A(u) function:
[Damour 2009, Blanchet et al. 2010, Barack, Damour & Sago  2010, Le Tiec et al. 2011, Barausse et al. 2011,Akcay et al. 2012,
  Bini& Damour2013, DamourJaranowski&Schaefer 2014].

NEED ONE “effective” 5PN parameter from NR waveform data:

State-of-the-art EOB potential (5PN-resummed):

THE KNOWLEDGE OF THE CENTRAL A POTENTIAL TODAY

alog

5

=

64

5

ac
5

= ac
50

+ ⇥ac
51

ac
50

= �4237

60

+

2275

512

⇤2

+

256

5

log(2) +

128

5

�

ac
51

= �221

6

+

41

32

⇤2

alog

6

= �7004

105

� 144

5

⇥

A(u; �, ac
6

) = P 1

5

[ATaylor

5PN

(u; �, ac
6

)]

1PN 2PN 3PN 4PN 5PN

} 4PN fully known ANALYTICALLY! 

5PN logarithmic term (analytically known)

ATaylor

5PN

= 1� 2u + 2�u3 +
✓

94
3
� 41

32
⇥2

◆
�u4 + �[ac

5

(�) + aln

5

lnu]u5 + �[ac
6

(�) + aln

6

lnu]u6

ac
6(�)
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THE EOB[NR] POTENTIAL

39
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(r

;ν
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A(r ; ν = 0.25) [equal-mass case]
Schwarzschild: A(r ; ν = 0) = 1 − 2M/r

ac
6(�) = 3097.3�2 � 1330.6� + 81.3804

TAKE AWAY:
BBH system is more bound, smaller “separation” and higher frequencies!

From EOB/NR-fitting:

Years of analytical and numerical 
work to get this strong-field difference!

NDRP, arXiv:1506.08457
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RESULTS: EOBNR/NR WAVEFORMS (NO SPIN)
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40

equal-mass case

equal-mass BBH, nonspinning

Nagar, Damour, Reisswig & Pollney, PRD 93 (2016), 04404
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HIGHER MODES (NO SPIN)

42

- Unpublished, but free to download at eob.ihes.fr (Matlab code)
- Check unfaithfulness vs NR surrogate
 (G. Pratten & AN, 2016 in preparation)
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SPINNING BBHS

43

Spin-orbit & spin-spin couplings
(i) Spins aligned with L: repulsive (slower)  L-o-n-g-e-r INSPIRAL

(ii) Spins anti-aligned with L: attractive (faster) Shorter   INSPIRAL

(iii) Misaligned spins: precession of the orbital plane (waveform modulation)
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Damour&Nagar, PRD90 (2014), 024054 (Hamiltonian)
Damour&Nagar, PRD90 (2014), 044018 (Ringdown)
Nagar,Damour, Reisswig & Pollney, PRD 93 (2016), 044046

EOB/NR agreement: sophisticated (though
rather simple) model for spin-aligned binaries

�1,2 =
cS1,2

Gm2
1,2

AEI model, SEOBNRv4, Bohe et al., arXiv:1611.03703v1 
(PRD in press)
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New way of combining available knowledge within some Hamiltonian
[Damour&Nagar, PRD 2014]

ge�
S = 2 + ⇥(PN corrections) + (spin)2corrections

ge�
S� =

�
3
2

+ test mass coupling
⇥

+ ⇥(PN corrections) + (spin)2corrections

A = 1� 2
r

+ ⇥(PN corrections) + (spin)2corrections

�ij = �ij
Kerr + ⇥(PN corrections) + . . .

with the structure

Ĥe� =
ge�

S

r3
L · S +

ge�
S�

r3
L · S� +

�
A(1 + �ijpipj + Q4(p))

Xi = mi/M

�1 ⇥ �i ⇥ 1

S = S1 + S2 = M2(X2
1⇥1 + X2

2⇥2)

S� =
m2

m1
S1 +

m1

m2
S2 = M2�(⇥1 + ⇥2)
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GS =
1
r3

ge�
S , GS� =

1
r3

ge�
S�

In the Kerr limit, only S-type gyro-gravitomagnetic ratio enters:

ge�
S = 2

r2

r2 + a2

⇤
(1� cos2 �)

�
1 +

2
r

⇥
+ 2 cos2 �

⌅
+

a4

r2
cos2 �

= 2 +O[(spin)2]

PN calculations yield (in some spin gauge)[DJS08, Hartung&Steinhoff11,Nagar11,Barausse&Buonanno11]

Ĥe�
SO = GSL · S + GS�L · S�

+
1
c6

�c3

r3

+
1
c6

�c3

r3

“Effective” NNNLO SO-coupling

The NR-informed effective parameter makes the spin-orbit coupling stronger 
or weaker with respect to the simple  analytical prediction
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Just a few unequal-
mass, unequal-spin data

Several equal-mass,
equal-spin data

40 NR SXS Datasets (public in the fall of 2013 and used before for SEOBNRv2)6

TABLE I: EOB/NR phasing comparison. The columns report: the number of the dataset; the name of the configuration in the
SXS catalog; the mass ratio q = m1/m2; the symmetric mass ratio ⌫; the dimensionless spins �1 and �2; the phase di↵erence
��EOBNR ⌘ �EOB � �NR computed at NR merger; the NR phase uncertainty at NR merger ��NR

mrg (when available) measured
taking the di↵erence between the two highest resolution levels (see text); the maximum value of the unfaithfulness F̄ ⌘ 1� F
as per Eq. (22). The ��EOBNR’s in brackets for �1 = �2 > +0.85 were obtained using Eq. (21) for �tNQC(�).

# Name N orbits q ⌫ �1 �2 ��EOBNR
mrg [rad] ��NR

mrg [rad] max(F̄ )

1 SXS:BBH:none 14 1 0.25 0.0 0.0 �0.016 . . . 0.00087

2 SXS:BBH:0066 28 1 0.25 0.0 0.0 +0.010 . . . 0.00068

3 SXS:BBH:0002 32.42 1 0.25 0.0 0.0 +0.073 0.066 0.00101

4 SXS:BBH:0007 29.09 1.5 0.24 0 0 +0.05 0.018 0.00201

5 SXS:BBH:0169 15.68 2 0.2̄ 0 0 �0.15 0.02 0.00045

6 SXS:BBH:0030 18.22 3 0.1875 0 0 �0.074 0.087 0.00035

7 SXS:BBH:0167 15.59 4 0.16 0 0 �0.059 0.52 0.00035

8 SXS:BBH:0056 28.81 5 0.138̄ 0 0 �0.089 0.44 0.00038

9 SXS:BBH:0166 21.56 6 0.1224 0 0 �0.198 . . . 0.00037

10 SXS:BBH:0063 25.83 8 0.0987 0 0 �0.453 1.01 0.00292

11 SXS:BBH:0185 24.91 9.98911 0.0827 0 0 �0.0051 0.376 0.00066

12 SXS:BBH:0004 30.19 1 0.25 �0.50 0.0 �0.017 0.068 0.00403

13 SXS:BBH:0005 30.19 1 0.25 +0.50 0.0 +0.08 0.28 0.00052

14 SXS:BBH:0156 12.42 1 0.25 �0.95 �0.95 +0.32 2.17 0.00058

15 SXS:BBH:0159 12.67 1 0.25 �0.90 �0.90 +0.06 0.38 0.00047

16 SXS:BBH:0154 13.24 1 0.25 �0.80 �0.80 +0.11 . . . 0.00044

17 SXS:BBH:0151 14.48 1 0.25 �0.60 �0.60 �0.049 0.14 0.00042

18 SXS:BBH:0148 15.49 1 0.25 �0.44 �0.44 +0.14 0.72 0.00043

19 SXS:BBH:0149 17.12 1 0.25 �0.20 �0.20 +0.45 0.90 0.00085

20 SXS:BBH:0150 19.82 1 0.25 +0.20 +0.20 +0.94 0.99 0.00275

21 SXS:BBH:0152 22.64 1 0.25 +0.60 +0.60 +0.01 0.36 0.00068

22 SXS:BBH:0155 24.09 1 0.25 +0.80 +0.80 �0.39 0.26 0.00110

23 SXS:BBH:0153 24.49 1 0.25 +0.85 +0.85 +0.06 . . . 0.00059

24 SXS:BBH:0160 24.83 1 0.25 +0.90 +0.90 +0.41 (+0.41) 0.80 0.00117

25 SXS:BBH:0157 25.15 1 0.25 +0.95 +0.95 +0.37 (+0.83) 1.18 0.00295

26 SXS:BBH:0158 25.27 1 0.25 +0.97 +0.97 +0.37 (+0.49) 1.26 0.00325

27 SXS:BBH:0172 25.35 1 0.25 +0.98 +0.98 +0.99 (+0.46) 2.02 0.00422

28 SXS:BBH:0177 25.40 1 0.25 +0.99 +0.99 +0.22 (+0.48) 0.40 0.00507

29 SXS:BBH:0178 25.43 1 0.25 +0.994 +0.994 +0.24 (+0.23) �0.53 0.00506

30 SXS:BBH:0013 23.75 1.5 0.24 +0.5 0 +0.31 . . . 0.00058

31 SXS:BBH:0014 22.63 1.5 0.24 �0.5 0 �0.15 0.15 0.00046

32 SXS:BBH:0162 18.61 2 0.2̄ +0.6 0 �0.20 0.71 0.00027

33 SXS:BBH:0036 31.72 3 0.1875 �0.5 0 +0.08 0.065 0.00040

34 SXS:BBH:0031 21.89 3 0.1875 +0.5 0 +0.12 0.034 0.00023

35 SXS:BBH:0047 22.72 3 0.1875 +0.5 +0.5 �0.034 . . . 0.00030

36 SXS:BBH:0046 14.39 3 0.1875 �0.5 �0.5 +0.36 . . . 0.00054

37 SXS:BBH:0110 24.24 5 0.138̄ +0.5 0 +0.24 . . . 0.00016

38 SXS:BBH:0060 23.17 5 0.138̄ �0.5 0 +0.21 0.8 0.00034

39 SXS:BBH:0064 19.16 8 0.0987 �0.5 0 +0.026 0.8 0.00042

40 SXS:BBH:0065 33.97 8 0.0987 +0.5 0 +1.33 �3.0 0.00040

was limited to two, quasi extremal, spinning configura-
tions with spin either aligned or antialigned with the or-
bital angular momentum, with �1 = �2 = �0.95 and
�1 = �2 = +0.98.

We present here the first systematic computation of
Eb(j) curves from SXS data covering a large sample
of nonprecessing, spinning (and nonspinning) configura-
tions. We computed Eb(j) curves from the nonspinning
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+ interpolating fits for NQC functioning 
   point, ringdown coefficients etc.
   (Achille’s heel...still ok..)

9

by Eq. (5), we now need to look for a new determination
of c3(�). In doing so, we also consider here more NR
simulations than in Paper I, notably taking into account
all available nonprecessing data in the SXS catalog. The
spinning SXS configurations we use are listed in Table I:
the mass ratio varies in the range 1  q  8 and there are
several configurations where only one of the two black-
holes is spinning. A priori, one expects the NNNLO ef-
fective parameter c3 to be a function of both the mass
ratio and the spins of the binary. The determination of c3

is done in two steps. In a first step, we separately consid-
ered each binary configuration and determine a prelimi-
nary best value of c3 by minimizing the EOB-NR phase
di↵erence, after alignment in the inspiral phase, so to be
compatible with (and typically smaller than) the NR un-
certainty. This procedure is rather straightforward, as it
is just a one parameter search. In a second step, we look
for a global, analytical representation that approximately
reproduces the latter preliminary best values of c3 as a
function of symmetric mass ratio and spins. We found
that one can represent, with su�cient accuracy, the val-
ues (determined by minimizing the EOB/NR phase dif-
ference as explained above) of c3 for the entire sample of
configurations listed in Table I, by means of the following
simple functional relation

c3(ã1, ã2, ⌫) = p0
1 + n1(ã1 + ã2) + n2(ã1 + ã2)2

1 + d1(ã1 + ã2)
+ (p1⌫ + p2⌫

2 + p2⌫
3)(ã1 + ã2)

p
1� 4⌫

+ p4(ã1 � ã2)⌫2, (11)

where

p0 = 44.786477, (12)
n1 = �1.879350, (13)
n2 = 0.894242, (14)
d1 = �0.797702, (15)
p1 = 1222.36, (16)
p2 = �12764.4, (17)
p3 = 36689.6, (18)
p4 = �358.086. (19)

and where we found convenient to introduce the spin
quantities ã1,2 ⌘ X1,2 �1,2, with X1,2 ⌘ m1,2/M , and
M = m1 + m2. With our convention that m1 > m2, in
terms of the symmetric mass ratio ⌫ we have

X1 =
1
2

�
1 +

p
1� 4⌫

�
, (20)

and X2 = 1 �X1. The terms in Eq. (11) that vanish in
the equal-mass, equal-spin case were chosen, for simplic-
ity, to be linear in the spins. Similarly, the polynomial
dependence in ⌫ was found necessary to properly fit the
values of c3 yielding a good NR/EOB phasing agreement
for q = 8, (�1, �2) = (+0.5, 0), SXS:BBH:0065 configu-
ration. In the equal-mass, equal-spin (aligned, or anti-
aligned with the orbital angular momentum) case, one
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FIG. 7: Quasi-linear behavior of the NNNLO e↵ective spin-
orbit coe�cient c3(â1, â2, ⌫), Eq. (11), in the equal-mass
(⌫ = 0.25), equal-spin â1 = â2 = � case. The tuning
of this single dynamical parameter allows to get an excel-
lent EOB/NR phasing agreement throughout inspiral, plunge,
merger and ringdown.

finds that the dependence of c3 on the spin is nearly lin-
ear (see Fig. 7).

Finally, let us mention that, as already discussed in
Paper I (see Table I there) we found it necessary to
flex the simple choice �tNQC = 1M , uniformly used
in the nonspinning case, so as to allow it to depend
on spin for large, positive, spins. Actually, the only
available simulations where we found the need of flexing
�tNQC are the six equal-mass, equal-spin configurations
with � = �1 = �2 > �0 = +0.85. In practice, for
spins � = {+0.90,+0.95,+0.97,+0.98,+0.99,+0.994}
we found as good choices �tNQC =
{0.2,�1.2,�1.7,�2.0,�3.0,�3.2}, respectively. In
the EOB numerical evolution we use a time-resolution
�tEOB = 0.1M , and �tNQC is chosen as an integer
multiple of �tEOB. The values of �tNQC listed above
are accurately fitted by using a (1, 1) Padé approximant:

�tNQC(�) =
1 + n1(�� �0)
1 + d1(�� �0)

(21)

with n1 = �16.06288 and d1 = �4.04266 and �0 = 0.85.
The quality of the fit yielded by Eq. (11) (together

with the discrete values of �tNQC listed above) is quan-
titatively assessed by measuring the EOB-NR phase dif-
ference at NR merger after having aligned (in time and
phase) the EOB waveforms to the NR waveform during
the early inspiral. Such di↵erences are listed as ��EOBNR

mrg
in Table I. The same table also clearly illustrates the
compatibility of the EOBNR model with the numerical
phase uncertainties ��NR

mrg at merger all over the wave-
form sample considered. The use, in addition to Eq. (11),
of the fit (21) slightly worsens ��EOBNR

mrg as indicated by

ã1,2 = X1,2�1,2

X1,2 ⌘
m1,2

M

Procedure: 
(i) align waveforms in the early inspiral; 
(ii) tune the parameter to have phase difference compatible with the NR uncertainty 

equal-mass,
spin-aligned
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EOBNR MODEL USED FOR GW150914
Different EOB Hamiltonian [Barausse & Buonanno11, Taracchini et al.12]
SEOBNRv2: Taracchini, Buonanno et al., PRD 89, 061502 (R), 2014
SEOBNRv2_ROM_DoubleSpin: M. Puerrer, CQG 31, 195010 (2014)
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(q, χ1, χ2) = (1, +0.98, +0.98)

Effectively used to get the masses:
SEOBNRv2_ROM_DoubleSpin
IMRPhenom (Khan et al., 2015)

just AFTER, the best choices
were cross checked with NR simulations!
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Nagar,Damour, Reisswig & Pollney, PRD 93 (2016), 044046

Best existing EOBNR model WAS NOT used for parameter estimation: 
EOB/EOBNR UNFAITHFULNESS (40 NR SXS dataset)

8

1000 2000 3000 4000 5000 6000

0

0.1

0.2

0.3

0.4

 

 
∆φEOBNR

22

∆AEOBNR
22 /ANR

22

6350 6400 6450 6500

0

0.1

0.2

0.3

0.4

1000 2000 3000 4000 5000 6000

−0.2

0

0.2

u/M

!
[Ψ

22
]/
ν

 

 
NR
EOB

6350 6400 6450 6500

−0.2

0

0.2

u/M

(χ1,χ2) = (+0.98,+0.98) q = 1

FIG. 8: EOBNR time-domain phasing comparison for q = 1,
(χ1, χ2) = (+0.98, +0.98). The EOBNR difference at merger
(dashed vertical line) is well compatible with the correspond-
ing NR uncertainty ∼ 2 rad (see Table I).

and X2 = 1 − X1. The quality of the fit is quantita-
tively assessed by measuring the EOB-NR phase differ-
ence at NR merger after that the EOB waveforms was
aligned (in time and phase) to the NR waveform during
the early inspiral. Such differences are listed as ∆φEOBNR

mrg

in Table I. The same table also clearly illustrates the
compatibility of the EOBNR model with the numerical
phase uncertainties δφNR

mrg at merger all over the wave-
form sample considered. Figure 8 shows, for the case
χ1 = χ2 = +0.98, the typical agreement, well within the
error bar, that is obtained performing the usual time-
domain comparison. Analogous plots are found for all
other configurations, for which we just give the represen-
tative value of the phase difference at merger in Table I.

To further demonstrate the high-quality of the EOB
model presented here, and to give a clearer physical
meaning to the phase differences quoted above, we also
measured the agreement between the EOB waveforms
and all the available NR ones by computing the EOB/NR
unfaithfulness

F̄ ≡ 1 − max
t0,φ0

〈hEOB
22 , hNR

22 〉
||hEOB

22 ||||hNR
22 ||

, (19)

where t0 and φ0 are the initial time and phase, ||h|| ≡
√

〈h, h〉, and the inner product between two waveforms

is defined as 〈h1, h2〉 ≡ 4%
∫ ∞

fmin
h̃1(f)h̃∗

2(f)/Sn(f) df ,

where Sn(f) is the zero-detuned, high-power noise spec-
tral density of advanced LIGO and fmin is the starting
frequency of the NR waveform (after the junk radiation
initial transient).

Similarly to Ref. [3] both EOB and NR waveforms
are tapered so to reduce high-frequency oscillations in
the corresponding Fourier transforms. Figure 9 shows

the unfaithfulness as a function of the total mass of the
binary for all configurations we considered. The max-
imum of F̄ is also listed, for convenience, in the last
column of Table I. One sees that for all (but one, see
below) configurations considered the value of F̄ is well
below 1% (actually, most configurations range between
0.1% and 0.01%) for total mass of the binary ranging
from 20 to 200M#. Such a waveform quality implies a
negligible loss in event rate due to the modeling uncer-
tainty. The worst global unfaithfulness, corresponding
to max F̄ ≈ 0.01 is due to the configuration with q = 8,
(χ1,χ2) = (+0.5, 0). We note that (see Table I) this
NR data set is affected by a very large phase uncertainty
(3 rad accumulated at merger) and, moreover, has ec-
centricity 3.73 × 10−3, which yield visible oscillations in
the EOB/NR phase difference. Once aligned during the
early inspiral, the EOB/NR phase difference at merger
accumulates a mere −1.1 rad up to merger (see Fig. 10)
while the phase uncertainty at merger is 3 rad. In view
of the good performance of the EOBNR model presented
here on all the other BBH configurations, it is likely that
the larger value of F̄ that we obtain in this case is not
really meaningful, but is due to inaccuracies in the NR
simulation rather than to limitations of the analytical
modeling. Still, new simulations with reduced error bars
will be needed to firm up this conjecture. Figure 9 high-
lights in color the same particular configurations that
were highlighted in Fig. 1 of Ref. [3], so as to prompt an
easy and direct comparison. It is interesting to note that
the configuration (q,χ1,χ2) = (1, +0.6, +0.6) delivers a
value of F̂ ≈ 10−3, that remains practically constant all
over the total mass range consider. The corresponding
data of Ref. [3] were actually grazing the 1% level for
M ∼ 50M#. This observation proves quantitatively that
our model is able to improve existing results. We shall
discuss more these and other aspects of our unfaithfulness
comparison in the Conclusions (see in particular Fig. 22
and related discussion there).

VI. ENERGETICS FOR SPINNING
COALESCENCES

A. Energetics of spinning Llama data

Let us finally discuss the energetics yielded by our
newly calibrated EOB model. We start doing this with
Llama data and we will cross check our results with SXS
data in the next Section. Figure 11 contrasts the NR and
EOB curves with χ1 = χ2 = (±0.2,±0.4,±0.6), with the
EOB-NR difference shown in each bottom subpanel. As
before, the EOB (red) and NR (black) mergers are indi-
cated by markers. One sees that the differences are of
the order of 10−4 (or less) during the inspiral, to grow
up to approximately the 10−3 level around merger. One
also notices that the disagreement between NR and EOB
merger quantities depends on the configuration.

An estimate of the NR uncertainty is necessary to in-
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FIG. 8: EOBNR time-domain phasing comparison for q = 1,
(χ1, χ2) = (+0.98, +0.98). The EOBNR difference at merger
(dashed vertical line) is well compatible with the correspond-
ing NR uncertainty ∼ 2 rad (see Table I).

and X2 = 1 − X1. The quality of the fit is quantita-
tively assessed by measuring the EOB-NR phase differ-
ence at NR merger after that the EOB waveforms was
aligned (in time and phase) to the NR waveform during
the early inspiral. Such differences are listed as ∆φEOBNR

mrg

in Table I. The same table also clearly illustrates the
compatibility of the EOBNR model with the numerical
phase uncertainties δφNR

mrg at merger all over the wave-
form sample considered. Figure 8 shows, for the case
χ1 = χ2 = +0.98, the typical agreement, well within the
error bar, that is obtained performing the usual time-
domain comparison. Analogous plots are found for all
other configurations, for which we just give the represen-
tative value of the phase difference at merger in Table I.

To further demonstrate the high-quality of the EOB
model presented here, and to give a clearer physical
meaning to the phase differences quoted above, we also
measured the agreement between the EOB waveforms
and all the available NR ones by computing the EOB/NR
unfaithfulness

F̄ ≡ 1 − max
t0,φ0

〈hEOB
22 , hNR

22 〉
||hEOB

22 ||||hNR
22 ||

, (19)

where t0 and φ0 are the initial time and phase, ||h|| ≡
√

〈h, h〉, and the inner product between two waveforms

is defined as 〈h1, h2〉 ≡ 4%
∫ ∞

fmin
h̃1(f)h̃∗

2(f)/Sn(f) df ,

where Sn(f) is the zero-detuned, high-power noise spec-
tral density of advanced LIGO and fmin is the starting
frequency of the NR waveform (after the junk radiation
initial transient).

Similarly to Ref. [3] both EOB and NR waveforms
are tapered so to reduce high-frequency oscillations in
the corresponding Fourier transforms. Figure 9 shows

the unfaithfulness as a function of the total mass of the
binary for all configurations we considered. The max-
imum of F̄ is also listed, for convenience, in the last
column of Table I. One sees that for all (but one, see
below) configurations considered the value of F̄ is well
below 1% (actually, most configurations range between
0.1% and 0.01%) for total mass of the binary ranging
from 20 to 200M#. Such a waveform quality implies a
negligible loss in event rate due to the modeling uncer-
tainty. The worst global unfaithfulness, corresponding
to max F̄ ≈ 0.01 is due to the configuration with q = 8,
(χ1,χ2) = (+0.5, 0). We note that (see Table I) this
NR data set is affected by a very large phase uncertainty
(3 rad accumulated at merger) and, moreover, has ec-
centricity 3.73 × 10−3, which yield visible oscillations in
the EOB/NR phase difference. Once aligned during the
early inspiral, the EOB/NR phase difference at merger
accumulates a mere −1.1 rad up to merger (see Fig. 10)
while the phase uncertainty at merger is 3 rad. In view
of the good performance of the EOBNR model presented
here on all the other BBH configurations, it is likely that
the larger value of F̄ that we obtain in this case is not
really meaningful, but is due to inaccuracies in the NR
simulation rather than to limitations of the analytical
modeling. Still, new simulations with reduced error bars
will be needed to firm up this conjecture. Figure 9 high-
lights in color the same particular configurations that
were highlighted in Fig. 1 of Ref. [3], so as to prompt an
easy and direct comparison. It is interesting to note that
the configuration (q,χ1,χ2) = (1, +0.6, +0.6) delivers a
value of F̂ ≈ 10−3, that remains practically constant all
over the total mass range consider. The corresponding
data of Ref. [3] were actually grazing the 1% level for
M ∼ 50M#. This observation proves quantitatively that
our model is able to improve existing results. We shall
discuss more these and other aspects of our unfaithfulness
comparison in the Conclusions (see in particular Fig. 22
and related discussion there).

VI. ENERGETICS FOR SPINNING
COALESCENCES

A. Energetics of spinning Llama data

Let us finally discuss the energetics yielded by our
newly calibrated EOB model. We start doing this with
Llama data and we will cross check our results with SXS
data in the next Section. Figure 11 contrasts the NR and
EOB curves with χ1 = χ2 = (±0.2,±0.4,±0.6), with the
EOB-NR difference shown in each bottom subpanel. As
before, the EOB (red) and NR (black) mergers are indi-
cated by markers. One sees that the differences are of
the order of 10−4 (or less) during the inspiral, to grow
up to approximately the 10−3 level around merger. One
also notices that the disagreement between NR and EOB
merger quantities depends on the configuration.

An estimate of the NR uncertainty is necessary to in-
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FIRST QUESTION: MEASURING PARAMETERS
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SEOBNRv2 SEOBNRv4

AEI model: Bohe et al. arXiv: 1611.03703v1
4 parameters
Strong recalibration of the state-of-the-art SEOBNRv2 
model (used for O1) to have it faithful towards a set of 141 
NR simulations (about 100 new ones)

More NR simulations seem essential to “calibrate & improve” the AEI EOBNR model

grey: below 3%

ROBUSTNESS?
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BUT THIS IS NOT GENERAL...
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October 31st: 93 NR datasets released publicly. These are those used to calibrate SEOBNRv4 (+ others non public)
First use them to cross-check our model. 

Interpolating NR fits for NQC point & ringdown. Previous NR data plus (5,-0.90,0)

1%

3%

Our EOBNR model is very robust and consistent
ALSO outside the “information” domain over
93 new waveforms. Three outliers above
1% (but always below 3%).
Better performance than SEOBNRv2 with 
no need of further NR information
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MINIMAL RECALIBRATION
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(3,+0.85,+0.85)
(1,+0.90,-0.90)
(2,-0.87,+0.85)
(2,+0.85,+0.85)

Best value of the c3 parameter for the three outliers. Check phase agreement in the time-domain to be within the NR error bar.
New fit to the best values to determine new values of the parameters of the unequal-mass sector. 

Recalibration with 3 more NR datasets; 90 datasets as a cross/check.

Done by hand, no need of sophisticated mechanisms/algorithms. IMPROVABLE: NQC & RINGDOWN FITS USING MORE NR DATA
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Nagar, Riemenschneider & Pratten, 2017, in prep.
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WHAT TO IMPROVE?

54

More NR data sets to be included both in the NQC-functioning-point fit as well as in the postmerger 
fit (see Del Pozzo & Nagar, arXiv:1606.03952). This is an easily solvable problem (in progress).

It is reasonable to aim at 0.1% level unfaithfulness. This is easily at reach of the model. 
More precise “calibration” and/or improved theoretical structures.
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PRECESSION
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Different EOB Hamiltonian [Barausse & Buonanno11, Taracchini et al.12]
SEOBNRv3: Taracchini, Buonanno et al., PRD 89, 061502 (R), 2014
                     Babak, Taracchini & Buonanno, 2016

Good EOBNR/NR agreement.
The method works

Slow: analysis is time-consuming

Improvements in the implementation 
are needed

PhenomP: P. Schmidt et al. 2012/2014
Phenomenological Precessing model that takes into account precession effects at 
leading order by “twisting” nonprecessing waveforms. 

Conclusion: no precession could be really seen.
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POSTMERGER DESCRIPTION

56

Damour&AN, PRD 2014: motivated because the “standard” QNMs attachment is far from trivial for high-spins
Originally conceived for EOB; useful also as a stand-alone postmerger template
Del Pozzo & AN, arXiv: 1606.03952 

ANALYTIC TEMPLATE for the FULL POSTMERGER signal coming from a suitable fit of NR data.
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EFFECTIVE FIT

57

h(⌧) = e�1⌧�i�0 h̄(⌧)

Factorize the fundamental 
QNM, fit what remains

Damour&AN 2014

2

ter that the first, least-damped, QNM is factored out.
The primary fit e↵ectively models the presence of all the
higher QNMs, that are characterized by lower frequencies
and shorter damping times than the fundamental one.
Ref. [3] focused on the equal-mass, equal-spin case only
and thus used only the corresponding subset of the Simu-
lating eXtreme Spacetimes (SXS) [4] catalog of numerical
waveform data. All SXS waveforms were obtained with
the Spectral Einstein Code [5–12]. We generalize here the
interpolating expressions of Ref. [3], by including almost
all the unequal-mass, unequal-spin dataset present in the
SXS catalog. We thus build a general analytical expres-
sion of the post-merger waveform that is a function of the
symmetric mass ratio ⌫ ⌘ m1m2/(m1 + m2)2 and of the
dimensionless spins �1,2 ⌘ S1,2/(m1,2)2 of the two black
holes as well as of the final mass MBH and (complex) fre-
quency �1 of the fundamental QNM of the final remnant.
Although we restrict, for simplicity, to considering only
the ` = m = 2 mode, the method discussed here may be
extended to model the post-merger part of subdominant
multipolar modes 1. The interpolating fit presented here
is also now part of the NR-calibrated EOB ihes [14, 15].

II. TEMPLATE CONSTRUCTION

We begin by introducing a convenient notation. The
multipolar decomposition of the waveform is given by
h+ � ih⇥ =

P
`,m h`m�2Y`m(✓,�), and we focus on the

` = m = 2 “post-merger”, ⌫-scaled, waveform,

h(⌧) ⌘ 1
⌫

Rc2

GM
hpostmerger

22 (⌧), (1)

where M ⌘ m1 + m2 is the total mass and R is the
distance of the source. The time ⌧ = (t � tM)/MBH

counts time in units of the mass of the final black hole,
MBH, and tM is the merger time. The QNM-rescaled

ringdown waveform h̄(⌧) of [3] h(⌧) is defined as h(⌧) ⌘
e��1⌧�i�0 h̄(⌧), where �1 ⌘ ↵1 + i!1 is the (dimension-
less, MBH-rescaled) complex frequency of the fundamen-
tal (positive frequency, !1 > 0) QNM of the final black
hole and �0 is the value of the phase at merger. The
(complex) function h̄(⌧) is then decomposed in ampli-
tude and phase as

h̄(⌧) ⌘ Ah̄ei�h̄(⌧). (2)

1 This might be more complicated for modes like the (3, 2) that
show features due to mode-mixings that are mostly gauge fea-
tures. One should explore whether the procedure discussed here
is easily applicable once the waveform is written in the appropri-
ate frame [13]

TABLE I: The ⌫-dependence of the coe�cients in Eq. (10).

A↵21 = �0.0185533 ⌫ �0.0166417

B↵21 = �0.0594092 ⌫ �0.0157896

C↵21 = �0.100191 ⌫ +0.19044
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Reference [3] found that Ah̄ and �h̄ can be accurately
represented by the following general functional forms

Ah̄(⌧) = cA
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4 ), are independent and need to be fitted di-
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FIG. 1: Straightforward evaluation of the performance of the
general postmerger template obtained from Eq. (10) and Ta-
ble I. The two waveforms are aligned just by imposing the the
phase di↵erence is zero at merger point. The corresponding
NR phases at merger are listed in Table III for completeness.

di↵erences may be relevant when the interpolating fit is
used to provide the post merger waveform in EOB mod-
els, as the one of Refs. [14] and more recently of Ref. [? ],
that is calibrated to a much larger set of NR SXS wave-
forms (part of which are now public) than those used
here. The precise assessment of the quality of the cur-
rent post merger model for EOB purposes is outside the
scope of this work and will be discussed in future stud-
ies. Note, however, that the quality of the primary fitting

and 3. Despite the availability of this new data, we have cho-
sen not to incorporate them in the construction of the template
in the current analysis, but only to use a few of them to vali-
date the interpolating template well outside its “calibration” do-
main. The new datasets used for this aim are: SXS:BBH:0257,
SXS:BBH:0211,SXS:BBH:0292,SXS:BBH:0293. The incorpora-
tion of, at least part of, this large amount of NR data in the
template construction, together with a few structural modifica-
tions outlined above, is expected to strongly improve its perfor-
mance and will be systematically pursued in future work.
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FIG. 2: Performance of the primary fit on dataset
SXS:BBH:0305. The thick red region in the top panel marks
the time interval where the fit is actually done. The phase dif-
ference at merger is consistent with the general interpolating
fit after time and phase alignment (green line in Fig. 3).

procedure for a single NR dataset is typically very good;
it is illustrated in Fig. 2, for the case of SXS:BBH:0305.
For this GW150914-like waveform, the phase and ampli-
tude (relative) di↵erences are of the order of 1%.

Since our final aim is to use the analytic post merger
waveform as an actual template for parameter estima-
tion, we have the arbitrarily of defining it modulo an
arbitrary time and phase shift. As a consequence, it
also makes sense to compare the analytical and numeri-
cal waveform by aligning them fixing these two arbitrary
constants. We use here the alignment procedure intro-
duced in Sec. VA of Ref. [21] and extensively used in sub-
sequent EOB works (see e.g. [14] and references therein).
The phase and time shift are is chosen so that the phase
di↵erence is minimized over a small frequency interval
after merger. We use an interval because, in general,
in this way the alignment procedure is more robust and
less a↵ected by numerical artifacts that may be present
in the numerical waveforms. The minimization interval
is chosen to be MBH[!L, !R] = MBH!mrg[1.05, 1.20] and
it always ends before the final phase dominated by the
fundamental mode is reached.

We report our findings in Fig. 3. The phase di↵erence
(top panel) averages zero, with the largest di↵erences of
⇠ 0.1 rads arising at the latest stages of the template,
where the NR waveform gets progressively dominated by
numerical oscillations (e.g., due to the radius extrapo-
lation procedure, see also discussion in [3]). The frac-

tional amplitude di↵erences (bottom panel) tend to be
5%  �A/A  15%, with similar increasing oscillations
as time progresses. Note that, for any of these config-
urations, the primary fit done with the template given
by Eq. (2) is extremely accurate, with phase di↵erences
of the order of the expected numerical uncertainties, i.e.
1⇥ 10�2 rads for the phase, and 1% for �A/A (see be-
low). This suggests that the largest source of uncertainty
is the interpolation procedure in the (⌫, ã1, ã2) space.
More NR simulations of asymmetric systems (⌫ 6= 1/4,

↵21 = ↵2 � ↵1

�! ⌘ !1 �MBH!mrg
22

Good performance of primary fits (modulo details...)

Do this for various SXS dataset and then build up
a (simple-minded) interpolating fit

Black-list: 
(1) the structure due to m<0 modes is not included (yet)
(2) large-mass ratios/high spin: amplitude problems
(3) problems are extreme for high-spin EMRL waves
(4) more flexible fit-template needed
(5) improve/check over all datasets (SXS & BAM for
      large mass-ratios & consistency with EMRL)
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TABLE III: The merger phase and frequency

ID q �1 �2 �
NRmrg
0 MBH!NR

mrg

SXS:BBH:0152* 1 +0.60 +0.60 �2.7441 0.3849

SXS:BBH:0305 1.221 +0.3300 �0.4399 2.6594 0.3427

SXS:BBH:0025 1.5 +0.4995 �0.4995 �0.4623 0.3513

SXS:BBH:0184 2 0 0 �3.0966 0.3336

SXS:BBH:0162 2 +0.6000 0 �1.6577 0.3687

SXS:BBH:0257 2 +0.85 +0.85 2.2626 0.4152

SXS:BBH:0045 3 +0.4995 �0.4994 �2.6842 0.3617

SXS:BBH:0317 3.327 0.5226 �0.4482 �0.3756 0.3677

SXS:BBH:0208 5 �0.90 0 +0.5148 0.2626

SXS:BBH:0203 7 +0.40 0 �0.9013 0.3341

SXS:BBH:0207 7 �0.60 0 �1.3736 0.2631

SXS:BBH:0064* 8 �0.5 0 2.3926 0.2634

SXS:BBH:0185 9.990 0 0 0.4982 0.2948

ã1 6= ã2, etc., see e.g. [19, 22, 23]) are expected to be
necessary to get improved extrapolating functions that
are also more robust all over the parameter space.

Our global interpolation scheme provides then a com-
plete description of the full post-merger waveforms that
explicitly depends on (m1, m2, ã1, ã2, MBH, �1) (as well
as an initial arbitrary phase �0 and time t0). Moreover,
given the already existing NR simulations performed by
the SXS collaboration around the measured parameters
of GW150914, we might construct an interpolated post-
merger waveform more accurate than the one reported in
this letter. Such waveform could be therefore utilized to
improve on the existing inspiral-merger-ringdown consis-
tency test presented in Ref. [2] as well as on the measure-
ment of the least-damped QNM parameters.

IV. DATA ANALYSIS

As a proof-of-principle, we investigated the accuracy
of our template in a simplified, but realistic, scenario. In
all cases we considered, and that are documented below
in Sec.??, we use our template for the inference of the
physical parameters of a BBH from the post-merger part
of the signal alone. We operate in the context of Bayesian
inference; given the time series output of a detector d(t),
we model it as

d(t) = h(t; ✓) + n(t) (11)

where n(t) is the detector noise time series and h(t; ✓) is
the GW signal depending on a set of physical parame-
ters ✓. Given the time series d(t) and a waveform model
h(t; ✓), our purpose is to compute the posterior probabil-
ity distribution for ✓. To do so, we apply Bayes’ theorem:

p(✓|d(t), I) = p(✓|I)
p(d(t)|✓, I)
p(d(t)|I)

(12)
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FIG. 3: Performance of the general postmerger template ob-
tained from Eq. (10) with the coe�cients given in Table I.
For each dataset, the analytical template is aligned to the
corresponding NR waveform by fixing an arbitrary phase and
time shift.The phase di↵erence is compatible with the typical
accuracy of the primary fit (see Fig. 3).

where we introduced the prior probability density p(✓|I),
the likelihood function L ⌘ p(d(t)|✓, I) and the evidence
p(d(t)|I). In all terms, we indicate with I whatever back-
ground information is relevant to the inference in ques-
tion. Since our template discontinuously passes from zero
amplitude A for t < t0 to A 6= 0 for t � t0, we find
more convenient to perform the analysis in the time do-
main rather that in the frequency domain as it is done
in most of the literature. Because of the discontinuity,
the Fourier transform of our template would be con-
taminated by undesirable Gibbs phenomena which would
make the inverse transform not consistent with the sharp
time window that defines our template. This could be
cured by the convolution in the frequency domain with
the Fourier transform of a square window. However, we
find simpler to perform the analysis directly in the time
domain. For clarity, and also because this problem is
typically reviewed in its frequency domain formulation,
we will briefly go through the fundamentals of the sta-
tistical properties of the noise that, ultimately, are solely
responsible for the specific functional form of the like-
lihood function L. We assume, as customary, that the
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FIG. 1: Straightforward evaluation of the performance of the
general postmerger template obtained from Eq. (10) and Ta-
ble I. The two waveforms are aligned just by imposing the the
phase di↵erence is zero at merger point. The corresponding
NR phases at merger are listed in Table III for completeness.

di↵erences may be relevant when the interpolating fit is
used to provide the post merger waveform in EOB mod-
els, as the one of Refs. [14] and more recently of Ref. [? ],
that is calibrated to a much larger set of NR SXS wave-
forms (part of which are now public) than those used
here. The precise assessment of the quality of the cur-
rent post merger model for EOB purposes is outside the
scope of this work and will be discussed in future stud-
ies. Note, however, that the quality of the primary fitting

and 3. Despite the availability of this new data, we have cho-
sen not to incorporate them in the construction of the template
in the current analysis, but only to use a few of them to vali-
date the interpolating template well outside its “calibration” do-
main. The new datasets used for this aim are: SXS:BBH:0257,
SXS:BBH:0211,SXS:BBH:0292,SXS:BBH:0293. The incorpora-
tion of, at least part of, this large amount of NR data in the
template construction, together with a few structural modifica-
tions outlined above, is expected to strongly improve its perfor-
mance and will be systematically pursued in future work.
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FIG. 2: Performance of the primary fit on dataset
SXS:BBH:0305. The thick red region in the top panel marks
the time interval where the fit is actually done. The phase dif-
ference at merger is consistent with the general interpolating
fit after time and phase alignment (green line in Fig. 3).

procedure for a single NR dataset is typically very good;
it is illustrated in Fig. 2, for the case of SXS:BBH:0305.
For this GW150914-like waveform, the phase and ampli-
tude (relative) di↵erences are of the order of 1%.

Since our final aim is to use the analytic post merger
waveform as an actual template for parameter estima-
tion, we have the arbitrarily of defining it modulo an
arbitrary time and phase shift. As a consequence, it
also makes sense to compare the analytical and numeri-
cal waveform by aligning them fixing these two arbitrary
constants. We use here the alignment procedure intro-
duced in Sec. VA of Ref. [21] and extensively used in sub-
sequent EOB works (see e.g. [14] and references therein).
The phase and time shift are is chosen so that the phase
di↵erence is minimized over a small frequency interval
after merger. We use an interval because, in general,
in this way the alignment procedure is more robust and
less a↵ected by numerical artifacts that may be present
in the numerical waveforms. The minimization interval
is chosen to be MBH[!L, !R] = MBH!mrg[1.05, 1.20] and
it always ends before the final phase dominated by the
fundamental mode is reached.

We report our findings in Fig. 3. The phase di↵erence
(top panel) averages zero, with the largest di↵erences of
⇠ 0.1 rads arising at the latest stages of the template,
where the NR waveform gets progressively dominated by
numerical oscillations (e.g., due to the radius extrapo-
lation procedure, see also discussion in [3]). The frac-

tional amplitude di↵erences (bottom panel) tend to be
5%  �A/A  15%, with similar increasing oscillations
as time progresses. Note that, for any of these config-
urations, the primary fit done with the template given
by Eq. (2) is extremely accurate, with phase di↵erences
of the order of the expected numerical uncertainties, i.e.
1⇥ 10�2 rads for the phase, and 1% for �A/A (see be-
low). This suggests that the largest source of uncertainty
is the interpolation procedure in the (⌫, ã1, ã2) space.
More NR simulations of asymmetric systems (⌫ 6= 1/4,

Phase alignment@mrg Time&phase shift alignment (as template)
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FIG. 4: From top to bottom right panels: GE case reconstructed post-merger waveform and corresponding 90% confidence
region for SXS:BBH:0305 with post-merger SNR = 10, 20, 50 and 100. On the left hand side CO reconstructed post-merger
waveform and corresponding 90% confidence region for SXS:BBH:0305 with post-merger SNR = 10, 20, 50 and 100. In all cases,
the post-merger waveform is reconstructed very accurately, with uncertainty decreasing as the post-merger SNR increases.

The current test relies on the comparison of the poste-
riors reconstructed assuming the same waveform model
in di↵erent frequency regimes. Our template provides
an independent way of extracting physical information
about the BBH system from the post-merger phase only.
In principle, our template also gives a means to extract
the full information about the original binary from a de-
tailed analysis of the post-merger/ringdown signal. The
feasibility and SNR requirements of this are currently
being explored. Finally, the functional representation of
the post-merger part given by Eq. (22) is easily general-
ized to allow for more freedom in the waveform. Some of
the physical parameters entering in the vector Y could
be treated as free parameters and thus inferred from the
data rather than being extracted from the NR simula-
tions. For instance, in case of ↵1 and ↵2, i.e. the inverse
damping time of the fundamental QNM and of the first
overtone, one could relax the constraint ↵21 = ↵2 � ↵1

and keeping ↵1 as a free parameter in h̄. Rather than

Eq. (22), one would use a post-merger template of the
form

h(⌧) = e�(↵1+i!1)⌧�i�0 h̄(⌧ ; ⌫, â0, ↵1, ↵2), (23)

where (↵1, ↵2, !1) are all considered free parameters to
be inferred from the experimental data. Measuring ↵2,
one could setup a (partial) test of the general-relativistic
no-hair theorem [25–29] by estimating the consistency
between (!1, ↵1) and ↵2.
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FIG. 6: From top to bottom right panels: posterior distributions probabilities for the GE case for the complex ringdown
frequency and final black hole mass for SXS:BBH:0305 with post-merger SNR = 10, 20, 50 and 100 (from top to bottom). On
the left hand side posterior distributions probabilities for the CO case. In all panels, the vertical lines indicate the correct value
of the parameter.
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GW150914-like signal
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TABLE II: Dataset of the SXS catalog used for the cross-validation of the template waveform, see Fig. 3. The last two columns
list fundamental QNMs frequency inferred from NR data and measured with the post-merger template, after adding to the
NR waveform some Gaussian noise. For all waveforms, we fixed the post-merger SNR = 10. The uncertainty on the measured
quantities corresponds to the 90% credible regions. The datasets marked with an * were used in the construction of the template

ID q ⌫ S1/(m1)
2 S2/(m2)

2 MBH/M JBH/M2
BH �NR

1 �measured
1

* 1 0.25 0 0 0.95161 0.6864 0.0813 + i0.527 0.07+0.02
�0.01 + i0.52+0.06

�0.06

SXS:BBH:0152* 1 0.25 +0.60 +0.60 0.9269 0.8578 0.0706 + i0.629 0.06+0.02
�0.02 + i0.64+0.06

�0.07

SXS:BBH:0211 1 0.25 +0.90 �0.90 0.9511 0.6835 0.081 + i0.525 0.06+0.02
�0.02 + i0.50+0.05

�0.06

SXS:BBH:0178* 1 0.25 +0.994 +0.994 0.8867 0.9499 0.053 + i0.746 0.08+0.03
�0.02 + i0.74+0.08

�0.07

SXS:BBH:0305 1.221 0.2475 +0.3300 �0.4399 0.9520 0.6921 0.081 + i0.529 0.07+0.05
�0.03 + i0.55+0.06

�0.06

SXS:BBH:0025 1.5 0.2400 +0.4995 �0.4995 0.9504 0.7384 0.079 + i0.550 0.08+0.04
�0.03 + i0.56+0.06

�0.07

SXS:BBH:0184 2 0.2̄ 0 0 0.9612 0.6234 0.083 + i0.502 0.28+0.20
�0.22 + i0.53+0.41

�0.39

SXS:BBH:0162 2 0.2̄ +0.6000 0 0.9461 0.8082 0.075 + i0.591 0.08+0.04
�0.03 + i0.56+0.08

�0.07

SXS:BBH:0257 2 0.2̄ +0.85 +0.85 0.9199 0.9175 0.062 + i0.694 0.07+0.03
�0.02 + i0.67+0.07

�0.08

SXS:BBH:0045 3 0.1875 +0.4995 �0.4995 0.9628 0.7410 0.079 + i0.552 0.21+0.26
�0.18 + i0.59+0.36

�0.45

SXS:BBH:0292 3 0.1875 +0.7314 �0.8493 0.9560 0.8266 0.073 + i0.604 0.08+0.03
�0.02 + i0.58+0.07

�0.07

SXS:BBH:0293 3 0.1875 +0.85 +0.85 0.9142 0.9362 0.062 + i0.689 0.07+0.03
�0.02 + i0.67+0.07

�0.07

SXS:BBH:0317 3.327 0.1777 0.5226 �0.4482 0.9642 0.7462 0.078 + i0.554 0.06+0.02
�0.02 + i0.55+0.05

�0.06

SXS:BBH:0208* 5 0.138̄ �0.90 0 0.98822 �0.12817 0.089 + i0.359 0.11+0.02
�0.02 + i0.40+0.04

�0.04

SXS:BBH:0203 7 0.1094 +0.40 0 0.9836 0.6056 0.083 + i0.495 0.07+0.02
�0.01 + i0.48+0.06

�0.04

SXS:BBH:0207 7 0.1094 �0.60 0 0.9909 �0.0769 0.089 + i0.364 0.08+0.02
�0.01 + i0.35+0.04

�0.04

SXS:BBH:0064* 8 0.0987 �0.50 0 0.9922 �0.0526 0.089 + i0.367 0.09+0.12
�0.05 + i0.46+0.11

�0.08

SXS:BBH:0185 9.990 0.0827 0 0 0.9917 0.2608 0.087 + i0.412 0.12+0.04
�0.03 + i0.42+0.07

�0.06

the performance of the template on these datasets and,
possibly, their use to improve it will be discussed in future
work. For the moment, we conservatively conclude that
our analytical postmerger template waveform (either the
primary fit or the interpolating one) may develop non-
negligible inaccuracies for large mass ratios (say q & 8)
and large spins (say � & |0.8|). By contrast, we will show
below that the template is certainly rather faithful up to
q = 3 and spins up to ±0.85. A modified primary fitting
ansatz that (i) includes more parametric flexibility for
the amplitude and (ii) that allows for an e↵ective repre-
sentation of the oscillations entailed by the presence of
m < 0 modes will be eventually necessary to improve the
accuracy of the post-merger analytical template all over
the parameter space [20].

III. TEMPLATE WAVEFORM ACCURACY

We assessed the accuracy of the fitting and interpolat-
ing procedures by cross-validating our template on a com-
plementary SXS dataset, see Table II. For the parame-
ters corresponding to each of the validation waveforms,
we constructed the analytic post-merger waveform using
the coe�cients in Table I and computed phase and ampli-
tude di↵erences with the SXS waveform. Note however
that the fits are used only to compute h̄(⌧). By contrast,
�1 is obtained, as above, by interpolating the QNMs data

of E. Berti [16] on the final state (MBH, JBH) provided
by the metadata.txt SXS file3

We assess the performance of the interpolated analyt-
ical waveform agains the numerical one doing two kind
of phasing comparisons. First, the two waveforms are
aligned just in phase, imposing that the phase di↵erence
is 0 at the moment of merger. This comparison aims
at providing a precise idea of the accuracy of the inter-
polated fit with respect to the primary fits. The result
is presented in Fig. 1. The worse result corresponds to
SXS:BBH:0292, with (3, 0.7314,�0.8493), that was not
used for the template construction, where the phase dif-
ference grows up to 0.7 rad over the firs 30MBH after
merger. This figure illustrates the intrinsic limitations
of our post merger interpolating fit, that are mostly due
to the limited amount of NR waveform data that were
available when this work was started4 Such large phase

3 In principle one could have computed �1 using the fit for ↵1

of Table I and computing the imaginary part as !1 = �! +
MBH!mrg

22 where also �! and !mrg
22 are provided by the fits of

Table I. However, in doing so the combined inaccuracies of the
two fits can make the computation of !1 rather inaccurate (up
to 10%) depending on the particular dataset, therefore we can-
not follow this approach and we postpone to future analysis the
construction of a more accurate global interpolating fit for !1.

4 While this work was under review, the SXS collaboration released
94 spin-aligned waveforms with mass ratio q varying between 1
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OUTLOOK
1. NR/EOB (IMRPhenom is also EOB based) is the way to go. NON resummed 
templates are useless. Same for BNS up to merger

2. EOB_IHES_spin: Analytical freedom: only two flexibility parameters that are 
extracted from NR data as simple (separate) functions of symmetric mass ratio and 
spin magnitude

3. Compatibility (within NR errors) between such EOBNR model and state-of-the art 
NR data over mass ratio and spin (+precession using SEOBNRv3 exists)

4. Improvements needed: best templates, were NOT used for analyses (though this 
    is irrelevant now).This will be done in the next future on the Virgo/INFN side
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CONCLUSION
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The wave has passed....

...and we were (reasonably) prepared!

Though more work to improve modelization further is needed!

Matlab EOB code (working for BNS too...), free download: https://eob.ihes.fr. 
More infos:  https://gravitational_waves.ihes.fr/
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MEASURING THE SCATTERING ANGLE IN NR
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Damour, Guercilena, Hinder, Hopper, Nagar and Rezzolla, PRD 89, 081503 (R), 2014

Comparing EOB/PN/NR

Analytics: rely only on conservative
dynamics using NR losses

�AR = �conservative(Ē, J̄)
Ē � (Ein + Eout)/2
J̄ � (Jin + Jout)/2

Eout = Ein ��EGW
NR

Jout = Jin ��JGW
NR
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STRONG FIELD: EOB/NR SCATTERING ANGLE 
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NR uncertainties on scattering angles are still large 
to firmly distinguish one A function to the other.
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Damour&Nagar, wip
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