Innovating Slicing Methods for Systematic and Efficient Collider Phenomenology at N3LO

Gherardo Vita

QCD Seminar - Milano, 2 December 2024 Based on:

"N3LO Power Corrections for 0-jettiness Subtractions With Fiducial Cuts" GV [2401.03017] "Projection-to-Born-improved Subtractions at NNLO" Campbell, Neumann, GV [2408.05265]

Outline

• Intro e Motivation

• Do we need N3LO cross sections?

·qT cut

dar-

 $\sigma(X)$:

- Slicing methods
- Improving Slicing
 - N3LO Power corrections for 0-jettiness subtraction
 - Projection-to-Born-improved Subtractions

LHC Timeline

- The LHC physics program is just at the beginning!
- LHC analysis today are based on less than 150 fb⁻¹
- **460 fb⁻¹** will be collected by the end of **2025**
- **3000 fb⁻¹** will be collected after **HL LHC**

Testing the Standard Model at Colliders

High experimental accuracy for processes sensitive to some of the most interesting aspects of contemporary particle physics:

- > Probing Electroweak Symmetry Breaking
- ➤ Unveiling the Nature of Yukawa Interactions
- ➤ Testing the Boundaries of the Standard Model
- > Measuring the Strength of the Strong Interaction
- Deepening our Understanding of the Proton Structure

Precision in Theoretical Predictions

To answer these fundamental questions we need comparable precision from the theory side! **Example: Higgs Accurate theoretical** 60 **Production at the LHC** prediction **NNLO** 50 NLO a(pp → H) [pb] 19 **Experimental** 30 Measurement Low LO 20 precision theory 10 prediction $\mu_0 = m_{\rm H}/2$

Precision in Theoretical Predictions

To answer these fundamental questions we need comparable precision

Expected relative uncertainty⁶

Standard Model Phenomenology at percent level

One way to achieve more accurate predictions is by advancing

$$\hat{\sigma}_{ab\to X} = \underbrace{\sigma_0}_{\text{LO}} + \underbrace{\alpha_s \sigma_1}_{\text{NLO}} + \underbrace{\alpha_s^2 \sigma_2}_{\text{NNLO}} + \underbrace{\alpha_s^3 \sigma_3}_{\text{N^3LO}} + \dots$$

QCD Perturbation Theory

And many more things...

- Corrections beyond massless QCD: EWK and masses.
- **Determination of N3LO PDFs:** possibly with a good estimate of MHOU and systematic uncertainties from fitting procedure
- **Parton Showers:** Consistent combination of PS with fixed order calculations at N³LO.
- **Resummation:** Complementing N³LO computations and resummation techniques for infrared sensitive observables.
- Uncertainties: Deriving/defining reliable uncertainty estimates for theoretical computations at the percent level.
- Factorisation Violation/Beyond Leading Power Factorisation: Exploring the limitations of leading power perturbative descriptions of hadron collision cross sections.
- Accessibility and User Friendliness: Creating frameworks that make N³LO (and NNLO) predictions easily accessible for comparison to experimental data.

$$\hat{\sigma}_{ab\to X} = \underbrace{\sigma_0}_{\text{LO}} + \underbrace{\alpha_s \sigma_1}_{\text{NLO}} + \underbrace{\alpha_s^2 \sigma_2}_{\text{NNLO}} + \underbrace{\alpha_s^3 \sigma_3}_{\text{N^3LO}} + \dots$$

• Naively $\alpha_s \sim 0.1$ for typical LHC hard processes...

$$\hat{\sigma}_{ab\to X} = \underbrace{\sigma_0}_{\text{LO}} + \underbrace{\alpha_s \sigma_1}_{\text{NLO}} + \underbrace{\alpha_s^2 \sigma_2}_{\text{NNLO}} + \underbrace{\alpha_s^3 \sigma_3}_{\text{N^3LO}} + \dots$$

• Naively $\alpha_s \sim 0.1$ for typical LHC hard processes...

 ...so N3LO corrections are ~ 0.1% and NNLO is sufficient for percent accuracy...

$$\hat{\sigma}_{ab\to X} = \underbrace{\sigma_0}_{\text{LO}} + \underbrace{\alpha_s \sigma_1}_{\text{NLO}} + \underbrace{\alpha_s^2 \sigma_2}_{\text{NNLO}} + \underbrace{\alpha_s^3 \sigma_3}_{\text{N^3LO}} + \dots$$

• Naively $\alpha_s \sim 0.1$ for typical LHC hard processes...

 ...so N3LO corrections are ~ 0.1% and NNLO is sufficient for percent accuracy...

		$Q \; [\text{GeV}]$	$\delta\sigma^{\rm NNLO}$
Total	$gg \to \text{Higgs}$	m_H	30%
	$b\bar{b} \rightarrow \text{Higgs}$	m_H	2.1%
Cross sections	NCDV	30	-0.34%
	NUDI	100	-2.3%
	$CCDY(W^+)$	30	-0.1%
		150	-0.1%
N3loxs [Baglio, Duhr.	$CCDV(W^{-})$	30	-0.1%
Vistlberger, Szafron '22]		150	-0.6%

		$Q \; [\text{GeV}]$	$\delta\sigma^{\rm NNLO}$	$\delta \sigma^{\rm N^3LO}$
Total	$gg \to \text{Higgs}$	m_H	30%	3.5%
	$b\bar{b} \rightarrow \text{Higgs}$	m_H	2.1%	-2.3%
Inclusive	NCDV	30	-0.34%	-4.8%
Cross	NODI	100	-2.3%	-2.1%
sections	$\operatorname{CCDY}(W^+)$	30	-0.1%	-4.7%
		150	-0.1%	-2.0%
N3Ioxs [Baglio, Duhr.	$CCDV(W^{-})$	30	-0.1%	-5.0%
Mistlberger, Szafron '22]		150	-0.6%	-2.1%

		$Q \; [\text{GeV}]$	$\delta \sigma^{\rm NNLO}$	$\delta \sigma^{\rm N^3LO}$
Total	$gg \to \text{Higgs}$	m_H	30%	3.5%
	$b\bar{b} \rightarrow \text{Higgs}$	m_H	2.1%	-2.3%
Cross sections	NCDY	30	-0.34%	-4.8%
	NODI	100	-2.3%	-2.1%
	$\operatorname{CCDY}(W^+)$	30	-0.1%	-4.7%
		150	-0.1%	-2.0%
N3IOXS IBaglio, Duhr.	$CCDV(W^{-})$	30	-0.1%	-5.0%
Mistlberger, Szafron '22]		150	-0.6%	-2.1%

241	1.0	221	יו [כ	INP	UΓ	α
MS	ΗT	Col	lab	orat	ion	s

PDF set	$\left \begin{array}{c} \sigma(gg \rightarrow h) \end{array} \right.$	$\sigma(h \text{ VBF})$
$\Delta_{\rm NNLO}^{\rm exact}$ (NNPDF4.0)	2.2%	1.3%
$\Delta_{\rm NNLO}^{\rm exact}$ (MSHT20)	5.3%	2.3%
$\Delta_{\rm NNLO}^{\rm exact}$ (combination)	3.3%	2.3%

Let's look at some explicit example...

		$Q \; [\text{GeV}]$	$\delta \sigma^{\rm NNLO}$
Total	$gg \to \text{Higgs}$	m_H	30%
Inclusive Cross sections	$b\bar{b} \to \text{Higgs}$	m_H	2.1%
	NCDV	30	-0.34%
	NODI	100	-2.3%
	$CCDV(W^+)$	30	-0.1%
		150	-0.1%
N3loxs [Baglio_Dubr	$CCDV(W^{-})$	30	-0.1%
Mistlberger, Szafron '22]	$\left \begin{array}{c} \text{CDI}(W) \right $	150	-0.6%

	$Q \; [\text{GeV}]$	$\delta\sigma^{\rm NNLO}$	$\delta \sigma^{\rm N^3LO}$
ggs	m_H	30%	3.5%
ggs	m_H	2.1%	-2.3%
	30	-0.34%	-4.8%
	100	-2.3%	-2.1%
W^{+}	30	-0.1%	-4.7%
(V -)	150	-0.1%	-2.0%
W^{-}	30	-0.1%	-5.0%
(v)	150	-0.6%	-2.1%

[2411.05373] NNPDF & **MSHT** Collaborations

PDF set	$\sigma(gg \to h)$	$\sigma(h \text{ VBF})$
$\Delta_{\rm NNLO}^{\rm exact}$ (NNPDF4.0)	2.2%	1.3%
$\Delta_{\rm NNLO}^{\rm exact}$ (MSHT20)	5.3%	2.3%
$\Delta_{\rm NNLO}^{\rm exact}$ (combination)	3.3%	2.3%

102

Differential / Fiducial Cross Sections

Order	σ [pb] Symm	etric cuts	σ [pb] Produ	ct cuts
k	$N^k LO$	$\mathbf{N}^k\mathbf{LO}{+}\mathbf{N}^k\mathbf{LL}$	$N^k LO$	$\mathbf{N}^k\mathbf{LO}{+}\mathbf{N}^k\mathbf{LL}$
0	$721.16^{+12.2\%}_{-13.2\%}$	_	$721.16^{+12.2\%}_{-13.2\%}$	_
1	$742.80(1)^{+2.7\%}_{-3.9\%}$	$748.58(3)^{+3.1\%}_{-10.2\%}$	$832.22(1)^{+2.7\%}_{-4.5\%}$	$831.91(2)^{+2.7\%}_{-10.4\%}$
2	$741.59(8)^{+0.42\%}_{-0.71\%}$	$740.75(5)^{+1.15\%}_{-2.66\%}$	$831.32(3)^{+0.59\%}_{-0.96\%}$	$830.98(4)^{+0.74\%}_{-2.73\%}$
3	$722.9(1.1)^{+0.68\%}_{-1.09\%}\pm0.9$	$726.2(1.1)^{+1.07\%}_{-0.77\%}$	$816.8(1.1)^{+0.45\%}_{-0.73\%}\pm0.8$	$816.6(1.1)^{+0.87\%}_{-0.69\%}$

We really need N3LO cross sections for 1% accuracy

• Numerous cases now show that **N3L0 corrections can easily exceed 1%**.

• This, at the very least, indicates that **to claim percent level accuracy** in QCD sensitive observables **N3L0 corrections**, or a very good quantitative estimate of them, **must be included**.

• Therefore, a key aspect of the precision program at the HL-LHC will be the ability to systematically incorporate N3LO contributions.

Cross Sections in Perturbative QCD

$$\sigma = \int f_1 \circ f_2 \int d\Phi |M|^2$$

- Cross sections for LHC processes are obtained via phase space integrals over amplitudes (squared) convoluted with Parton Distribution Functions (PDFs)
- IR divergences at intermediate steps of the calculation cancel only after summing over all real and virtual contributions
- The complexity of cancellations grows dramatically with higher orders, making **systematization** of cross section calculations at NNLO very challenging and **at N3LO a monumental undertaking**

- One way to deal with IR singularities for cross sections are **slicing methods**
- The idea behind is quite simple. Take the production of color singlet q at N3LO as example.
 - Find an observable x that isolates the Born configuration in a the region where the observable vanishes (think for example at the transverse momentum of q)
 - \circ Reorganize the cross section separating out the region around the Born configurations

$$\sigma_q^{\mathrm{N}^3\mathrm{LO}}(\mathcal{O}) = \int_0^{x_{\mathrm{cut}}} \mathrm{d}x \frac{\mathrm{d}\sigma_q^{\mathrm{N}^3\mathrm{LO}}}{\mathrm{d}x}(\mathcal{O}) + \int_{x_{\mathrm{cut}}}^{x_{\mathrm{max}}} \mathrm{d}x \frac{\mathrm{d}\sigma_{q+\mathrm{jet}}^{\mathrm{NNLO}}}{\mathrm{d}x}(\mathcal{O})$$

Below the cut region: Only region where genuine N3L0 cancellation of IR divergences is necessary Above the cut region:

- Resolved extra radiation => no events in Born configuration
- From a IR point of view this is an NNLO problem, so no N3LO subtraction needed to get this term

- One way to deal with IR singularities f
- The idea behind is quite simple. Take t
 - Find an observable *x* that isolates the vanishes (think for example at the tra
 - Reorganize the cross section separating

Approximate the full distribution in *x* below the cut with its **Leading Power term** (obtained via resummation / factorization theorem in SCET)

$$\int_{0}^{x_{\text{cut}}} \mathrm{d}x \frac{\mathrm{d}\sigma_{q}^{\text{N}^{3}\text{LO}}}{\mathrm{d}x}(\mathcal{O}) = \int_{0}^{x_{\text{cut}}} \mathrm{d}x \frac{\mathrm{d}\sigma_{q,(\text{LP})}^{\text{N}^{3}\text{LO}}}{\mathrm{d}x}(\mathcal{O}) + \dots$$

 $\sigma_q^{\rm N^3LO}(\mathcal{O}) = \int_0^{x_{\rm cut}}$

$$dx \frac{\mathrm{d}\sigma_q^{\mathrm{N}^3\mathrm{LO}}}{\mathrm{d}x} (\mathcal{O})$$

Below the cut region: Only region where genuine N3LO cancellation of IR divergences is necessary

$$\int_{ut}^{c_{\max}} \mathrm{d}x \frac{\mathrm{d}\sigma_{q+\mathrm{jet}}^{\mathrm{NNLO}}}{\mathrm{d}x}(\mathcal{O})$$

- Above the cut region:
- Resolved extra radiation => no events in Born configuration
- From a IR point of view this is an NNLO problem, so no N3LO subtraction needed to get this term

$$\sigma_q(\mathcal{O}) = \int_0^{x_{\text{cut}}} \mathrm{d}x \frac{\mathrm{d}\sigma_q^{\text{sub}}}{\mathrm{d}x}(\mathcal{O}) + \\ \equiv \sigma^{\text{sub}}(x_{\text{cut}}, \mathcal{O}) +$$

+
$$\int_{x_{\text{cut}}}^{x_{\text{max}}} \mathrm{d}x \frac{\mathrm{d}\sigma_{q+\text{jet}}}{\mathrm{d}x}(\mathcal{O}) + \sigma^{\text{above}}(x_{\text{cut}},\mathcal{O}) +$$

+
$$\int_{0}^{x_{\text{cut}}} \mathrm{d}x \left[\frac{\mathrm{d}\sigma_{q}}{\mathrm{d}x}(\mathcal{O}) - \frac{\mathrm{d}\sigma_{q}^{\text{sub}}}{\mathrm{d}x}(\mathcal{O}) \right]$$

+ $\Delta\sigma(x_{\text{cut}}, \mathcal{O})$

Below the cut region:

- Singular distribution
- Contains most complicated cancellation of IR divergences
- Control it analytically via factorization theorems
- **q_T** Subtraction: [Catani, Grazzini '07]

Above the cut region:

- Resolved extra radiation
- Calculate with lower order subtraction schemes for process with jet (e.g. NNLOjet)

Slicing Residual/Error:

Non singular terms from below the cut that are **neglected** (aka *power corrections*). Minimized by going to very small values of cut parameter

N-Jettiness Subtraction: [Boughezal, Focke, Liu, Petriello '15] [Gaunt, Stahlhofen, Tackmann, Walsh '15]

- Extremely successful program for many color singlet (and top) processes at NNLO [MATRIX Collaboration]
 [DYTurbo]
- With *N*-Jettiness (or k_T -ness) ability to tackle also processes with jets in the final state

[Boughezal, Focke, Liu, Petriello + Campbell, Ellis, Giele '15, '16] [MCFM collaboration] [Geneva] [Buonocore, Grazzini, Haag, Rottoli, Savoini '22]

Slicing, non-local subtractions, and local subtractions

- In principle, slicing methods are different from standard subtraction methods since the residual power corrections constitute an intrinsic error that is always present, which is not the case for a subtraction method.
- However, still in principle, with the exact same theoretical ingredients, one can very easily write a (non-local) subtraction scheme with no residual power corrections

- In practice, every implementation of a subtraction scheme (local, non-local, slicing) has technical cut-offs that lead to the neglect of subleading power terms
- For standard NLO calculations, technical cutoffs of ~ 10^{-6} in local subtractions are more than enough. For complicated NNLO final states and at N3LO these aspects are not as clear cut. ²⁵

Extending Slicing to N3LO

• Singular region (i.e. below the cut) can be understood at all orders via *Leading power* factorization theorems in Soft and Collinear Effective Theory (SCET). For example q_T

Pikelner, Wang '24]

Precision Standard Model Phenomenology at N3LO

- N3L0 TMDPDF were last missing ingredient for q_{τ} slicing at N3L0
- Enabled N3LO predictions for differential and fiducial Drell-Yan and Higgs production

Precision Standard Model Phenomenology at N3LO

- \bullet N3L0 TMDPDF were last missing ingredient for $q_{\rm T}$ slicing at N3L0
- Enabled N3LO predictions for differential and fiducial Drell-Yan and Higgs production

However...

- Numerical (slicing) error of these methods very difficult to control at this order
- Extreme push of NNLO+j predictions well into the IR needed (NNLOjet pushed to $q_T = 0.5 \text{ GeV}$)
- Calculations take O(10 million) CPU hours
- Almost any change will require to run everything from scratch
- Other results use O(100k) CPU hours and stop at 5 GeV... this requires very delicate extrapolation to 0 to obtain finite results.
- Going forward, these facts pose issues for the practical usability of these predictions 28

In short, starting to think about how to move from

making fully differential N3LO predictions possible,

to

making N3LO predictions (more) efficient, stable, and usable

(at least for some color singlet processes...which may also turn out to be a necessary stepping

stone to make other processes possible at N3LO)

$$\Delta \sigma(\tau_{\rm cut}) = \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} - \frac{\mathrm{d}\sigma^{\rm sub}}{\mathrm{d}\tau} \right]$$

- At N3LO power corrections start with **5th power of log**
- Taking τ_{cut} small reduces single power, but increases size of log => very slow convergence
- Each order in the log equivalent to \sim a 10 fold reduction in $\tau_{\rm cut}$

$$\begin{array}{c} 10^{1} \\ 10^{0} \\ 10^{0} \\ 10^{0} \\ 10^{0} \\ 10^{-1} \\ 10^{-5} \\ 10^{-4} \\ 10^{-4} \\ 10^{-4} \\ 10^{-7} \\ 10^{$$

$$au_{
m cut}$$

$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)_{30}$$

Improving non-local subtraction methods: Power corrections

0-Jettiness Power Corrections at N3LO [GV 2401.03017]

$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau\right) + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)$$

• For O-jettiness, use consistency relations to relate full LL to RVV correction in collinear limit. [Moult, Rothen, Stewart, Tackmann, Zhu '16] [Moult, Stewart, GV, Zhu '19]

• Focus on Drell-Yan and Higgs production. Single collinear emission fully differential in rapidity:

$$\frac{\mathrm{d}\sigma_{n}^{\mathrm{NLP}}}{\mathrm{d}Q^{2}\mathrm{d}Y\mathrm{d}\mathcal{T}} \sim \int_{x_{a}}^{1} \frac{\mathrm{d}z_{a}}{z_{a}} \frac{(Q^{2}\tau)^{-\epsilon}}{(1-z_{a})^{\epsilon}} \left\{ \tau \underline{A^{(0)}(\tau, z_{a}, \epsilon)} \left[-f_{a}\left(\frac{x_{a}}{z_{a}}\right) f_{b}(x_{b}) + f_{a}\left(\frac{x_{a}}{z_{a}}\right) x_{b}f_{b}'(x_{b}) \right] \right\} \\ \xrightarrow{[\text{Ebert, Moult, Stewart, Tackmann, GV, Zhu '18]}} + f_{a}\left(\frac{x_{a}}{z_{a}}\right) f_{b}(x_{b}) \underline{A^{(2)}(\tau, z_{a}, \epsilon)} \\ \xrightarrow{\text{LP Phase Space}} \right\} \\ \xrightarrow{\text{LP Phase Space}} \left\{ \tau \underline{A^{(0)}(\tau, z_{a}, \epsilon)} \right\} \\ \xrightarrow{\text{LP Phase Space}} \left\{ \tau \underline{A^{(0)}(\tau, z_{a}, \epsilon)} \right\} \\ \xrightarrow{n} \\ \xrightarrow{n} \\ \xrightarrow{n} \\ \mathcal{O}^{(1)} \\ \mathcal{O}^{(1$$

0-Jettiness Power Corrections at N3LO: Results for DY

• By the size of LL NLP: 0-jettiness with standard setup (only LP in subtraction term) would require $\tau_{\rm cut} \sim 10^{-5}$ or even smaller.

• Off-diagonal channel has large power corrections (in line with empirical observation in q_T slicing at N3LO)

A word on linear vs quadratic power corrections

0-jettiness :
$$\Delta \sigma^{N3LO}(\tau_{\rm cut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{\tau_{\rm cut}} \mathrm{d}\tau \left(c_{3,5}^{\rm NLP} \ln^5 \tau + c_{3,4}^{\rm NLP} \ln^4 \tau + c_{3,3}^{\rm NLP} \ln^3 \tau + \dots\right)$$

 q_T : $\Delta \sigma^{N3LO}(q_{Tcut}) \sim \left(\frac{\alpha_s}{4\pi}\right)^3 \int_0^{q_{Tcut}^2/Q^2} \mathrm{d}r \left(d_{3,5}^{\rm NLP} \ln^5 r + d_{3,4}^{\rm NLP} \ln^4 r + d_{3,3}^{\rm NLP} \ln^3 r + \dots\right)$

- Scaling in q_T of the slicing param. may lead to the impression that q_T subtraction has *quadratic* power corrections, while jettiness has *linear* power corrections.
- But it all comes down to how one decides to treat the angle dependence

$$\tau = \frac{q_T}{Q} e^{-|Y|} \sim \begin{cases} \frac{q_T}{Q} \\ \frac{q_T}{Q^2} \end{cases}$$

soft emissions

collinear emissions

• In practice, key point is what is more challenging numerically for the above the cut code:

 \circ 0-jettiness: better suppression of collinear emissions $\circ q_{\pi}$: better suppression of wide angle soft emissions

Note: fiducial p.c. generating *linear* terms in q_T , go as $\sqrt{\tau_{cut}}$ in the case of 0-jettiness 34

Ok, but what about fiducial power corrections?

Fiducial Power Corrections

- These are **purely kinematic effects**, but have very **large impact** on non-local subtractions due to non canonical scaling in the cut parameter.
- In short: (Ebert, Tackmann) [1911.08486] • Cuts on leptons induce *linear* terms $\frac{d\sigma^{(cuts)}(X)}{dQ^2dYdq_T^2} \sim \frac{1}{q_T^2} \frac{q_T}{Q}$, $\frac{d\sigma^{(cuts)}(X)}{dQ^2dYd\mathcal{T}_0} \sim \frac{1}{\mathcal{T}_0} \sqrt{\frac{\mathcal{T}_0}{Q}}$. For q_T subtraction they can be captured analytically by a boost, but not for 0-jettiness.
 - **Photon Isolations** induce p.c. with wild and complicated scaling $\frac{d\sigma^{(\text{smooth})}(X)}{dQ^2 dY dq_T^2} \sim \frac{R^2}{q_T^2} \left(\frac{q_T}{Q}\right)^{1/n} \left(\frac{Q}{E_T^{\text{iso}}}\right)^{1/n}$ No simple boost trick to account for them.

$$\frac{\mathrm{d}\sigma^{(\mathrm{smooth})}(X)}{\mathrm{d}Q^{2}\mathrm{d}Y\mathrm{d}\mathcal{T}_{0}} \sim \begin{cases} \frac{R^{2}}{\mathcal{T}_{0}} \left(\frac{\mathcal{T}_{0}}{Q}\right)^{1+1/(2n)} \left(\frac{Q}{E_{T}^{\mathrm{iso}}}\right)^{1/n} \\ \frac{R^{2}}{\mathcal{T}_{0}} \left(\frac{\mathcal{T}_{0}}{Q}\right)^{1/n} \left(\frac{Q}{E_{T}^{\mathrm{iso}}}\right)^{1/n} \end{cases}$$

• So, although fiducial power corrections are more trivial conceptually, account for them comes first numerically compared to dynamical power corrections.

Projection to Born Improved Slicing

Cut-induced power corrections can be numerically accounted for by using "Projection-to-Born Improved Slicing"

$$\sigma_{h,N^{3}LO}(\mathcal{O}) = \sigma_{h,N^{3}LO}(\tilde{\mathcal{O}}) + \sigma_{h+j,NNLO}(\mathcal{O} - \tilde{\mathcal{O}}) \quad P2B \text{ correction factor}$$
Slicing calculation for
Born projected
observable
$$= \int_{0}^{\tau_{cut}} d\tau \frac{d\sigma_{h,N^{3}LO}^{sub}}{d\tau}(\tilde{\mathcal{O}}) + \int_{\tau>\tau_{cut}} d\sigma_{h+j,NNLO}^{full}(\tilde{\mathcal{O}}) \\ Above \text{ the cut term} \end{pmatrix} + \int_{\tau>\tau_{cut}} d\sigma_{h+j,NNLO}^{full}(\tilde{\mathcal{O}}) \\ Above \text{ the cut term} \end{pmatrix}$$
For projected
observable
$$+ \int_{0}^{\tau_{cut}} d\tau \left[\frac{d\sigma_{h,N^{3}LO}^{full}}{d\tau} - \frac{d\sigma_{h,N^{3}LO}^{sub}}{d\tau} \right] (\tilde{\mathcal{O}}) \quad \text{Residual Error} \\ + \int d\sigma_{h+j,NNLO}^{full}(\mathcal{O} - \tilde{\mathcal{O}}) \quad P2B \text{ correction factor} \quad \int_{\tau_{cut}} (\tau - \tau)^{\tau_{cut}} d\tau \left[\frac{d\sigma_{h+j,NNLO}^{full}(\mathcal{O} - \tilde{\mathcal{O}})}{d\tau} \right] = 0$$

Projection to Born Improved Slicing

Equivalently, perform standard slicing and correct with P2B only below the cut

$$\sigma_{h,\,\mathrm{N^{n}LO}}(\mathcal{O}) = \int_{0}^{x_{\mathrm{cut}}} \mathrm{d}x \frac{\mathrm{d}\sigma_{h,\,\mathrm{N^{n}LO}}^{\mathrm{sub}}(\mathcal{O})}{\mathrm{d}x} + \int_{x>x_{\mathrm{cut}}} \mathrm{d}\sigma_{h+j,\,\mathrm{N^{n-1}LO}}^{\mathrm{full}}(\mathcal{O})$$

$$+ \int_{0}^{x_{\mathrm{cut}}} \mathrm{d}x \left[\frac{\mathrm{d}\sigma_{h,\,\mathrm{N^{n}LO}}^{\mathrm{full}}}{\mathrm{d}x} - \frac{\mathrm{d}\sigma_{h,\,\mathrm{N^{n}LO}}^{\mathrm{sub}}}{\mathrm{d}x} \right] (\tilde{\mathcal{O}})$$

$$+ \int_{0}^{x_{\mathrm{cut}}} \mathrm{d}\sigma_{h+j,\,\mathrm{N^{n-1}LO}}^{\mathrm{full}}(\mathcal{O} - \tilde{\mathcal{O}}).$$

$$P_{2B \text{ correction factor below the cut}}$$

Projection to Born Improved Slicing

We studied this at NNLO in MCFM in 2408.05265

 $au_{ ext{cut}}$

Extrapolation from q_T with recoil in MCFM taken as reference (excellent agreement with result from MATRIX based on same method)

$pp \to Z \to \ell^+ \ell^-$ NNLO coefficient	$qar{q}+qq'$	qg	gg
MCFM q_T + recoil	$48732\pm316~{\rm fb}$	-31819 ± 175 fb	$13870\pm25~{\rm fb}$
MATRIX q_T + recoil	$48695\pm364~{\rm fb}$	-31798 ± 131 fb	$13786\pm205~{\rm fb}$
Relative Difference	$0.08 \pm 0.99~\%$	$0.07 \pm 0.69~\%$	$0.61 \pm 1.53~\%$

41

Di-photon

- Di-photon is notoriously challenging
- Isolation prescription required to avoid QED singularity when quarks are in the final state

$$\sum_{d(i,\gamma) \le r} E_T^i \le E_T^{\text{iso}} \left[\frac{1 - \cos(r)}{1 - \cos(R)} \right]^n, \qquad \forall r \le 1$$

- Mix of isolation and kinematical cuts and large QCD corrections
- Large impact of the isolation parameters on the power corrections

Di-photon at NNLO: quark - anti quark channels

• For this channel, the P2B and recoil capture the fiducial and isolation power corrections

Di-photon at NNLO: fragmentation channel

• For fragmentation channel, the fiducial corrections due to the cuts on the of the photons are small, but the isolation corrections are very large $\sum_{r=1}^{n} |1-\cos(r)|^n$

$$\sum_{d(i,\gamma) \le r} E_T^i \le E_T^{\text{iso}} \left[\frac{1 - \cos(r)}{1 - \cos(R)} \right]^n \,, \qquad \forall r \le R$$

• To account for isolation p.c. we modified the P2B improved slicing by switching off the P2B counterterm. I'll refer to this prescription as $\mathbf{P2B}_V$

$$\int_{0}^{x_{\rm cut}} \mathrm{d}\sigma_{h+j,\,\mathrm{N^{n-1}LO}}^{\rm full}(\mathcal{O}-\tilde{\mathcal{O}}) \longrightarrow \int \mathrm{d}\sigma_{h+j,\,\mathrm{N^{n-1}LO}}^{\rm full}(\mathcal{O}-\tilde{\mathcal{O}}\theta(r>R))$$

• The point is that for realistic values of the isolation parameters the quark inside the cone of radius R must be soft so one can directly calculate this contribution numerically without a counterterm.

Di-photon at NNLO: fragmentation channel

- For fragmentation channel, the P2B and recoil corrections are small
- Numerically, it seems that $\mathbf{P2B}_{Y}$ is capturing an important amount of the effect both for 0-jettiness as well as for q_{T} subtraction.

Di-photon at NNLO: all channels

Di-photon at NNLO: all channels

Conclusion

- > Discussed challenges of N3LO calculations and slicing methods $\sigma(X)$
- Illustrated impact of the LL power corrections at N3LO for 0-jettiness for Drell-Yan and Higgs production
- ➤ Used P2B improved slicing to
 Busic P2B improved slicing to
 Busic

R = 0.4

 $x_{
m cut} = au_{
m cut} = q_{T
m cut}^2/m_{\gamma}^2$

 $d\sigma^{sing}(X)$

dqT-

Below the cut region

 $d\sigma(X)$

 $dq_T \frac{1}{dq_T}$

Above the cut region

 $\Delta \sigma(X, q_{T_{\text{cut}}})$

Residual

Presented prescription for isolation corrections in
 Diphoton production due to soft quark emissions

 $egin{aligned} p_{T,\,\gamma}^{ ext{soft}} &> 30 ext{Ge}^2 \ & |\eta_\gamma| < 2.37 \end{aligned}$

Conclusion

 $\sigma_{h, N^{3}LO}(\mathcal{O}) = \sigma_{h, N^{3}LO}(\tilde{\mathcal{O}}) + \sigma_{h+j, NNLO}(\mathcal{O} - \tilde{\mathcal{O}})$

 $d\sigma_{\underline{h},\mathrm{N}^{3}\mathrm{LO}}^{\mathrm{sub}}(\tilde{\mathcal{O}})$

 $\mathrm{d}\sigma_{h+j,\,\mathrm{NNLO}}^{\mathrm{full}}(\mathcal{O}-\tilde{\mathcal{O}})$

 $\mathrm{d}\sigma^{\mathrm{full}}_{h,\,\mathrm{N^3LO}}$

 $d\tau$

P2B correction factor

 $d\sigma_{h+i,\text{NNLO}}^{\text{full}}(\tilde{\mathcal{O}})$

Above the cut term

 $(\tilde{\mathcal{O}})$

 ${\rm d}\sigma^{\rm sub}_{h,\,{\rm N}^3{\rm LO}}$

 $d\tau$

Thank you

- Discussed challenges of N3LO calculations and slicing methods $\sigma(X) = \sigma(X)$
- Illustrated impact of the LL power corrections at N3LO for 0-jettiness for Drell-Yan and Higgs production
- Used P2B improved slicing to account for fiducial power corrections
- Presented prescription for isolation corrections in Diphoton production due to soft quark emissions

R = 0.4

 $x_{
m cut} = au_{
m cut} = q_{T
m cut}^2/m_{\gamma}^2$

 $d\sigma^{sing}(X)$

dqT-

 $d\sigma(X)$

> 30Ge $|\eta_{\gamma}| < 2.37$

 10^{-2}

51

 dq_T dq $\Delta \sigma(X, q_{T_{\text{cut}}})$

Backup

 $au_{ ext{cut}}$

 $au_{ ext{cut}}$

Beam Functions at N3L0

Log behaviour at NLP NLO

[1807.10764]

Log behaviour at NLP NNLO

[1612.00450]

[1710.03227]

Differential color singlet production at N3LO

• Two methods for differential N3LO predictions for color singlet:

full kinematics)

• **Cons:** numerically challenging

Beam Functions calculation at N3LO [2006.05329], [2006.03056]

- Calculation of the collinear expansion of the partonic cross section for DY and Higgs @N3LO <u>differential</u> in (Q_T, τ, z)
- $\circ \sim 100$ k Feynman diagrams
- Reverse unitarity for phase space integrals
- Collinear Expansion at the XS level "Collinear expansion for color singlet cross sections" [Ebert, Mistlberger, GV]

 Reduction to basis of Master Integrals via Integration By Parts (IBPs) using Water

• RVV: known in full kinematics [Duhr, Gehrmann] [Duhr, Gehrmann, Jaquier] [Dulat, Mistlberger]

• **RRV:** 170 Collinear Master Integrals

 RRR: 320 Collinear Master Integrals

- Derived system of Differential Equations for the Master Integrals
- System has 2 non trivial scales with algebraic dependence on the variables (not something solvable algorithmically)
- Algebraic sectors: constructed dlog integrand basis via calculation of leading singularities of candidate integrals on maximal cut surface
- Boundaries from soft integrals [Anastasiou, Duhr, Dulat, Mistlberger] and constraints on singular behavior

 $p_T^{\rm cut}$ [GeV]

61