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Motivation: universal IR renormalization of on-shell amplitudes

It is possible to remove IR poles from the UV renormalized on-shell amplitude with {1, …, 𝑘}
massless and {𝑘 + 1, …, 𝑛} massive lines by multiplicative renormalization factor 𝒁−1|𝑀𝑛⟩

minimal example:
𝑘 = 0, 𝑛 = 2

• Universal matrix of anomalous dimensions

𝑑 log 𝒁({𝑝, 𝑚}, 𝜇)
𝑑 log 𝜇

= −𝚪({𝑝, 𝑚}, 𝜇)

• Massless lines ∼ 𝐾(𝛼𝑠) light-like cusp anomalous dimension

• Massive lines dipole terms are determined by Γcusp completely

𝚪 = … + ∑
(𝐼,𝐽)

𝑻𝑰 ⋅ 𝑻𝑱
2

Γcusp(𝑣𝐼 ⋅ 𝑣𝐽) + …

• Function of scalar products of velocities 𝑣𝐼 = 𝑝𝐼
𝑚𝐼
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Divergences of massive form-factors in QCD

After UV renormalization:

• IR finite for 𝑝2
𝑖 ≠ 𝑚2 since for small loop momenta 𝑘𝑗 → 0

1
(𝑝 + 𝑘)2 − 𝑚2 ∼ 1

𝑝2 − 𝑚2

• IR divergent for on-shell external legs 𝑝2
1 = 𝑝2

2 = 𝑚2

1
(𝑝 + 𝑘)2 − 𝑚2 ∼ 1

𝑝 ⋅ 𝑘

• Universal IR renormalization for all FF types 𝐼  in the on-shell case 𝑍−1( 𝑞2

𝑚2 )𝐹𝐼(
𝑞2

𝑚2 ) = finite

𝑑 log 𝑍(𝜙)
𝑑 log 𝜇

= −Γcusp(𝜙) 𝑞2

𝑚2 = 2(1 − cos 𝜙)

• Divergences of the massive FF is the simplest problem where Γcusp appears
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Effective theory approach to divergences calculation

Full theory (QED, QCD, …)

1
𝜀IR ⟹

Effective theory

1
𝜀UV

• IR divergencies of the full theory are equal to UV divergencies in specially constructed EFT

• In considered case full theory is QCD and effective field theory is HQET

• Γcusp - anomalous dimension of the Wilson line with a cusp angle 𝜙 between 𝑣1 and 𝑣2
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From angle dependent to light-like cusp anomalous dimension

• From the full angle dependent Γcusp(𝜙) by taking the limit 𝜙 → 𝑖∞ one can derive light like
cusp anomalous dimension ⇒ leading IR poles of massless on-shell amplitudes

𝜙 → 𝑖∞

∼ 1
𝜀2

IR
𝐾(1)

cusp

• Leading coefficient of the large Minkovski angle expansion of the full angle dependent Γcusp

Γcusp(𝜙, 𝛼𝑠) = −𝑖𝜙𝐾cusp(𝛼𝑠) + 𝑂(𝜙0)

• Light-like 𝐾(𝛼𝑠) is known at four-loop order in QCD [Henn, Korchemsky, Mistlberger’19]
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Abelian case and Casimir scaling conjecture

• All order result for cusp anomalous dimension for QED with 𝑛𝑓 = 0 massless fermions

Γ(𝜑) = (𝛼
𝜋

)(cot(𝜙) − 1)

• The only divergent part of the Dirac form-factor slope is contained in the one-loop part

𝐹1(𝑞2) = 1 − [𝛼
𝜋

( 1
6𝜀

+ 1
8
) + 𝑂(𝛼2

𝜋2 )] 𝑞2

𝑚2 + 𝑂( 𝑞4

𝑚4 )

• Up to three-loop order simple factorized form of the Abelian part

Γ(𝜑) = 𝐾(𝛼)(cot 𝜑 − 1)

• This simple form is violated at the four-loop order [Grozin, Henn, Stahlhofen’17]

• For the Wilson line in the rep. 𝑅 Casimir scaling Γ ∼ 𝐶𝑅 ⋅ 𝑓  is violated at four loops in QCD
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Angle dependent cusp anomalous dimension  status

• Full angle dependent Γ(𝜙) in nonabelian gauge theory

– One-loop [Polyakov’80]

– Two-loop [Korchemsky, Radyushkin’87]

– Three-loop [Grozin, Henn, Korchemsky, Marquard’15]

• Partial results at the four-loop order

– Abelian part with the full angle dependence [Bruser, Dlapa, Henn, Yan’21]

– Matter dependent part in small 𝜙 expansion [Bruser, Grozin, Henn, Stahlhofen’19]
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Feynman rules in QCD vs HQET

• We perform Calculation in 𝑅𝜉 -gauge, final result 𝜉 independence is a strong check

= −𝑖𝛿𝑎𝑏
𝑝2 [𝑔𝜇𝜈 − 𝜉

𝑝𝜇𝑝𝜈

𝑝2 ]

• Additional eikonal HQET propagator and vertex Feynman rules with off-shellness 𝜔 ≠ 0

=
−𝑖𝛿𝑖𝑗

𝜔 − 𝑣 ⋅ 𝑝
= 𝑖𝑔𝑣𝜇𝑇 𝑎

𝑖𝑗
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Warm up: HQET field renormalization

• Needed renormalization constants 𝑍𝑎𝑠
, 𝑍𝜉 are the the same as in the full QCD

• Missing HQET field renormalization constant from two-point functions calculation

𝐺hh = ⋅
𝛿𝑖𝑗

𝜔𝑁

• After multiplicative renormalization of all parameters 𝑍hh fixed from finiteness

𝑍hh ⋅ 𝐺hh = 𝑂(𝜀0)

• Possible to compare HQET field anomalous dimension with numerical result [Marquard et al.‘18]

𝛾ℎ = 𝑑 log 𝑍hh
𝑑 log 𝜇

= 2𝛽𝑎𝑠

𝜕 log 𝑍hh
𝜕𝑎𝑠

+ 2𝛽𝑎𝜉

𝜕 log 𝑍hh
𝜕𝑎𝜉
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HQET field renormalization constant from QCD renormalization in OS scheme

• From the known QCD quark field renormalization constants 𝑍MS
𝑞  in MS and 𝑍OS

𝑞  in the on-shell
renormalization schemes it is possible to derive HQET field renormalization constant

(
𝑍MS

𝑞

𝑍OS
𝑞

) ⋅ 𝑍HQET
𝑞 = 𝑂(𝜀0)

• First three-loop result for 𝑍HQET
𝑞  calculated analytically [Melnikov, van Ritbergen’00]

• Analytical result for 𝑍MS
𝑞  is known to five-loop order from massless QCD [Baikov, Chetyrkin, Kuhn’14]

• Recent 4-loop numerical 𝑍OS
𝑞  computation allows 𝑍HQET

𝑞  determination [Marquard et al.‘18]
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HQET field anomalous dimension detailed comparison at four loops

• 𝛾ℎ is gauge dependent and we calculate all 𝜉 dependent terms needed for renormalization

𝜉0 𝜉1 𝜉2

𝐶𝐹 𝐶3
𝐴 −2.03 ± 0.35 −0.29037 ± 0.00052 0.07083 ± 0.00010

−1.97259 −0.290381 0.0708241
𝑑𝐹 𝑑𝐴 1.53 ± 0.84 0.5083 ± 0.0098 −0.1031 ± 0.0024

1.42636 0.508093 −0.103017
𝑑𝐹 𝑑𝐹 0.54 ± 0.26 --- ---

0.617689
𝐶3

𝐹 𝑇𝐹 0.1894 ± 0.0030 --- ---
0.189778

𝐶2
𝐹 𝐶𝐴𝑇𝐹 −0.4566 ± 0.0055 exact ---

−0.457088
𝐶𝐹 𝐶2

𝐴𝑇𝐹 2.576 ± 0.010 exact exact
2.57337

• Full agreement for parts known analytically and within error bars for values known numerically
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Four-loop QCD beta-function from  HQET renormalization

𝐺ghh = ⋅
𝑡𝑎𝑖𝑗𝑣𝜇

𝑔𝑠𝑁𝐶𝐹

• Multiplicative renormalization of the 3-pt functions 𝑍ghh ⋅ 𝐺ghh = 𝑂(𝜀0)
• From 𝑍ghh and 𝑍hh calculated before we can extract 𝑍𝑎𝑠

 which is the same in the full QCD

𝑍𝑎𝑠
=

𝑍2
ghh

𝑍2
hh𝑍𝐴

• Beta-function is equal to well known 4-loop QCD result [Vermaseren, Ritbergen’98, Czakon’2004]

𝛽𝑎𝑠
= 𝑑𝑎𝑠

𝑑 log 𝜇2 = −𝜀𝑎𝑠
1 + 𝑎𝑠𝜕𝑎𝑠

log 𝑍𝑎𝑠

= −𝜀𝑎𝑠 − ∑
∞

𝑛=0
𝑏𝑛𝑎𝑛+2

𝑠
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Small angle expansion of the four-loop CUSP anomalous dimension

𝐺[hh]hh(𝜙) = ⋅
𝛿𝑖𝑗

𝑁

• Recursively expand propagators in small angle 𝑣 ⋅ 𝑣′ = cos 𝜙

1
1 − 2 𝑘 ⋅ 𝑣′ = 1

1 − 2 𝑘 ⋅ 𝑣⏟⏟⏟⏟⏟
𝑂(𝜙0)

+ 1
1 − 2 𝑘 ⋅ 𝑣

2𝑘 ⋅ (𝑣′ − 𝑣)
1 − 2 𝑘 ⋅ 𝑣′⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑂(𝜙)

• Renormalization constant from the condition 𝑍[hh]hh(𝜙) ⋅ 𝐺[hh]hh(𝜙) = 𝑂(𝜀0)

𝑍cusp(𝜙) =
𝑍[hh]hh(𝜙)

𝑍hh
, Γcusp(𝜙) = −2𝛽𝑎𝑠

𝑑 log 𝑍cusp(𝜙)
𝑑𝑎𝑠

= Γ(2)𝜙2 + Γ(4)𝜙4 + 𝑂(𝜙6)
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Some checks on cusp anomalous dimension

• Ward identities connect HQET field renormalization and cusp renormalization for 𝜙 → 0

𝑍hh = lim
𝜙→0

𝑍[hh]hh(𝜙)

• Gauge parameter independence of Γcusp(𝜙), expansion in 𝜉 around Feynman gauge

• We reproduce known matter dependent four-loop part [Bruser et al.‘19]

• Maximal transcendentality part of bremsstrahlung function after color factors tuning matches
all order 𝑁 = 4 SYM prediction 𝐵𝑁=4 = 3

2𝐵QCD
MT + 𝑂(𝑎5

𝑠) [Correa, Henn, Maldacena, Sever’12]

𝐵𝑁=4 = 𝑎𝑠
2𝜋2 𝜕𝑎𝑠

log[𝐿(1)
𝑁𝑐−1(−4𝜋2𝑎𝑠)𝑒

2𝜋2𝑎𝑠(1− 1
𝑁𝑐

)]

𝐵QCD
MT = 4

3
𝐶𝐹 𝑎𝑠 − 8

9
𝐶𝐹 𝐶𝐴𝜋2𝑎2

𝑠 + 8
9
𝐶𝐹 𝐶2

𝐴𝜋4𝑎3
𝑠 − {80

81
𝐶𝐹 𝐶3

𝐴 − 128
135

𝑑𝐹 𝑑𝐴
𝑁𝑐

}𝜋6𝑎4
𝑠 + 𝑂(𝑎5

𝑠)

Andrey Pikelner Small angle expansion of the four-loop cusp anomalous dimension  - p.14/30



Master integrals calculation



54 four-loop HQET propagator integrals to calculate
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Experience from previous calculations

• Only three non-trivial three-loop integrals

– Known for arbitrary 𝑑 in terms of hypergeometric functions [Beneke, Braun’94]

– Known in the form of 𝜀-expansion from OS propagator integral [Czarnecki, Melnikov’02]

• Divergent parts of several four-loop integrals [Grozin, Henn, Stahlhofen’17]

– Reduction to the basis of integrals without sub-divergences
– Direct integration in terms of GPLs with HyperInt [Panzer’14]
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Dimensional recurrence relations for master integrals

• Amplitude ⇒ IBP reduction ⇒ Master integrals in 𝑑 = 4 − 2𝜀
• Master integrals in 𝑑 + 2 ⇒ dimension shift + IBP reduction ⇒ Master integrals in 𝑑 [Tarasov’96]

• Difference equations system for master integrals ⃗𝐽

⃗𝐽(𝑑 + 2) = 𝐿(𝑑) ⃗𝐽(𝑑)

• Simple homogeneous solution for dim = 1 blocks

• There is a single sector with two master integrals

• No coupled block for better choice of master integrals
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Solution of recurrence relations for HQET integrals

• Only single sector with two integrals, but DRR system matrix 𝐿(𝑑) is strictly triangular

𝐽𝑘(𝑑 + 2) = 𝐿𝑘𝑘(𝑑)𝐽𝑘(𝑑) + ∑
𝑙<𝑘

𝐿𝑘𝑙(𝑑)𝐽𝑙(𝑑)

• Possible singularities of integrals identified with SDAnalyze tool from FIESTA [Smirnov’13]

• General solution of the DRR has form

𝐽𝑘(𝑑) = 𝑆−1
𝑘 (𝑑)𝜔𝑘(𝑑) + 𝑅𝑘(𝑑)

– Summing factor 𝑆𝑘(𝑑) = 𝐿𝑘𝑘(𝑑)𝑆𝑘(𝑑 + 2) is a homogeneous system solution
– Arbitrary periodic functions 𝜔𝑘(𝑑) = 𝜔𝑘(𝑑 + 2)
– Partial solution of the inhomogeneous equation 𝑅𝑘(𝑑)

• 𝑅𝑘(𝑑) construction simplified with the package DREAM [Lee,Mingulov’17]

• The main difficulty is to fix periodic functions 𝜔(𝑑)
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DRA method: from unknown functions to ansatz with unknown constants

• Feynman parametrization with 𝑄(𝑥), 𝑃 (𝑥) > 0 for Eucledian integrals

𝐽(𝜈 = 𝑑/2) = Γ(𝑁 − 𝐿𝜈) ∫ 𝑑 ⃗𝑥𝛿(1 − ∑ 𝑥) [𝑄(𝑥)]𝜈𝐿−1

[𝑃 (𝑥)]𝜈(𝐿+1)−𝑁

• Estimate for the integral for now complex 𝑑 = 𝑢 + 𝑖𝑣 in the limit 𝑣 → ±∞ [Lee’09]

|𝐽(𝜈)| ≈ const × 𝑒−𝜋𝐿
4 |𝑣| |𝑣|𝑁−1

2−𝐿𝑢
2

• This behaviour should not be spoiled by the term 𝑆−1(𝑑)𝜔(𝑑) - very powerful constraint

• In practice we construct ansatz for 𝜔(𝑑) from cot 𝜋
2 (𝑑 − 𝑑𝑖) functions, good at 𝑣 → ±∞

• Original integral 𝐽(𝑑) could have finite number of poles with finite depth on any [𝑑, 𝑑 + 2)

• Ansatz for 𝜔(𝑑) together with 𝑆(𝑑) and 𝑅(𝑑) should reproduce all these poles correctly
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Review of known ways to fix periodic functions

• Three-loop massless form-factor integrals [Lee,Smirnov,Smirnov’10]

– Simplest integrals are known in closed form for arbitrary 𝑑

– Several are known up to finite part in 𝑑 = 4 − 2𝜀

– Remaining integrals pole parts for 𝑑 ≠ 4 − 2𝜀 from Mellin-Barnes representation

• Four-loop massless propagator integrals [Lee,Smirnov,Smirnov’11]

– All integrals are known in 𝑑 = 4 − 2𝜀 up to finite parts [Baikov,Chetyrkin’10]
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DRA made simple

1. Try to avoid requirement of finite parts knowledge

2. Extend pole parts calculation to other rational points 𝑑 = 𝑚
𝑛 − 2𝜀

3. Start bootstrap-like procedure with integrals known for arbitrary 𝑑

• If we relax requirement to know finite parts, pole parts can be calculated in automatic fashion

• IBP reduction of finite integrals provide relations between pole parts

• Need to know several simplest integrals for arbitrary 𝑑

• “Translate” possible singularities from the large interval 𝑑 ∈ (0, 20] to the basic stripe 𝑑 ∈ (0, 2]

𝑃 = {1
4
, 1
3
, 2
5
, 1
2
, 2
3
, 3
4
, 4
5
, 1, 6

5
, 5
4
, 4
3
, 3
2
, 8
5
, 5
3
, 7
4
, 2}

• After all constants are fixed in the integral use it in relations for more complicated integrals
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Finite integrals determination

𝐽 ∼ Γ(𝑁 − 𝐿(𝑑0
2

− 𝜀)) ∫
∞

0
𝛿(1 − ∑

𝑘

𝑖=1
𝑥𝑖)𝑥𝑛1−1

1 𝑑𝑥1…𝑥𝑛𝑘−1
𝑘 𝑑𝑥𝑘

𝑈𝑁−(𝐿+1)(𝑑0/2−𝜀)

𝐹𝑁−𝐿(𝑑0/2−𝜀)

• Eucledian integrals have both 𝑈  and 𝐹  positive with all its monomials

• Quasi-finite if not divergent on boundaries for all subsets 𝑆 = {𝑥𝑎1
…𝑥𝑎𝑝

} ∈ {𝑥1…𝑥𝑘}

• Finite if integral is quasi-finite and in addition has finite prefactor

• “Dim & Dots” technique for finite integrals basis construction [Manteuffel,Panzer,Schabinger’14]

– Candidate integrals without numerator with additional dots and 𝑑 → 𝑑 + 2𝑛

– Available public implementation for 𝑑 = 2𝑛 in package Reduze2 [Manteuffel, Studerus’12]

– Modification to allow rational space-time dimension 𝑑 = 𝑚/𝑛 − 2𝜀
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Example calculation

• Example of integral 𝐽21 finite in 𝑑 = 4 − 2𝜀, after IBP reduction and dimension shift

𝐽21 = → 𝐽21 =

𝐽 (2−2𝜀)
21 = −10

𝜀4 − 226
3𝜀3 + (286

3
− 58𝜋2) 1

𝜀2 + 𝑂(1
𝜀
)

• More constraints from other integrals in various 𝑑 points

𝐽21(1 − 2𝜀) = −3072𝜋2 − (1084928𝜋2

45
+ 24576𝜋2 log 2)𝜀 + 𝑂(𝜀2)

𝐽21(2/3 − 2𝜀) = −
14554000Γ5(4

3)
189𝜀

+ 𝑂(𝜀0) 𝐽21(4/3 − 2𝜀) =
16677Γ5(5

3)
10𝜀

+ 𝑂(𝜀0)

𝐽21(𝑑0 − 2𝜀) = 𝑂(𝜀0) in all other points 𝑑0 ∈ (0, 2]
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Example calculation

• Summation factor is restricted from following rules:
1. Cancels as many poles of 𝐽𝑖 in the basic stripe as possible
2. Do not contain too many periodic “canceling factors” sin 𝜋

2 (𝑑 − 𝑑𝑖)
• In our case 𝑆(𝑑) = 𝑆0(𝑑)Ω(𝑑)𝑓(𝑑)

– Arbitrary solution from homogeneous equation

𝑆0(𝑑) =
24𝑑Γ(11

2 − 3𝑑
2 )

Γ(13
2 − 2𝑑)Γ3(3

2 − 𝑑
2)

– Factor canceling poles in 𝑆(𝑑)𝐽21(𝑑), but not destroying Im (𝑑) → ±∞ behavior

Ω(𝑧) = sin3(𝜋
2
(𝑑 − 2)) sin(𝜋

2
(𝑑 − 4

3
)) sin(𝜋

2
(𝑑 − 2

3
))

– Constant normalization 𝑓 = 1
192𝜋3/2
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Example calculation

• General solution has the form

𝑆(𝑑)𝐽21(𝑑) = 𝐼21(𝑑) + 𝜔(𝑑)

• We construct inhomogeneous solution in the set of points 𝑑 = {1
3 , 1

2 , 1, 5
3 , 2}

• With constructed summation factor 𝑆(𝑑), 𝜔(𝑑) should cancel all except one at 𝑑 = 2 − 2𝜀
• At 𝑑 = 2 − 2𝜀 should agree with calculated series expansion for 𝐽21(2 − 2𝜀)

𝜔(𝑑) = 𝜋
9
√

3
cot2 𝜋

2
(𝑑 − 5

3
) − 14𝜋

27
cot 𝜋

2
(𝑑 − 5

3
) − 𝜋

9
√

3
cot2 𝜋

2
(𝑑 − 1

3
)

−14𝜋
27

cot 𝜋
2
(𝑑 − 1

3
) + 𝜋

2
cot 𝜋

2
(𝑑 − 3

2
) + 𝜋

27
cot 𝜋

2
(𝑑 − 1) + 𝜋

2
cot 𝜋

2
(𝑑 − 1

2
)

= −
2𝜋 sin(𝜋𝑑

2 )(1 − 2 cos(2𝜋𝑑))
3(1 − 2 cos(𝜋𝑑))2(cos(𝜋𝑑

2 ) + cos(3𝜋𝑑
2 ))
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PSLQ reconstruction of expansion coefficients

• For both 𝑑 = 3 − 2𝜀 and 𝑑 = 4 − 2𝜀 with some tricks we construct bases of UT integrals

• In 𝑑 = 4 − 2𝜀 for PSLQ fit of 𝜀-expansion coefficients MZV basis is sufficient, weight 12 result

𝜁𝑛1,…,𝑛𝑘
= ∑

𝑖1>…>𝑖𝑘>0

1
𝑖𝑛1
1 …𝑖𝑛𝑘

𝑘

• In 𝑑 = 3 − 2𝜀 we need to extend it with Euler sums, weight 10 result obtained

𝜁𝑛1,…,𝑛𝑘
= ∑

𝑖1>…>𝑖𝑘>0

(sign (𝑛1))
𝑖1

𝑖|𝑛1|
1

…(sign (𝑛𝑘))𝑖𝑘

𝑖|𝑛𝑘|
𝑘

– Application in 𝑑 = 3 − 2𝜀: bremsstrahlung function in ABJM [Bianchi,Mauri’17]

– Reconstruction at such a high weight is a strong check on the validity of results

Andrey Pikelner Small angle expansion of the four-loop cusp anomalous dimension  - p.27/30



Summary of checks on calculated integrals

1. Set of constraints pole parts is redundant, check to fulfill remaining after 𝜔(𝑑) fixing

2. Successful reconstruction with PSLQ using predefined basis near 𝑑 = 3 and 𝑑 = 4

3. Results coincide with low order 𝑑 = 4 − 2𝜀 expansions know in the literature

4. Independent numerical calculation using sector decomposition for various 𝑑 values

5. Only partial agreement with numerical DE solution with auxiliary mass [Liu,Ma’22]

• Numerical solution of DE system for integrals with additional scale
• For most complicated integrals results for 1/𝜀 poles are wrong correct
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Conclusion

• Calculated four-loop HQET propagator integrals with the DRA technique

• Four-loop HQET field renormalization confirmed previous numerical evaluation

• Four-loop QCD beta-function recalculated and provides strong check on calculation setup
and four-loop integrals

• Calculated full QCD four-loop cusp anomalous dimension in the small angle limit

• Developed simple method of fixing periodic functions in difference equations solution
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Thank you for your attention!
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