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NEUTRINOS NEW PHYSICS 

• THEORETICAL MOTIVATION 
!

• EXPERIMENTAL OPPORTUNITIES 
!

• ANOMALIES IN OBSERVATIONS

anomalies in neutrino 

oscillation experiments  

(reactor/disappearance)

flavor anomalies 

(this talk)
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from D. Robinson

The Anomaly
For the past 5 years, persistent, signals of lepton flavor
universality violation in the ratios

R(D(ú)) © �[B æ D(ú)·‹· ]
�[B æ D(ú)l‹] , l = µ, e .

[D(ú) = cq is a scalar (vector) meson]
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 = 1.0 contours2χΔ
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R(D*)=0.252(3) S. Fajfer et al. (2012)
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) = 71.6%2χP(
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HFLAV
FPCP 2017

Experimental measure-
ments disagree at al-
most 4‡ level with SM
predictions! A signal
of NP?

Dean Robinson dean.robinson@uc.edu LLP Searches & SL Enigmas 18 | 44

R(D(*))

Why do we care about b æ c·‹?
Semileptonic b æ c¸‹ processes are theoretically clean tests of
lepton flavor universality

g2V ⇤
cb/

p
2

g2/
p
2

¯b c̄

W ⇤ ⌫

`+

• Dominantly tree-level W exchange in the SM
• Lepton universal ¸ = e, µ, · , up to mass e�ects: PS & hadronic FFs
• If hadronic matrix elements are known (from lattice): Clean way to

measure |V
cb

|!
NB: We see hadronic b æ c processes: eg B(= bq) æ D

(ú)(= cq) [c ¢ q = 0 ü 1]

Dean Robinson drobinson@lbl.gov b æ c·N

R

3 | 44
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from D. Robinson

R(D(ú)) anomaly
For the past 5 years, persistent, significant signals of lepton flavor
universality violation

Experimental mea-
surements disagree at
almost 4‡ level with
SM predictions!

Dean Robinson drobinson@lbl.gov b æ c·N

R

4 | 44

R(D(*)) ANOMALY
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requires new physics  

that couples bcτν  at a level comparable to SM

R(D(*)) ANOMALY

several constraints:   

• enhanced Bc →  τν  decay rate 

!

• additional interactions due to SU(2) nature of ν  

( in particular, very strong constraints from pp →  τ  τ  from colliders )  
[Faroughy,Greljo, Kamenik, 1609.07138] 
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R(D(*)) ANOMALY

consider the possibility that the R(D(*)) signal arises due to 

NP coupling to right-handed (sterile) neutrinos NR 

instead of the SM neutrinos 

THIS TALK

will consider right handed neutrinos to be separate Majorana particles 

 (easier to avoid constraints, richer phenomenology)

[ aside: there are other flavor anomalies (R(K(*)),  

which do not directly involve neutrinos ]  
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THE PLAN
• NEW PHYSICS FITS TO R(D(*)) 

!

!

!

!

• STERILE NEUTRINO PHENOMENOLOGY 
!

!

!

• COLLIDER PROBES OF HEAVY MEDIATORS

• can do this with specific models or a general EFT language 

• take the EFT approach and talk about all possible operators 

(will come back to a specific UV complete model later) 

• flavor constraints/considerations

• contributions to neutrino masses 

• sterile neutrino cosmology 

• direct search prospects
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NR OPERATORS FOR R(D(*))

involving ⌫⌧ . In this paper we generalize the EFT studies of Refs. [13, 14] to the full set of
dimension 6 operators involving NR. Assuming that the NP corrections are due to a tree
level exchange of a new mediator, there are five possible simplified models for b ! c⌧NR,
one of which is the simplified model of Refs. [13, 14] that has W 0 as a mediator. We study
the regions of the simplified model parameter space that best fit the R(D(⇤)

) anomaly,
subject to exclusions by Bc ! ⌧⌫, the relevant collider bounds, and the implications for
neutrino phenomenology.

This paper is structured as follows.... [JZ: to be finished]

2 EFT analysis

2.1 EFTs and simplified models

We assume the SM field content is extended by a single new state, a sterile neutrino trans-
forming as NR ⇠ (1,1, 0) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . This state may couple to the
SM quarks via higher dimensional operators. Above electroweak scale one therefore adds
to the renormalizable SM Lagrangian the following effective interactions,

LEW

e↵

=

X

a,d

Cad

⇤

d�4

e↵

Qa + · · · , (2.1)

where Qa are dimension d operators, ⇤
e↵

is the effective scale defined to be

⇤

e↵

=

�
2

p
2GFVcb

��1/2 ' 0.87


40⇥ 10

�3

Vcb

�
1/2

TeV , (2.2)

while Cad are the corresponding dimensionless Wilson coefficients. The most general basis
of dimension 6 operators that can generate the charged current b ! c⌧NR decay, is given
by

Q
SR

= ✏ab
�
¯Qa
LdR

��
¯Lb
LNR

�
, Q

SL

=

�
ūRQ

a
L

��
¯La
LNR

�
, (2.3a)

Q
T

= ✏ab
�
¯Qa
L�

µ⌫dR
��

¯Lb
L�µ⌫NR

�
, Q

VR

=

�
ūR�

µdR
��
¯`R�µNR

�
. (2.3b)

Here a, b are SU(2)L indices, ✏ab is antisymmetric tensor with ✏
12

= �✏
21

= 1, and we
use the four-component notation, with QL the SM quark doublet, uR and dR the up- and
down-quark singlets, and LL the SM lepton doublet. One may also include the dimension
8 operator

Q
VL

=

�
¯QL

˜H�µH†QL
��
¯`R�µNR

�
, (2.4)

where ˜H = ✏H⇤, as well as the operators with left-handed sterile neutrino field, N c
R, that

start at dimension 7,

Q0
SR

=

�
¯QL

˜HdR
��
¯`RN

c
R

�
, Q0

SL

=

�
ūRH

†QL
��
¯`RN

c
R

�
, (2.5)

Q0
T

=

�
ūR�

µ⌫H†QL
��
¯`R�µ⌫N

c
R

�
, Q0

VR

=

�
ūR�

µdR
��

¯LLH�µN
c
R

�
. (2.6)

The equivalent of Q
VL

is now dimension 9,

Q0
VL

=

�
¯QL

˜H�µH†QL
��

¯LLH�µN
c
R

�
. (2.7)

– 2 –

Each of the SM fields also carries a family index, i.e., Qi
L, uiR, diR, Li

L, i = 1, 2, 3, and
similarly for the Wilson coefficients, Cij

ad, and the operators, Qij
ad, in (2.1). The family

indices were suppressed in the notation above in order to shorten the expressions. Since
we focus exclusively on the generation of b ! c⌧⌫ decays this does not cause any confusion
in the notation below. We are interested in NP that is not excluded in direct searches,
which roughly corresponds to a requirement that the Wilson coefficients in (2.1) are at
most O(1). Since the operators of dimension 7 and higher are suppressed by additional
powers of v

EW

/⇤
e↵

, we thus focus only on the phenomenology of dimension 6 operators
listed in (2.3).

Below the electroweak scale the top, the Higgs, W and Z are integrated out. The SM
interactions generate the SM effective Lagrangian, LSM

e↵

, see, e.g., [15], giving at µ ⇠ mc,b

scale
L
e↵

= LSM

e↵

+

1

⇤

2

e↵

X

i

ciOi. (2.8)

The NP contributions to b ! c⌧⌫, induced by dimension 6 operators (2.3), are described
by the following four-fermion operators,

O
SR

=

�
c̄LbR

��
⌧̄LNR

�
, O

SL

=

�
c̄RbL

��
⌧̄LNR

�
, (2.9a)

O
VR

=

�
c̄R�

µbR
��
⌧̄R�µNR

�
, O

T

=

�
c̄L�

µ⌫bR
��
⌧̄L�µ⌫NR

�
, (2.9b)

The matching of NP operators in (2.1) onto the above operators is simple, ci = C23

i , if the
flavor indices are given in the mass eigenstate basis of the right-handed and the left-handed
up(down)-quarks for the operators O

SR,T(OSL

)

1

Each of the dimension-6 operators in Eqs. (2.3) can arise from a tree level exchange
of a new state, either a scalar or a vector. The possible mediators are listed in Table 1,
together with the resulting nonzero Wilson coefficients, ci, that multiply in each case the
four-fermion operators in (2.9). In some cases, the structure of the mediator Lagrangian,
�L

int

, implies relations between the various Wilson coefficients. Two of these mediators are
color singlets: The charged vector resonance W 0

µ, discussed extensively in Refs. [13, 14], and
the weak doublet scalar, �. The remaining options for the mediators are the leptoquarks,
for which we use the notation from Ref. [16].

Finally, we list the remaining b ! c⌧NR dimension 6 operators at µ ⇠ mc,b,

O0
SR

=

�
c̄LbR

��
⌧̄RN

c
R

�
, O0

SL

=

�
c̄RbL

��
⌧̄RN

c
R

�
, (2.10a)

O0
VR

=

�
c̄R�

µbR
��
⌧̄L�µN

c
R

�
, O0

VL

=

�
c̄L�

µbL
��
⌧̄L�µN

c
R

�
, (2.10b)

O0
T

=

�
c̄R�

µ⌫bL
��
⌧̄R�µ⌫N

c
R

�
, O

VL

=

�
c̄L�

µbL
��
⌧̄R�µNR

�
. (2.10c)

The generation of above operators from the electroweak scale four-fermion operators (2.1)
requires additional Higgs vev insertions and, apart from O

VL

, also the left-handed sterile
neutrino, N c

R. These O0
a operators are the same as the operators in [17], but with N c

R

replacing the SM neutrino, ⌫. The operators (2.10) together with (2.9) form a complete
1
These three operators are then also accompanied by the SU(2)L related operators,

�
d̄iLbR

��
⌫̄⌧NR

�
,�

d̄iL�
µ⌫bR

��
⌫̄⌧�µ⌫NR

�
,

�
c̄Ru

i
L

��
⌫̄⌧NR

�
, which, however, are not relevant for our discussion.
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Dim-6 operators involving NR 

After electroweak symmetry breaking 
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we focus exclusively on the generation of b ! c⌧⌫ decays this does not cause any confusion
in the notation below. We are interested in NP that is not excluded in direct searches,
which roughly corresponds to a requirement that the Wilson coefficients in (2.1) are at
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powers of v
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i , if the
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up(down)-quarks for the operators O
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Each of the dimension-6 operators in Eqs. (2.3) can arise from a tree level exchange
of a new state, either a scalar or a vector. The possible mediators are listed in Table 1,
together with the resulting nonzero Wilson coefficients, ci, that multiply in each case the
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involving ⌫⌧ . In this paper we generalize the EFT studies of Refs. [13, 14] to the full set of
dimension 6 operators involving NR. Assuming that the NP corrections are due to a tree
level exchange of a new mediator, there are five possible simplified models for b ! c⌧NR,
one of which is the simplified model of Refs. [13, 14] that has W 0 as a mediator. We study
the regions of the simplified model parameter space that best fit the R(D(⇤)

) anomaly,
subject to exclusions by Bc ! ⌧⌫, the relevant collider bounds, and the implications for
neutrino phenomenology.

This paper is structured as follows.... [JZ: to be finished]

2 EFT analysis

2.1 EFTs and simplified models

We assume the SM field content is extended by a single new state, a sterile neutrino trans-
forming as NR ⇠ (1,1, 0) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . This state may couple to the
SM quarks via higher dimensional operators. Above electroweak scale one therefore adds
to the renormalizable SM Lagrangian the following effective interactions,
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while Cad are the corresponding dimensionless Wilson coefficients. The most general basis
of dimension 6 operators that can generate the charged current b ! c⌧NR decay, is given
by

Q
SR

= ✏ab
�
¯Qa
LdR

��
¯Lb
LNR

�
, Q

SL

=

�
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Here a, b are SU(2)L indices, ✏ab is antisymmetric tensor with ✏
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= 1, and we
use the four-component notation, with QL the SM quark doublet, uR and dR the up- and
down-quark singlets, and LL the SM lepton doublet. One may also include the dimension
8 operator
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where ˜H = ✏H⇤, as well as the operators with left-handed sterile neutrino field, N c
R, that

start at dimension 7,

Q0
SR

=

�
¯QL

˜HdR
��
¯`RN

c
R

�
, Q0

SL

=

�
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parametrize as
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NR OPERATORS FOR R(D(*))

involving ⌫⌧ . In this paper we generalize the EFT studies of Refs. [13, 14] to the full set of
dimension 6 operators involving NR. Assuming that the NP corrections are due to a tree
level exchange of a new mediator, there are five possible simplified models for b ! c⌧NR,
one of which is the simplified model of Refs. [13, 14] that has W 0 as a mediator. We study
the regions of the simplified model parameter space that best fit the R(D(⇤)

) anomaly,
subject to exclusions by Bc ! ⌧⌫, the relevant collider bounds, and the implications for
neutrino phenomenology.

This paper is structured as follows.... [JZ: to be finished]

2 EFT analysis

2.1 EFTs and simplified models

We assume the SM field content is extended by a single new state, a sterile neutrino trans-
forming as NR ⇠ (1,1, 0) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . This state may couple to the
SM quarks via higher dimensional operators. Above electroweak scale one therefore adds
to the renormalizable SM Lagrangian the following effective interactions,
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while Cad are the corresponding dimensionless Wilson coefficients. The most general basis
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ūRQ

a
L

��
¯La
LNR

�
, (2.3a)

Q
T

= ✏ab
�
¯Qa
L�

µ⌫dR
��

¯Lb
L�µ⌫NR

�
, Q

VR

=

�
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= 1, and we
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Each of the SM fields also carries a family index, i.e., Qi
L, uiR, diR, Li

L, i = 1, 2, 3, and
similarly for the Wilson coefficients, Cij

ad, and the operators, Qij
ad, in (2.1). The family

indices were suppressed in the notation above in order to shorten the expressions. Since
we focus exclusively on the generation of b ! c⌧⌫ decays this does not cause any confusion
in the notation below. We are interested in NP that is not excluded in direct searches,
which roughly corresponds to a requirement that the Wilson coefficients in (2.1) are at
most O(1). Since the operators of dimension 7 and higher are suppressed by additional
powers of v

EW

/⇤
e↵

, we thus focus only on the phenomenology of dimension 6 operators
listed in (2.3).

Below the electroweak scale the top, the Higgs, W and Z are integrated out. The SM
interactions generate the SM effective Lagrangian, LSM

e↵

, see, e.g., [15], giving at µ ⇠ mc,b

scale
L
e↵

= LSM

e↵

+

1

⇤

2

e↵

X

i

ciOi. (2.8)

The NP contributions to b ! c⌧⌫, induced by dimension 6 operators (2.3), are described
by the following four-fermion operators,

O
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=
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c̄LbR

��
⌧̄LNR

�
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��
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�
, (2.9a)
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⌧̄R�µNR

�
, O

T

=
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c̄L�

µ⌫bR
��
⌧̄L�µ⌫NR

�
, (2.9b)

The matching of NP operators in (2.1) onto the above operators is simple, ci = C23

i , if the
flavor indices are given in the mass eigenstate basis of the right-handed and the left-handed
up(down)-quarks for the operators O

SR,T(OSL

)

1

Each of the dimension-6 operators in Eqs. (2.3) can arise from a tree level exchange
of a new state, either a scalar or a vector. The possible mediators are listed in Table 1,
together with the resulting nonzero Wilson coefficients, ci, that multiply in each case the
four-fermion operators in (2.9). In some cases, the structure of the mediator Lagrangian,
�L

int

, implies relations between the various Wilson coefficients. Two of these mediators are
color singlets: The charged vector resonance W 0

µ, discussed extensively in Refs. [13, 14], and
the weak doublet scalar, �. The remaining options for the mediators are the leptoquarks,
for which we use the notation from Ref. [16].

Finally, we list the remaining b ! c⌧NR dimension 6 operators at µ ⇠ mc,b,
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The generation of above operators from the electroweak scale four-fermion operators (2.1)
requires additional Higgs vev insertions and, apart from O

VL

, also the left-handed sterile
neutrino, N c

R. These O0
a operators are the same as the operators in [17], but with N c

R

replacing the SM neutrino, ⌫. The operators (2.10) together with (2.9) form a complete
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These three operators are then also accompanied by the SU(2)L related operators,
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Dim-6 operators involving NR 

After electroweak symmetry breaking 

Each of the SM fields also carries a family index, i.e., Qi
L, uiR, diR, Li

L, i = 1, 2, 3, and
similarly for the Wilson coefficients, Cij

ad, and the operators, Qij
ad, in (2.1). The family

indices were suppressed in the notation above in order to shorten the expressions. Since
we focus exclusively on the generation of b ! c⌧⌫ decays this does not cause any confusion
in the notation below. We are interested in NP that is not excluded in direct searches,
which roughly corresponds to a requirement that the Wilson coefficients in (2.1) are at
most O(1). Since the operators of dimension 7 and higher are suppressed by additional
powers of v

EW

/⇤
e↵

, we thus focus only on the phenomenology of dimension 6 operators
listed in (2.3).

Below the electroweak scale the top, the Higgs, W and Z are integrated out. The SM
interactions generate the SM effective Lagrangian, LSM
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, see, e.g., [15], giving at µ ⇠ mc,b
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The NP contributions to b ! c⌧⌫, induced by dimension 6 operators (2.3), are described
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Each of the dimension-6 operators in Eqs. (2.3) can arise from a tree level exchange
of a new state, either a scalar or a vector. The possible mediators are listed in Table 1,
together with the resulting nonzero Wilson coefficients, ci, that multiply in each case the
four-fermion operators in (2.9). In some cases, the structure of the mediator Lagrangian,
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, implies relations between the various Wilson coefficients. Two of these mediators are
color singlets: The charged vector resonance W 0

µ, discussed extensively in Refs. [13, 14], and
the weak doublet scalar, �. The remaining options for the mediators are the leptoquarks,
for which we use the notation from Ref. [16].
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neutrino, N c

R. These O0
a operators are the same as the operators in [17], but with N c
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replacing the SM neutrino, ⌫. The operators (2.10) together with (2.9) form a complete
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involving ⌫⌧ . In this paper we generalize the EFT studies of Refs. [13, 14] to the full set of
dimension 6 operators involving NR. Assuming that the NP corrections are due to a tree
level exchange of a new mediator, there are five possible simplified models for b ! c⌧NR,
one of which is the simplified model of Refs. [13, 14] that has W 0 as a mediator. We study
the regions of the simplified model parameter space that best fit the R(D(⇤)

) anomaly,
subject to exclusions by Bc ! ⌧⌫, the relevant collider bounds, and the implications for
neutrino phenomenology.

This paper is structured as follows.... [JZ: to be finished]

2 EFT analysis

2.1 EFTs and simplified models

We assume the SM field content is extended by a single new state, a sterile neutrino trans-
forming as NR ⇠ (1,1, 0) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . This state may couple to the
SM quarks via higher dimensional operators. Above electroweak scale one therefore adds
to the renormalizable SM Lagrangian the following effective interactions,

LEW

e↵

=

X

a,d

Cad

⇤

d�4

e↵

Qa + · · · , (2.1)

where Qa are dimension d operators, ⇤
e↵

is the effective scale defined to be

⇤

e↵

=

�
2

p
2GFVcb

��1/2 ' 0.87


40⇥ 10

�3

Vcb

�
1/2

TeV , (2.2)

while Cad are the corresponding dimensionless Wilson coefficients. The most general basis
of dimension 6 operators that can generate the charged current b ! c⌧NR decay, is given
by

Q
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= ✏ab
�
¯Qa
LdR
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¯Lb
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�
, Q

SL
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�
ūRQ

a
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¯La
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�
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Q
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= ✏ab
�
¯Qa
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¯Lb
L�µ⌫NR

�
, Q

VR

=

�
ūR�

µdR
��
¯`R�µNR

�
. (2.3b)

Here a, b are SU(2)L indices, ✏ab is antisymmetric tensor with ✏
12

= �✏
21

= 1, and we
use the four-component notation, with QL the SM quark doublet, uR and dR the up- and
down-quark singlets, and LL the SM lepton doublet. One may also include the dimension
8 operator

Q
VL

=

�
¯QL

˜H�µH†QL
��
¯`R�µNR

�
, (2.4)

where ˜H = ✏H⇤, as well as the operators with left-handed sterile neutrino field, N c
R, that

start at dimension 7,
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ūRH

†QL
��
¯`RN

c
R

�
, (2.5)

Q0
T

=

�
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�
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The equivalent of Q
VL

is now dimension 9,

Q0
VL

=

�
¯QL

˜H�µH†QL
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¯LLH�µN
c
R

�
. (2.7)
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parametrize as

have to be careful about running effects when 

comparing physics at different scales

we will assume that these operators are 

completely aligned with the b, c, τ  mass 

eigenstates, and no other corresponding 

couplings with other generations exist 

[  built-in assumption for us, but can be accomplished in 

flavor-locked models   

(S. Knapen and D. J. Robinson, 1507.00009)]
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UV COMPLETIONS

Each of the SM fields also carries a family index, i.e., Qi
L, uiR, diR, Li

L, i = 1, 2, 3, and
similarly for the Wilson coefficients, Cij

ad, and the operators, Qij
ad, in (2.1). The family

indices were suppressed in the notation above in order to shorten the expressions. Since
we focus exclusively on the generation of b ! c⌧⌫ decays this does not cause any confusion
in the notation below. We are interested in NP that is not excluded in direct searches,
which roughly corresponds to a requirement that the Wilson coefficients in (2.1) are at
most O(1). Since the operators of dimension 7 and higher are suppressed by additional
powers of v
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, we thus focus only on the phenomenology of dimension 6 operators
listed in (2.3).

Below the electroweak scale the top, the Higgs, W and Z are integrated out. The SM
interactions generate the SM effective Lagrangian, LSM
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, see, e.g., [15], giving at µ ⇠ mc,b
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The matching of NP operators in (2.1) onto the above operators is simple, ci = C23

i , if the
flavor indices are given in the mass eigenstate basis of the right-handed and the left-handed
up(down)-quarks for the operators O

SR,T(OSL

)
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Each of the dimension-6 operators in Eqs. (2.3) can arise from a tree level exchange
of a new state, either a scalar or a vector. The possible mediators are listed in Table 1,
together with the resulting nonzero Wilson coefficients, ci, that multiply in each case the
four-fermion operators in (2.9). In some cases, the structure of the mediator Lagrangian,
�L

int

, implies relations between the various Wilson coefficients. Two of these mediators are
color singlets: The charged vector resonance W 0

µ, discussed extensively in Refs. [13, 14], and
the weak doublet scalar, �. The remaining options for the mediators are the leptoquarks,
for which we use the notation from Ref. [16].

Finally, we list the remaining b ! c⌧NR dimension 6 operators at µ ⇠ mc,b,
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The generation of above operators from the electroweak scale four-fermion operators (2.1)
requires additional Higgs vev insertions and, apart from O

VL

, also the left-handed sterile
neutrino, N c

R. These O0
a operators are the same as the operators in [17], but with N c

R

replacing the SM neutrino, ⌫. The operators (2.10) together with (2.9) form a complete
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These three operators are then also accompanied by the SU(2)L related operators,
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mediator irrep �L
int

WCs

W 0
µ (1, 1)

1

g0
�
cqūR /W

0
dR + cN ¯`R /W

0
NR

�
c
VR

� (1, 2)
1/2

yuūRQL✏�+ yd ¯dRQL�
†
+

yN ¯NRLL✏�
c
SL

, c
SR

Uµ
1

(3, 1)
2/3

�
↵LQ

¯LL�µQL + ↵`d
¯`R�µdR

�
Uµ†
1

+

↵uN
�
ūR�µNR

�
Uµ
1

c
SL

, c
VR

˜R
2

(3, 2)
1/6 ↵Ld

�
¯LLdR

�
✏ ˜R†

2

+ ↵QN
�
¯QLNR

�
˜R
2

c
SR

= 4c
T

S
1

(

¯

3, 1)
1/3

zu( ¯U
c
R`R)S1

+ zd( ¯d
c
RNR)S1

+

zQ( ¯Q
c
L✏LL)S1

c
VR

,

c
SR

= �4c
T

Table 1. The tree level mediators that can lead to the four-fermion operators with right-handed
neutrino, NR, in Eqs. (2.9), as indicated in the last column.

basis of b ! c⌧NR dimension 6 four-fermion operators. For instance, there is only one
non-vanishing tensor operator, since �µ⌫PL ⌦ �µ⌫PR = 0, which immediately follows from
the relation �µ⌫ ⌦ �µ⌫�

5

= �µ⌫�5 ⌦ �µ⌫ .

2.2 Fits to R(D(⇤)
) data

The present experimental world-averages for R(D(⇤)
) are [7]

R(D)

��
exp

= 0.407± 0.046 , R(D⇤
)

��
exp

= 0.304± 0.015 , corr. = �0.20 . (2.11)

The SM predictions, making use of the model-independent form factor fit ‘Lw�1

’ of Ref. [8]
(see also Refs. [JZ: missing]), are

R(D)

��
th

= 0.298± 0.003, R(D⇤
)

��
th

= 0.261± 0.004, corr. = +0.19. (2.12)

With the addition of a right-handed neutrino decay mode, the B ! D(⇤)⌧ ⌫̄ decays become
an incoherent sum of two contributions: One from the SM decay, b ! c⌧ ⌫̄⌧ , and one from
b ! c⌧ ¯NR. The NR contributions therefore increase both of the B ! D(⇤)⌧ ⌫̄ branching
ratios above the SM expectation, matching the direction of the experimental observations
for R(D(⇤)

) compared to the SM values.
In Fig. 1 we show, for each simplified model of Table 1, the allowed contours or regions

in the R(D)�R(D⇤
) plane, compared to the experimental data, assuming for the moment

that all Wilson coefficients are real. The predictions for NP corrections to R(D(⇤)
) are

obtained from the expressions in Ref. [18], making use of the form factor fit ‘Lw�1

+SR’
of Ref. [8]. This fit was performed at next-to-leading order in the heavy quark expansion,
with matching scale µ =

p
mbmc and quark masses defined in the ⌥(1S) scheme, relevant

for self-consistent treatment of the Bc ! ⌧⌫ constraints below. Because the W 0 and ˜R
2

simplified models have only a single free Wilson coefficient, these two models are therefore
constrained to a contour. By contrast, �, U

1

and S
1

have two free Wilson coefficients,

– 4 –
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R(D(*)) CONTRIBUTIONS

Figure 1. The modifications of R(D(⇤)
) from b ! c⌧NR decays. The world average experimental

1�, 2�, and 3� fit regions are shown in decreasing shade of gray. The SM point is denoted by a dot.

permitting them to span a region. If one lifts the requirement that the Wilson coefficients
are real, Fig. 1 remains unchanged. This result is straightforward for W 0 and ˜R

2

, where
the NP contributions are in each case controlled by only one coupling. Since the NR

contributions incoherently add to the SM, the phases of these two couplings are irrelevant.
In contrast, the �, U

1

and S
1

couplings do have one physical relative phase, '. Since the
NR contributions to R(D(⇤)

) must be real, positive definite, R(D(⇤)
)'=0

is either a strict
upper or lower bound of the ' 6= 0 case. For all three models, �, U

1

and S
1

, R(D(⇤)
)'=0

can be shown to be a strict lower bound, so that the regions in Fig. 1 always contain the
' 6= 0 regions, and therefore correspond to the maximal allowed regions in each model.

Fitting each simplified model to the experimental data, assuming first that all Wilson
coefficients are real, we show in Fig. 2 the corresponding 0.5�, 1� CLs (dark, light blue)
and 1.5�, 2� CLs (dark, light green) in the relevant Wilson coefficient spaces. The best fit
points are shown by black dots, with explicit values provided in Table 2. For the W 0 and
˜R
2

models, we show the explicit �2/dof (dof = 2) [JZ: why goodness of fit? What is
actually plotted?], as well as the intervals corresponding to 1� and 2� CLs.

The additional NP currents from the operators (2.9) also incoherently modify the Bc !
⌧ ⌫̄ decay rate with respect to the SM contribution, such that

Br(Bc ! ⌧ ⌫̄) =
⌧Bcf

2

Bc
mBcm

2

⌧

64⇡⇤4

e↵

�
1�m2

⌧/m
2

Bc

�
2


1 +

����cVR

+

m2

Bc
(c

SR

� c
SL

)

m⌧ (mb +mc)

����
2

�
, (2.13)

in which mc,b are the MS quark masses, obeying mQ ' mQ(1+↵s/⇡[4/3�ln(m2

Q/µ
2

)]). Self-
consistency with the form factor treatment of Ref. [8] requires these masses to be evalutated
at µ =

p
mbmc in the ⌥(1S) quark mass scheme. In Eq. (2.13), fBc ' 0.43GeV [19] and

⌧Bc ' 0.507 ps [20]. In Fig. 2 we show the corresponding exclusion regions for the relevant

– 5 –

NP contributions add INCOHERENTLY to the SM effect.  

Can only increase R(D(*)),  as the measurements demand!
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Ground Rules

1507.03233 [Belle]

• Migration in m2
miss can be large

• Existing analyses can probably tolerate m
N

R

. O(100) MeV
• Heavier masses not ruled about, but require new analyses. Today:

m
N

R

. 100 MeV
Dean Robinson drobinson@lbl.gov b æ c·N

R

10 | 44

from D. Robinson

HOW HEAVY CAN NR BE? 
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We will impose Br(Bc → τν) < 10% (reasonable) or < 5% (aggressive)	

MAIN CONSTRAINT

Interlude: Bc æ ·‹ bounds
Introducing b æ c·N

R

operator =∆ contribution to B
c

æ ·N
R

decays

Br[B
c

æ ·‹SM] = BrSM

5
1 +

----cVR +
m2

B

c

m· (m
b

+ m
c

) [cSL(µ) ≠ cSR(µ)]
----26

• A huge enhancement for scalar operators ≥ m
B

c

/m·

• B
c

æ ·‹ is not measured, but the B
c

lifetime time and exclusive BRs to
hadrons are

• Sets a requirement that Br[B
c

æ ·‹] . 10–30%.
E�ectively kills single scalar current models, e.g. 2HDM type II!

Dean Robinson drobinson@lbl.gov b æ c·N

R

23 | 44

from D. Robinson
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FITS AND CONSTRAINTS

	 .	 NP corrections and form factor fits based on	      

	 	 Z. Ligeti, M. Papucci, and D. J. Robinson, JHEP 01, 083 (2017), 1610.02045 	       

	 .	 F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, Phys. Rev. D95, 115008 (2017), 1703.05330 	      
!

Figure 2. Top: The fit regions for �, U1, and S1 models with respect to the R(D(⇤)
) results (2.14)

in the relevant Wilson coefficient spaces, assuming that all Wilson coefficients are real. Shown are
0.5�, 1� CLs (dark, light blue) and 1.5�, 2� CLs (dark, light green). Best fit points are shown by
black dots. Bottom: The �2 (dof = 2) for the W 0 and ˜R2 models in the relevant Wilson coefficient
space. The 1� and 2� CLs are shown by blue and green dots, respectively. Also shown are Bc ! ⌧⌫

exclusion regions requiring Br[Bc ! ⌧⌫] < 10% (dark orange). For a sense of scaling, a more
aggressive Br[Bc ! ⌧⌫] < 5% exclusion region is demarcated by a dashed orange line.

⌧⌫ decay rate with respect to the SM contribution (cf. Refs. [23, 24]), such that

Br(Bc ! ⌧⌫) =
⌧Bcf

2

Bc
mBcm

2

⌧

64⇡⇤4

e↵

�
1�m2

⌧/m
2

Bc

�
2


1 +

����cVR

+

m2

Bc
(c

(µ)
SL

� c
(µ)
SR

)

m⌧ (mb +mc)

����
2

�
, (2.17)

in which fBc ' 0.43GeV [34] and ⌧Bc ' 0.507 ps [35], and mc,b are the MS quark masses,
obeying mQ ' mQ(1 + ↵s/⇡[4/3 � ln(m2

Q/µ
2

)]). Self-consistency with the form factor
treatment of Ref. [8] requires these masses to be evaluated at µ =

p
mbmc in the ⌥(1S)

quark mass scheme. In Fig. 2 we show the corresponding exclusion regions for the relevant
Wilson coefficient spaces (shaded orange), requiring Br(Bc ! ⌧ ⌫̄) < 10% [23, 24]. For a
sense of scaling, we also include a more aggressive Br(Bc ! ⌧ ⌫̄) < 5% exclusion demarcated
by a dashed orange line. One sees that the � simplified model is excluded, while the ˜R

2

2� CL is not quite excluded by the Br(Bc ! ⌧ ⌫̄) < 10% constraint. The U
1

and S
1

best
fit points are in mild tension with the aggressive Br(Bc ! ⌧ ⌫̄) < 5% exclusion, but also
exhibit allowed regions for their 1� CLs.

Lifting the requirement of real Wilson coefficients, the �, U
1

, and S
1

models now have
a physical phase and inhabit a three dimensional parameter space: two Wilson coefficient
magnitudes, schematically denoted |c

1,2|, and a relative phase '. For the basis of Wilson
coefficients defined by the NR operators (2.8), however, the amplitudes for the B ! D(⇤)l⌫̄

decay alone have no physical relative phases. (Physical phases do exist once the D⇤ and ⌧

– 7 –

(assuming all couplings real)

Orange: 	

excluded region 
from requiring 
Br(Bc → τν) < 10% 
(dotted: 5%)	
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BEST FIT VALUES

excluded by	

Br(Bc → τν) 

Take away message: best fit couplings are ~1 

New physics interactions must be comparable in strength to SM weak interactions! 

Real Phase-optimized

Model WCs Best fit �2 Best fit �2

W 0 c
VR

±0.46 1.0 – –
˜R
2

c
(µ)
SR

= 4r c
(µ)
T

±0.72 0.5 – –

� {c(µ)
SR

, c
(µ)
SL

}
{±1.50,⌥0.84} 0. {1.50,�0.84} 0.

{1.21,±1.21e±i0.17⇡} 0.

{±0.84,⌥1.50} 0. {0.84,�1.50} 0.

U
1

{c
VR

, c
(µ)
SL

} {±0.45,⌥0.93} 0. {0.45,�0.93} 0.

{±0.42,±0.24} 0. {0.42, 0.24} 0.

S
1

{c
VR

, {±0.40,⌥0.85} 0. {0.40,�0.85} 0.

c
(µ)
SR

= �4r c
(µ)
T

} {±0.27,±0.42} 0. {0.27, 0.42} 0.

Table 2. Best fit points for each model with respect to the R(D(⇤)
) results (2.14), for real and

phase-optimized Wilson coefficients. In the phase-optimized case, we show best fits up to an overall
phase, by choosing the first WC to be real and positive definite.

decay amplitudes are included.) Consequently, for a given choice of |c
1,2|, there may exist

a nontrivial value for cos' that minimizes the �2 for R(D(⇤)
) in Eq. (2.16). We refer to

this scenario as the ‘phase optimized’ case, denoted ' = '
0

(|c
1

|, |c
2

|). In explicit numerical
terms, for the form factor and R(D(⇤)

) inputs described above, the �, U
1

, and S
1

models
have non-trivial solutions

cos('
0

) =

8
>>>>>><

>>>>>>:

0.24� 0.51|c
SR

|2 � 0.51|c
SL

|2
|c

SR

||c
SL

| , � ,

0.38� 1.38|c
VR

|2 � 0.60|c
SL

|2
|c

VR

||c
SL

| , U
1

,

0.32� 1.40|c
VR

|2 � 0.61|c
SR

|2
|c

VR

||c
SR

| , S
1

,

(2.18)

valid only on the domain | cos('
0

)| < 1, and otherwise cos('
0

) = ±1. These phase-
optimized CLs for the �, U

1

, and S
1

models are shown in Fig. 3, with the explicit best
fit points listed in Table 2. The best fit points for U

1

and S
1

remain the same, and one
sees that these models continue to have non-excluded 1� CLs. An additional best fit point
emerges for the � simplified model; however, this model remains excluded, and we therefore
do not consider it further in this paper.

Finally, the exchange of mediators that generates the c
SR,T Wilson coefficients also

results in cs
SR,T of similar size (see Eq. (2.11)). The two operators in Eq. (2.11) contribute

to b ! s⌫⌫̄ rates. This gives, for instance, for the B ! K⌫⌫̄ decay rate (far enough from
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(assuming all couplings real)

on the verge of 
exclusion
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FITS AND CONSTRAINTS

Orange: excluded region from requiring Br(Bc → τν) < 10% (dotted: 5%)	

More parameter space for leptoquarks, scalar remains excluded	
!

(with complex parameters)

Figure 3. The phase-optimized CLs with respect to the R(D(⇤)
) results (2.14) for �, U1, and S1

models in the relevant Wilson coefficient spaces, imposing the condition ' = '0(|c1|, |c2|). Shown
are 0.5�, 1� CLs (dark, light blue) and 1.5�, 2� CLs (dark, light green). Also shown are Bc ! ⌧⌫

exclusion regions requiring Br[Bc ! ⌧⌫] < 10% (dark orange). For a sense of scaling, a more
aggressive Br[Bc ! ⌧⌫] < 5% exclusion region is demarcated by a dashed orange line. Best fit
points are shown by black dots.

the kinematic threshold so that we can neglect all the final state masses) [29]

d�B!K⌫⌫̄

dz

.d�B!K⌫⌫̄

dz

����
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⇤
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+

�
, (2.19)

with the three B ! K form factors, f
0

(q2), f
+

(q2), fT (q2), functions of q2, the invariant
mass squared of the neutrino pair, and z = q2/m2

B. The present experimental bound,
Br(B+ ! K+⌫⌫̄) < 1.6 ⇥ 10

�5 [30], is only a factor of a few above the SM prediction,
Br(B+ ! K+⌫⌫̄)|

SM

' 4⇥ 10

�6 [31]. This implies that cs
SR

and cs
T

are highly suppressed,
to the level of O(10

�2

), introducing tensions with the required size of c
SR

, c
T

to explain
the R(D(⇤)

) anomaly. In the single mediator exchange models in Table 1, this means
that the product ↵3

Ld↵
2

QN for ˜R
2

and the product z3dz
2

Q for S
1

(and y32d for �) need to
be much smaller than what is required to explain R(D(⇤)

). This excludes the ˜R
2

as a
simple one mediator solution to R(D(⇤)

): Additional operators coupling to the second
generation of quark doublets must be introduced, whose couplings are tuned appropriately
to suppress the contributions to b ! s⌫⌫̄. However, this approach would in turn induce
large radiative contributions to the neutrino masses, which would also need to be tuned
away (see Sec. 4). The S

1

model also generates too large a b ! s⌫⌫̄ transition rate at
the (non-excluded) best fit point, where c

SR

and c
T

are nonzero. The dangerous b ! s⌫⌫̄

contribution can be suppressed by taking z23Q ! 0 (see Table 1), which forces c
SR

= c
T

! 0.
This c

SR

= c
T

= 0 point leads to only a small change in �2, corresponding to a less than
0.5� shift in significance, see Fig. 2.

2.3 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
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new best fit, 
but remains 
excluded

New best fit point for scalar mediator, still  excluded. 

For other mediators, best fit points do not change.

Real Phase-optimized

Model WCs Best fit �2 Best fit �2

W 0 c
VR

±0.46 1.0 – –
˜R
2

c
(µ)
SR

= 4r c
(µ)
T

±0.72 0.5 – –

� {c(µ)
SR

, c
(µ)
SL

}
{±1.50,⌥0.84} 0. {1.50,�0.84} 0.

{1.21,±1.21e±i0.17⇡} 0.

{±0.84,⌥1.50} 0. {0.84,�1.50} 0.

U
1

{c
VR

, c
(µ)
SL

} {±0.45,⌥0.93} 0. {0.45,�0.93} 0.

{±0.42,±0.24} 0. {0.42, 0.24} 0.

S
1

{c
VR

, {±0.40,⌥0.85} 0. {0.40,�0.85} 0.

c
(µ)
SR

= �4r c
(µ)
T

} {±0.27,±0.42} 0. {0.27, 0.42} 0.

Table 2. Best fit points for each model with respect to the R(D(⇤)
) results (2.14), for real and

phase-optimized Wilson coefficients. In the phase-optimized case, we show best fits up to an overall
phase, by choosing the first WC to be real and positive definite.

decay amplitudes are included.) Consequently, for a given choice of |c
1,2|, there may exist

a nontrivial value for cos' that minimizes the �2 for R(D(⇤)
) in Eq. (2.16). We refer to

this scenario as the ‘phase optimized’ case, denoted ' = '
0

(|c
1

|, |c
2

|). In explicit numerical
terms, for the form factor and R(D(⇤)

) inputs described above, the �, U
1

, and S
1

models
have non-trivial solutions

cos('
0

) =

8
>>>>>><

>>>>>>:

0.24� 0.51|c
SR

|2 � 0.51|c
SL

|2
|c

SR

||c
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| , � ,

0.38� 1.38|c
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|2 � 0.60|c
SL
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||c
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| , U
1

,

0.32� 1.40|c
VR

|2 � 0.61|c
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|2
|c

VR

||c
SR

| , S
1

,

(2.18)

valid only on the domain | cos('
0

)| < 1, and otherwise cos('
0

) = ±1. These phase-
optimized CLs for the �, U

1

, and S
1

models are shown in Fig. 3, with the explicit best
fit points listed in Table 2. The best fit points for U

1

and S
1

remain the same, and one
sees that these models continue to have non-excluded 1� CLs. An additional best fit point
emerges for the � simplified model; however, this model remains excluded, and we therefore
do not consider it further in this paper.

Finally, the exchange of mediators that generates the c
SR,T Wilson coefficients also

results in cs
SR,T of similar size (see Eq. (2.11)). The two operators in Eq. (2.11) contribute

to b ! s⌫⌫̄ rates. This gives, for instance, for the B ! K⌫⌫̄ decay rate (far enough from
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Model WCs Best fit �2 Best fit �2
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= 4r c
(µ)
T

±0.72 0.5 – –
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} {±0.45,⌥0.93} 0. {0.45,�0.93} 0.

{±0.42,±0.24} 0. {0.42, 0.24} 0.
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= �4r c
(µ)
T

} {±0.27,±0.42} 0. {0.27, 0.42} 0.

Table 2. Best fit points for each model with respect to the R(D(⇤)
) results (2.14), for real and

phase-optimized Wilson coefficients. In the phase-optimized case, we show best fits up to an overall
phase, by choosing the first WC to be real and positive definite.

decay amplitudes are included.) Consequently, for a given choice of |c
1,2|, there may exist

a nontrivial value for cos' that minimizes the �2 for R(D(⇤)
) in Eq. (2.16). We refer to

this scenario as the ‘phase optimized’ case, denoted ' = '
0

(|c
1

|, |c
2

|). In explicit numerical
terms, for the form factor and R(D(⇤)

) inputs described above, the �, U
1

, and S
1

models
have non-trivial solutions
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) =
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valid only on the domain | cos('
0

)| < 1, and otherwise cos('
0

) = ±1. These phase-
optimized CLs for the �, U

1

, and S
1

models are shown in Fig. 3, with the explicit best
fit points listed in Table 2. The best fit points for U

1

and S
1

remain the same, and one
sees that these models continue to have non-excluded 1� CLs. An additional best fit point
emerges for the � simplified model; however, this model remains excluded, and we therefore
do not consider it further in this paper.

Finally, the exchange of mediators that generates the c
SR,T Wilson coefficients also

results in cs
SR,T of similar size (see Eq. (2.11)). The two operators in Eq. (2.11) contribute

to b ! s⌫⌫̄ rates. This gives, for instance, for the B ! K⌫⌫̄ decay rate (far enough from
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new best fit, 
but remains 
excluded

New best fit point for scalar mediator, still  excluded. 

For other mediators, best fit points do not change.
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Model WCs Best fit �2 Best fit �2
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Table 2. Best fit points for each model with respect to the R(D(⇤)
) results (2.14), for real and

phase-optimized Wilson coefficients. In the phase-optimized case, we show best fits up to an overall
phase, by choosing the first WC to be real and positive definite.

decay amplitudes are included.) Consequently, for a given choice of |c
1,2|, there may exist

a nontrivial value for cos' that minimizes the �2 for R(D(⇤)
) in Eq. (2.16). We refer to

this scenario as the ‘phase optimized’ case, denoted ' = '
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(|c
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2
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terms, for the form factor and R(D(⇤)

) inputs described above, the �, U
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) =
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valid only on the domain | cos('
0

)| < 1, and otherwise cos('
0

) = ±1. These phase-
optimized CLs for the �, U

1

, and S
1

models are shown in Fig. 3, with the explicit best
fit points listed in Table 2. The best fit points for U

1

and S
1

remain the same, and one
sees that these models continue to have non-excluded 1� CLs. An additional best fit point
emerges for the � simplified model; however, this model remains excluded, and we therefore
do not consider it further in this paper.

Finally, the exchange of mediators that generates the c
SR,T Wilson coefficients also

results in cs
SR,T of similar size (see Eq. (2.11)). The two operators in Eq. (2.11) contribute

to b ! s⌫⌫̄ rates. This gives, for instance, for the B ! K⌫⌫̄ decay rate (far enough from
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Table 2. Best fit points for each model with respect to the R(D(⇤)
) results (2.14), for real and

phase-optimized Wilson coefficients. In the phase-optimized case, we show best fits up to an overall
phase, by choosing the first WC to be real and positive definite.

decay amplitudes are included.) Consequently, for a given choice of |c
1,2|, there may exist

a nontrivial value for cos' that minimizes the �2 for R(D(⇤)
) in Eq. (2.16). We refer to

this scenario as the ‘phase optimized’ case, denoted ' = '
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valid only on the domain | cos('
0

)| < 1, and otherwise cos('
0

) = ±1. These phase-
optimized CLs for the �, U

1

, and S
1

models are shown in Fig. 3, with the explicit best
fit points listed in Table 2. The best fit points for U

1

and S
1

remain the same, and one
sees that these models continue to have non-excluded 1� CLs. An additional best fit point
emerges for the � simplified model; however, this model remains excluded, and we therefore
do not consider it further in this paper.

Finally, the exchange of mediators that generates the c
SR,T Wilson coefficients also

results in cs
SR,T of similar size (see Eq. (2.11)). The two operators in Eq. (2.11) contribute

to b ! s⌫⌫̄ rates. This gives, for instance, for the B ! K⌫⌫̄ decay rate (far enough from
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effects on kinematic 

distributions  

!
(here: W’ mediator, 

 massless NR) 

!
blue: SM only.  

grey:  95% CL region 

!
left: D*; right: D

Figure 10. Gray bands show kinematic distributions for B ! (D⇤ ! D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ (left)
and B ! D(⌧ ! `⌫̄`⌫⌧ )⌫̄ (right) in the B rest frame for the W 0 simplified model in Table 1, with
the Wilson coefficient cVR ranging over 2� best fit regions in Fig. 2, and applying the phase space
cuts (2.20). The blue dashed curves show the SM prediction.
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Figure 12. Gray bands show kinematic distributions for B ! (D⇤ ! D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ (left) and
B ! D(⌧ ! `⌫̄`⌫⌧ )⌫̄ (right) in the B rest frame for the U1 simplified model in Table 1, with the
Wilson coefficients cSL, cVR ranging over 2� best fit regions in Fig. 2, and applying the phase space
cuts (2.20). The blue dashed curves show the SM prediction.
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distributions  
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 massless NR) 
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blue: SM only.  

grey:  95% CL region
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ADDITIONAL  
FLAVOR CONSTRAINTS

b æ s‹‹ constraints
• As above, OSR,T,SL are accompanied by the SU(2)

L

related operators,
generating b æ s‹‹

• cs

SR,T ƒ cSR,T

d�
BæK‹‹

dq̂2

Od�
BæK‹‹

dq̂2

----
SM

ƒ 1+5◊104 q̂2
5

3
8

!
cs

SR
"2 f 2

0
f 2
+

+(1≠q̂2)
!
cs

T
"2 f 2

T

f 2
+

6
,

• Current bound Br(B+ æ K+‹‹) < 1.6 ◊ 10≠5 vs SM prediction,
Br(B+ æ K+‹‹)|SM ƒ 4 ◊ 10≠6: cSR,T highly constrained [Or a tuning is

required]

• Requires –
Ld

–
QN

π 1 for ÂR2, and z
d

z
Q

π 1 for S1.

Dean Robinson drobinson@lbl.gov b æ c·N

R

27 | 44

The scalar and tensor operators run under the Renormalization Group. The RG evolution
from M > mt to µ < mb gives at one-loop order in the leading log approximation for the
Wilson coefficients at the low scale [27, 28], for X = SR, SL,T,

cX(µ) =


↵(mb)

↵(µ)

��X/2�
(4)
0

↵(mt)

↵(mb)

��X/2�
(5)
0

↵(M)

↵(mt)

��X/2�
(6)
0

cX(M)

⌘ ⇢X(µ;M)cX(M) ,

(2.9)

with anomalous dimensions �
SR,SL

= �8, �
T

= 8/3 and the one loop �-function coefficient
�
(n)
0

= 11� 2n/3. The running of c
SR,SL,T depends only weakly on the high scale M , and

hereafter we set M = ⇤

e↵

. Fixing the scale low scale to µ =

p
mcmb – anticipating the

chosen matching scale of QCD onto HQET for the B ! D(⇤) form factor parametrization
– one finds

⇢
SR,SL

' 1.7 , ⇢
T

' 0.84 . (2.10)

Assuming the flavor indices are given in the mass eigenstate basis, the NP operators (2.1)
can be matched onto the operators (2.3) as cX(⇤

e↵

) = C233

X , neglecting the tiny mixing of
active neutrinos into NR. Note that the operators O

SR,T,SL are accompanied by the SU(2)L

related operators

Os
SR

=

�
s̄LbR

��
⌫̄⌧NR

�
, Os

T

=

�
s̄L�

µ⌫bR
��
⌫̄⌧�µ⌫NR

�
, (2.11)

and
�
c̄RtL

��
⌫̄⌧NR

�
. The Wilson coefficients of these operators, cs

SR,T,SL

, correspond to
c
SR,T,SL

, respectively, up to one-loop or higher-order corrections.
Each of the dimension-six operators in Eq. (2.3) can arise from the tree level exchange

of a new state, either a scalar or a vector. The possible mediators, together with the Wilson
coefficients cX they can contribute to, are listed in Table 1. Two of these mediators are
color singlets: the charged vector resonance W 0

µ, discussed extensively in Refs. [16, 17], and
the weak doublet scalar �. The remaining mediators are leptoquarks, for which we use
the notation from Ref. [32]. In some cases the structure of the mediator Lagrangian, �L

int

,
implies relations between the various Wilson coefficients, denoted by equalities in Table 1.
In particular, for the ˜R

2

and S
1

models, c
SR

(⇤

e↵

) = ±4c
T

(⇤

e↵

), which evolves to

c
SR

(µ) = ±4r c
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The generation of these operators from the electroweak scale four-Fermi operators (2.4)–
(2.6) requires additional insertions of the Higgs vev, v

EW

, and, apart from O
VL

, also the
left-handed sterile neutrino N c

R. These O0
a operators are the same as those in Ref. [27],
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The scalar and tensor operators run under the Renormalization Group. The RG evolution
from M > mt to µ < mb gives at one-loop order in the leading log approximation for the
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0

= 11� 2n/3. The running of c
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where Qa are dimension-d operators, Cad are the corresponding dimensionless Wilson coef-
ficients (WCs), and ⇤

e↵

is the effective scale defined to be

⇤

e↵

=

�
2

p
2GFVcb

��1/2 ' 0.87
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The most general basis of dimension-6 operators that can generate the charged current
b ! c⌧ ¯NR decay is given by

Q
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¯Qa
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¯Lb
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, Q
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¯`R�µNR

�
. (2.3b)

Here a, b are SU(2)L indices, ✏ab is an antisymmetric tensor with ✏
12

= �✏
21

= 1, and we
use the four-component notation, with QL the SM quark doublet, uR and dR the up- and
down-quark singlets, and LL the SM lepton doublet. (As usual, there is only one non-
vanishing tensor operator, since �µ⌫PL ⌦ �µ⌫PR = 0, which immediately follows from the
relation �µ⌫ ⌦ �µ⌫�

5

= �µ⌫�5 ⌦ �µ⌫ .) One may also include the dimension-8 operator

Q
VL

=

�
¯QL

˜H�µH†QL
��
¯`R�µNR

�
, (2.4)

where ˜H = ✏H⇤, as well as the operators with the left-handed sterile neutrino field, N c
R,

that start at dimension-7,
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and the dimension-9 equivalent of Q
VL

,
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˜H�µH†QL
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¯LLH�µN
c
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�
. (2.6)

Each of the SM fields also carries a family index, i.e., Qi
L, uiR, diR, Li

L, i = 1, 2, 3, and
similarly for the Wilson coefficients, Cijk

ad , and the operators, Qijk
ad , in Eq. (2.1), which we

have omitted for the sake of simplicity. Since we focus exclusively on the generation of b !
c⌧ ⌫̄ decays below, we drop the family indices hereafter, unless otherwise stated. Consistency
with bounds from direct searches requires that the Wilson coefficients in Eq. (2.1) be at
most O(1).

Below the electroweak scale, the top quark, the Higgs, and the W and Z bosons are
integrated out. At the scale µ ⇠ mc,b, the effective Lagrangian, including SM terms (see,
e.g., [26]), can be written

L
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= LSM
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+

1
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2

e↵

X

i

ciOi , (2.7)

in which the NP contributions to b ! c⌧ ⌫̄, induced by the dimension-6 operators in (2.3),
are described by the following four-fermion operators,
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The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by

W 0
: mD ⇠ c

VR

⇤

2

e↵

g2
2

Vcb

512⇡4

mbmcm⌧ ⇠ c
VR

10

�3 eV, (2.17a)

˜R
2

: mD ⇠ 2c
SR

mb
g2
2

Vcb

512⇡4

⇠ c
SR

10

2 eV, (2.17b)

U
1

: mD ⇠

c
SL

mc +
c
VR

⇤

2

e↵

mbmcm⌧

�
g2
2

Vcb

512⇡4

⇠ (c
SL

10

2

+ c
VR

10

�3

) eV, (2.17c)

S
1

: mD ⇠

2c

SR

mb +
c
VR

⇤

2

e↵

mbmcm⌧

�
g2
2

Vcb

512⇡4

⇠ (c
SR

10

2

+ c
VR

10

�3

) eV . (2.17d)

With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)

– 8 –

(Dirac) neutrino mass contribution at two loops

[ Note 1: NO free parameters once R(D(*)) contribution is fixed.  

Note 2: only gives a mass contribution with tau neutrino]
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Figure 8. Dirac mass contribution by virtue of SU(2) counterparts of the four-Fermi operators that
give rise to the R(D(⇤)

) enhancements. These diagrams are GIM suppressed and give subdominant
contributions to the Dirac mass.

various mass insertions are mandated on the internal quark and lepton lines. In particular,
the O

VR

operator requires three mass insertions, while the scalar and tensor operators
require only one. The corresponding Dirac masses can be estimated as
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In the above estimates, we have ignored O(1) prefactors and loop integral factors apart
from those implied by naïve dimensional analysis. Note that for diagrams with a single
mass insertion, the Wilson coefficients c

SL

, c
SR

appear without the 1/⇤2

e↵

prefactor. In
such cases, strictly speaking, it is the couplings of the mediators rather than the Wilson
coefficients that should appear in the estimates. However, since the collider constraints
require mediators to be heavy, with mass approximately equal to ⇤

e↵

, it is a reasonable
approximation to use the Wilson coefficients everywhere in the above estimates.

Furthermore, for ˜R
2

, U
1

, and S
1

mediators, which couple to the left-handed ⌧L, there
are additional two loop contributions to the neutrino mass matrix arising from the SU(2)L

related operators involving ⌫L. A representative diagram is shown in Fig. 8. While such
diagrams contain similar mass insertions and WC scalings as the corresponding c

SL,SR terms
in Eqs. (4.2), they are GIM suppressed and thus expected to produce only subleading
corrections to the Dirac mass estimates in Eqs. (4.2).

Since NR is assumed to have a Majorana mass mNR . 100 MeV, the contribution to the
SM neutrino masses is ⇠ m2

D/mNR , which should not exceed the observed neutrino mass
scale m⌫ ⇠ 0.1 eV. From the best fit regions shown in Figs. 2 or 3 (and the best fit values
from Table 2), it follows that the W 0-mediated diagram gives a Dirac mass mD ⇠ 10

�3 eV,
which is consistent with observed neutrino masses, whereas the R

2

mediated digram gives
mD ⇠ 100 eV, which is in some tension for mNR . 10MeV. Likewise, the U

1

and S
1

models
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With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
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model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U
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models, however, remain viable, if c
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Wilson coefficients are small. For these two
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corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
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NDA estimate	

(ignore O(1) prefactors, loop integral factors)

most important factor: number of mass insertions in the loops
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Figure 8. Dirac mass contribution by virtue of SU(2) counterparts of the four-Fermi operators that
give rise to the R(D(⇤)

) enhancements. These diagrams are GIM suppressed and give subdominant
contributions to the Dirac mass.
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, c
SR

appear without the 1/⇤2

e↵

prefactor. In
such cases, strictly speaking, it is the couplings of the mediators rather than the Wilson
coefficients that should appear in the estimates. However, since the collider constraints
require mediators to be heavy, with mass approximately equal to ⇤

e↵

, it is a reasonable
approximation to use the Wilson coefficients everywhere in the above estimates.

Furthermore, for ˜R
2

, U
1

, and S
1

mediators, which couple to the left-handed ⌧L, there
are additional two loop contributions to the neutrino mass matrix arising from the SU(2)L

related operators involving ⌫L. A representative diagram is shown in Fig. 8. While such
diagrams contain similar mass insertions and WC scalings as the corresponding c

SL,SR terms
in Eqs. (4.2), they are GIM suppressed and thus expected to produce only subleading
corrections to the Dirac mass estimates in Eqs. (4.2).

Since NR is assumed to have a Majorana mass mNR . 100 MeV, the contribution to the
SM neutrino masses is ⇠ m2

D/mNR , which should not exceed the observed neutrino mass
scale m⌫ ⇠ 0.1 eV. From the best fit regions shown in Figs. 2 or 3 (and the best fit values
from Table 2), it follows that the W 0-mediated diagram gives a Dirac mass mD ⇠ 10

�3 eV,
which is consistent with observed neutrino masses, whereas the R

2

mediated digram gives
mD ⇠ 100 eV, which is in some tension for mNR . 10MeV. Likewise, the U

1

and S
1

models

– 17 –

OK

OK with NR mass > 100 keV 

OK with NR mass > 100 keV  

or small cSL, cSR 

2.3 Neutrino masses

The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by

W 0
: mD ⇠ c

VR

⇤

2

e↵

g2
2

Vcb

512⇡4

mbmcm⌧ ⇠ c
VR

10

�3 eV, (2.17a)

˜R
2

: mD ⇠ 2c
SR

mb
g2
2

Vcb

512⇡4

⇠ c
SR

10

2 eV, (2.17b)

U
1

: mD ⇠

c
SL

mc +
c
VR

⇤

2

e↵

mbmcm⌧

�
g2
2

Vcb

512⇡4

⇠ (c
SL

10

2

+ c
VR

10

�3

) eV, (2.17c)

S
1

: mD ⇠

2c

SR

mb +
c
VR

⇤

2

e↵

mbmcm⌧

�
g2
2

Vcb

512⇡4

⇠ (c
SR

10

2

+ c
VR

10

�3

) eV . (2.17d)

With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)

– 8 –
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Figure 8. Dirac mass contribution by virtue of SU(2) counterparts of the four-Fermi operators that
give rise to the R(D(⇤)

) enhancements. These diagrams are GIM suppressed and give subdominant
contributions to the Dirac mass.

various mass insertions are mandated on the internal quark and lepton lines. In particular,
the O

VR

operator requires three mass insertions, while the scalar and tensor operators
require only one. The corresponding Dirac masses can be estimated as
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In the above estimates, we have ignored O(1) prefactors and loop integral factors apart
from those implied by naïve dimensional analysis. Note that for diagrams with a single
mass insertion, the Wilson coefficients c

SL

, c
SR

appear without the 1/⇤2

e↵

prefactor. In
such cases, strictly speaking, it is the couplings of the mediators rather than the Wilson
coefficients that should appear in the estimates. However, since the collider constraints
require mediators to be heavy, with mass approximately equal to ⇤

e↵

, it is a reasonable
approximation to use the Wilson coefficients everywhere in the above estimates.

Furthermore, for ˜R
2

, U
1

, and S
1

mediators, which couple to the left-handed ⌧L, there
are additional two loop contributions to the neutrino mass matrix arising from the SU(2)L

related operators involving ⌫L. A representative diagram is shown in Fig. 8. While such
diagrams contain similar mass insertions and WC scalings as the corresponding c

SL,SR terms
in Eqs. (4.2), they are GIM suppressed and thus expected to produce only subleading
corrections to the Dirac mass estimates in Eqs. (4.2).

Since NR is assumed to have a Majorana mass mNR . 100 MeV, the contribution to the
SM neutrino masses is ⇠ m2

D/mNR , which should not exceed the observed neutrino mass
scale m⌫ ⇠ 0.1 eV. From the best fit regions shown in Figs. 2 or 3 (and the best fit values
from Table 2), it follows that the W 0-mediated diagram gives a Dirac mass mD ⇠ 10

�3 eV,
which is consistent with observed neutrino masses, whereas the R

2

mediated digram gives
mD ⇠ 100 eV, which is in some tension for mNR . 10MeV. Likewise, the U

1

and S
1

models
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neutrino masses. e.g. operators that lead 

to diagrams with mass insertion on a 

top quark line, or one loop diagrams for 

neutrino masses. Need to be careful 

while adding operators! 
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2.3 Neutrino masses

The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by
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With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)
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in which
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With resp
ect

to the best fit regi
ons shown in Figs.

2 or 3, it immediate
ly follo

ws that the ˜R2

model is
excl

uded unless
addition

al n
eutrin

o mass
term

s are
intr

oduced, that are
fine-tu

ned

to cancel
the Dirac

cont
ribution

in (2.1
7) to about 1 in 100.

[JZ
: check

] The U1

and S1
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however

, rem
ain
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le, if cS

L

, cSR
Wilson
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ts are
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the above loop diagrams also give rise to the decay NR → νγ
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Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).
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Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)

operators, which are expected to dominate; if these coefficients vanish, the decay rates and lifetimes
get contributions from cVR of the same form as that for the W 0 operator.

the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S

1

this gives �(N ! ⌫�) ⇠ 32↵ sin

2 ✓m5

N G2
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4/g4. Thus

�(N ! ⌫�)S1
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3. (4.4)

4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)

) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the ˜R
2

, U
1

, and S
1

mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 10

14

(mNR/keV)

�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the

– 19 –

2.3 Neutrino masses

The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
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NR ⌫L
¯b

Wc
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, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by
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With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)
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NDA estimate of decay width and lifetime

Tends to dominate over standard channels such as 	
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Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).
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Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)

operators, which are expected to dominate; if these coefficients vanish, the decay rates and lifetimes
get contributions from cVR of the same form as that for the W 0 operator.

the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S

1

this gives �(N ! ⌫�) ⇠ 32↵ sin

2 ✓m5

N G2

F /⇡
4/g4. Thus

�(N ! ⌫�)S1

�(NR ! 3⌫)S1

⇡ 32⇥ 192↵

⇡ g4
⇠ 10

3. (4.4)

4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)

) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the ˜R
2

, U
1

, and S
1

mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 10

14

(mNR/keV)

�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the

– 19 –



�34

STERILE NEUTRINO DECAY
NR ⌫L

¯b

Wc

⌧

�

NR

⌫L

Z
⌫̄, ¯`

⌫, `

NR

`

W
¯`

⌫

Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).

Model �NR!⌫� lifetime (s)

W 0 c2VR
⇤

4
e↵

↵
32⇡8 V

2

cbG
2

F m2

⌧ m
2

b m
2

c m
3

NR
c�2

VR

10

24

(mNR/keV)

�3

˜R
2

c2
SR

↵
32⇡8 V

2

cbG
2

F m2

b m
3

NR
c�2

SR

10

13

(mNR/keV)

�3

U
1

c2
SL

↵
32⇡8 V

2

cbG
2

F m2

c m
3

NR
c�2

SL

10

14

(mNR/keV)

�3

S
1

c2
SR

↵
32⇡8 V

2

cbG
2

F m2

b m
3

NR
c�2

SR

10

13

(mNR/keV)

�3

Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)
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the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S

1

this gives �(N ! ⌫�) ⇠ 32↵ sin

2 ✓m5

N G2

F /⇡
4/g4. Thus

�(N ! ⌫�)S1

�(NR ! 3⌫)S1

⇡ 32⇥ 192↵

⇡ g4
⇠ 10
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4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)

) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the ˜R
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, U
1

, and S
1

mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 10

14

(mNR/keV)

�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the
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2.3 Neutrino masses

The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by

W 0
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S
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With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)
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the Dirac
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NDA estimate of decay width and lifetime

Lifetimes over a large range possible: < 1s (for heavy NR) to ~1030 s (light NR) 	

Cosmologically interesting? 	
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produced in the early Universe via the same four-Fermi 

interaction that gives R(D(*)) 

!
kept in equilibrium while the involved SM fermions are in 

the thermal bath (ie down to GeV scale temperatures) 

!
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• need to dilute relic density: e.g. entropy dilution from additional 

(heavier) sterile neutrinos (~GeV) that decay late (before BBN) 

can do this
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DARK MATTER?
RELIC ABUNDANCE: !

• relativistic freezeout: relic density not Boltzmann suppressed 

• overcloses the Universe for masses > keV 

• need to dilute relic density: e.g. entropy dilution from additional 

(heavier) sterile neutrinos (~GeV) that decay late (before BBN) 

can do this

LIFETIME:

It is well known that without other additional modifications of the standard cosmology, a

species that undergoes relativistic freezeout around T ⇠ m⌧ overcloses the Universe if its

mass is greater than O(keV). Its relic abundance can be made to match the observed dark

matter abundance through appropriate entropy dilution. For instance, species that grow

to dominate the energy density in the early Universe and decay late, after dark matter has

frozen out, release significant entropy into the SM thermal bath and dilute the abundance

of dark matter. Such long-lived particles are present in our framework in the form of ⌫2,3R .

If their masses lie at the GeV scale, they can thermalize, undergo relativistic freezeout,

and decay just before BBN, diluting the abundance of dark matter by a factor of . 30

[73, 79, 80]. Significantly larger dilution factors can be achieved with late decaying sterile

neutrinos that are not part of the seesaw mechanism (see e.g. [73]), although these are not

as well motivated in general. It should be noted that a large entropy dilution also helps

to make the dark matter colder, making the light dark matter candidate more compatible

with warm dark matter constraints.

Even with the correct relic abundance, dark matter in this mass range is severely

constrained by �-ray bounds from various observations [81], which rule out dark matter

lifetimes of O(1026�28)s in the keV-MeV window. These observations therefore rule out

NR, which has a lifetime ⇠ 1025 (mNR/keV)�3 s, as constituting all of dark matter. It

could still constitute a small fraction (sub-percent level) of dark matter, in which case

future �-ray observations could discover a line signal from its decay.

If NR is light, with a mass below . keV, it can act as dark radiation and contribute to

the e↵ective number of relativistic degrees of freedom Ne↵ at BBN and/or CMB decoupling.

This is potentially problematic since a light sterile neutrino that undergoes relativistic

freezeout and is long-lived e↵ectively acts as an additional neutrino species, contributing

�Ne↵ ⇠ 1, which is inconsistent with current observations. However, O(1) dilution of its

abundance, as would be expected, e.g., from ⌫2,3R decays if they are at the GeV scale, would

result in �Ne↵ ⇡ O(0.1), which would be consistent with current observations and at the

same time possibly within reach of future instruments such as CMB-S4 [82].

Alternatively, when NR is heavy enough that its lifetime is shorter than the age of the

Universe, NR ! ⌫� as the dominant decay channel results in a late injection of photons into

the Universe, which can distort the CMB or contribute to the di↵use photon background.

This problem can be avoided by enhancing the NR mixing with active neutrinos, to the

extent allowed by the seesaw mechanism, so that NR primarily decays via this mixing (into

channels such as NR ! 3⌫, see Fig. 5 right). For mNR> MeV, this introduces dominant

decays channels into electrons or pions, which can also distort the CMB or contribute to

the di↵use photon background. For masses below an MeV, such decays into charged states

are not kinematically open; however, in addition to NR ! 3⌫, which might be compatible

with all existing constraints, the active-sterile mixing also gives rise to the decay NR ! �⌫

at one loop with a significant branching fraction. Such considerations indicate that NR

lifetimes shorter than the age of the Universe are incompatible with current observational

constraints.
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• gamma ray constraint on DM lifetime:

2.3 Neutrino masses

The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by
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With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)
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• In W’, U1, S1 mediator models, can get lifetime
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Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).
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Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)

operators, which are expected to dominate; if these coefficients vanish, the decay rates and lifetimes
get contributions from cVR of the same form as that for the W 0 operator.

the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S

1

this gives �(N ! ⌫�) ⇠ 32↵ sin

2 ✓m5

N G2

F /⇡
4/g4. Thus

�(N ! ⌫�)S1

�(NR ! 3⌫)S1

⇡ 32⇥ 192↵

⇡ g4
⇠ 10

3. (4.4)

4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)

) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the ˜R
2

, U
1

, and S
1

mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 10

14

(mNR/keV)

�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the

– 19 –
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DARK MATTER?
RELIC ABUNDANCE: !

• relativistic freezeout: relic density not Boltzmann suppressed 

• overcloses the Universe for masses > keV 

• need to dilute relic density: e.g. entropy dilution from additional 

(heavier) sterile neutrinos (~GeV) that decay late (before BBN) 

can do this

LIFETIME:

It is well known that without other additional modifications of the standard cosmology, a

species that undergoes relativistic freezeout around T ⇠ m⌧ overcloses the Universe if its

mass is greater than O(keV). Its relic abundance can be made to match the observed dark

matter abundance through appropriate entropy dilution. For instance, species that grow

to dominate the energy density in the early Universe and decay late, after dark matter has

frozen out, release significant entropy into the SM thermal bath and dilute the abundance

of dark matter. Such long-lived particles are present in our framework in the form of ⌫2,3R .

If their masses lie at the GeV scale, they can thermalize, undergo relativistic freezeout,

and decay just before BBN, diluting the abundance of dark matter by a factor of . 30

[73, 79, 80]. Significantly larger dilution factors can be achieved with late decaying sterile

neutrinos that are not part of the seesaw mechanism (see e.g. [73]), although these are not

as well motivated in general. It should be noted that a large entropy dilution also helps

to make the dark matter colder, making the light dark matter candidate more compatible

with warm dark matter constraints.

Even with the correct relic abundance, dark matter in this mass range is severely

constrained by �-ray bounds from various observations [81], which rule out dark matter

lifetimes of O(1026�28)s in the keV-MeV window. These observations therefore rule out

NR, which has a lifetime ⇠ 1025 (mNR/keV)�3 s, as constituting all of dark matter. It

could still constitute a small fraction (sub-percent level) of dark matter, in which case

future �-ray observations could discover a line signal from its decay.

If NR is light, with a mass below . keV, it can act as dark radiation and contribute to

the e↵ective number of relativistic degrees of freedom Ne↵ at BBN and/or CMB decoupling.

This is potentially problematic since a light sterile neutrino that undergoes relativistic

freezeout and is long-lived e↵ectively acts as an additional neutrino species, contributing

�Ne↵ ⇠ 1, which is inconsistent with current observations. However, O(1) dilution of its

abundance, as would be expected, e.g., from ⌫2,3R decays if they are at the GeV scale, would

result in �Ne↵ ⇡ O(0.1), which would be consistent with current observations and at the

same time possibly within reach of future instruments such as CMB-S4 [82].

Alternatively, when NR is heavy enough that its lifetime is shorter than the age of the

Universe, NR ! ⌫� as the dominant decay channel results in a late injection of photons into

the Universe, which can distort the CMB or contribute to the di↵use photon background.

This problem can be avoided by enhancing the NR mixing with active neutrinos, to the

extent allowed by the seesaw mechanism, so that NR primarily decays via this mixing (into

channels such as NR ! 3⌫, see Fig. 5 right). For mNR> MeV, this introduces dominant

decays channels into electrons or pions, which can also distort the CMB or contribute to

the di↵use photon background. For masses below an MeV, such decays into charged states

are not kinematically open; however, in addition to NR ! 3⌫, which might be compatible

with all existing constraints, the active-sterile mixing also gives rise to the decay NR ! �⌫

at one loop with a significant branching fraction. Such considerations indicate that NR

lifetimes shorter than the age of the Universe are incompatible with current observational

constraints.
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• gamma ray constraint on DM lifetime:

2.3 Neutrino masses

The effective operators (2.9) introduce a NR–⌫L Dirac mass at two loop order, via contri-
butions of the form [JZ: maybe put arrows on fermion lines?]

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

, (2.16)

in which the simplified model mediator has been integrated out. Depending on the chiral
structure of the simplified model, various mass insertions are mandated on the internal
quark and lepton lines. In particular, the O

VR

operator requires three mass insertions,
while the scalar and tensor operators require just one. The corresponding Dirac masses are
given by

W 0
: mD ⇠ c

VR
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2

e↵

g2
2

Vcb
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mbmcm⌧ ⇠ c
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10

�3 eV, (2.17a)
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2 eV, (2.17b)

U
1
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c
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Vcb
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⇠ (c
SL
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2

+ c
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�3

) eV, (2.17c)

S
1

: mD ⇠

2c

SR

mb +
c
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⇤
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mbmcm⌧

�
g2
2

Vcb

512⇡4

⇠ (c
SR

10

2

+ c
VR

10

�3

) eV . (2.17d)

With respect to the best fit regions shown in Figs. 2 or 3, it immediately follows that the ˜R
2

model is excluded unless additional neutrino mass terms are introduced, that are fine-tuned
to cancel the Dirac contribution in (2.17) to about 1 in 100. [JZ: check] The U

1

and S
1

models, however, remain viable, if c
SL

, c
SR

Wilson coefficients are small. For these two
models, the 1� fit regions are consistent with the scalar Wilson coefficients |c

SL,SR

| ⌧ 1,
corresponding to the couplings ↵LQ, zQ in Table 1 to be small, ↵LQ ⌧ 1 and zQ ⌧ 1,
respectively. DR: Should we restrict discussion hereafter to this regime?

2.4 Differential distributions

The reliability of the above R(D(⇤)
) fit results turns upon the underlying assumption that

the differential distributions, and hence experimental acceptances, of the B ! D(⇤)⌧ ⌫̄ de-
cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions from the best fit points in simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.18)
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ed out. Depending on the chiral
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on the inte
rnal

quark
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In parti
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model is
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• In W’, U1, S1 mediator models, can get lifetime
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Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).
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Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)

operators, which are expected to dominate; if these coefficients vanish, the decay rates and lifetimes
get contributions from cVR of the same form as that for the W 0 operator.

the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S

1

this gives �(N ! ⌫�) ⇠ 32↵ sin

2 ✓m5

N G2

F /⇡
4/g4. Thus

�(N ! ⌫�)S1

�(NR ! 3⌫)S1

⇡ 32⇥ 192↵

⇡ g4
⇠ 10

3. (4.4)

4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)

) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the ˜R
2

, U
1

, and S
1

mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 10

14

(mNR/keV)

�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the
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• cannot simultaneously satisfy gamma ray and warm DM 

constraints if all of DM 

• can be a small fraction of DM, with detectable gamma 

ray signals in the future
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DARK RADIATION

It is well known that without other additional modifications of the standard cosmology, a

species that undergoes relativistic freezeout around T ⇠ m⌧ overcloses the Universe if its

mass is greater than O(keV). Its relic abundance can be made to match the observed dark

matter abundance through appropriate entropy dilution. For instance, species that grow

to dominate the energy density in the early Universe and decay late, after dark matter has

frozen out, release significant entropy into the SM thermal bath and dilute the abundance

of dark matter. Such long-lived particles are present in our framework in the form of ⌫2,3R .

If their masses lie at the GeV scale, they can thermalize, undergo relativistic freezeout,

and decay just before BBN, diluting the abundance of dark matter by a factor of . 30

[73, 79, 80]. Significantly larger dilution factors can be achieved with late decaying sterile

neutrinos that are not part of the seesaw mechanism (see e.g. [73]), although these are not

as well motivated in general. It should be noted that a large entropy dilution also helps

to make the dark matter colder, making the light dark matter candidate more compatible

with warm dark matter constraints.

Even with the correct relic abundance, dark matter in this mass range is severely

constrained by �-ray bounds from various observations [81], which rule out dark matter

lifetimes of O(1026�28)s in the keV-MeV window. These observations therefore rule out

NR, which has a lifetime ⇠ 1025 (mNR/keV)
�3 s, as constituting all of dark matter. It

could still constitute a small fraction (sub-percent level) of dark matter, in which case

future �-ray observations could discover a line signal from its decay.

If NR is light, with a mass below . keV, it can act as dark radiation and contribute to

the e↵ective number of relativistic degrees of freedom Ne↵ at BBN and/or CMB decoupling.

This is potentially problematic since a light sterile neutrino that undergoes relativistic

freezeout and is long-lived e↵ectively acts as an additional neutrino species, contributing

�Ne↵ ⇠ 1, which is inconsistent with current observations. However, O(1) dilution of its

abundance, as would be expected, e.g., from ⌫2,3R decays if they are at the GeV scale, would

result in �Ne↵ ⇡ O(0.1), which would be consistent with current observations and at the

same time possibly within reach of future instruments such as CMB-S4 [82].

Alternatively, when NR is heavy enough that its lifetime is shorter than the age of the

Universe, NR ! ⌫� as the dominant decay channel results in a late injection of photons into

the Universe, which can distort the CMB or contribute to the di↵use photon background.

This problem can be avoided by enhancing the NR mixing with active neutrinos, to the

extent allowed by the seesaw mechanism, so that NR primarily decays via this mixing (into

channels such as NR ! 3⌫, see Fig. 5 right). For mNR> MeV, this introduces dominant

decays channels into electrons or pions, which can also distort the CMB or contribute to

the di↵use photon background. For masses below an MeV, such decays into charged states

are not kinematically open; however, in addition to NR ! 3⌫, which might be compatible

with all existing constraints, the active-sterile mixing also gives rise to the decay NR ! �⌫

at one loop with a significant branching fraction. Such considerations indicate that NR

lifetimes shorter than the age of the Universe are incompatible with current observational

constraints.
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• detectable e.g. with CMB-S4

If light (~ eV), NR  is relativistic at BBN/CMB decoupling, 

and can contribute
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For masses close to 100 MeV, lifetime < 1s. Decay before BBN. 

No cosmological signatures.  
!

Can look for displaced decays from direct production: 

challenging final state (NR →  νγ  ),   but might still  be possible?

DISPLACED DECAYS AT DIRECT SEARCHES
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Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).
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(mNR/keV)

�3

Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)

operators, which are expected to dominate; if these coefficients vanish, the decay rates and lifetimes
get contributions from cVR of the same form as that for the W 0 operator.

the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S

1

this gives �(N ! ⌫�) ⇠ 32↵ sin

2 ✓m5

N G2

F /⇡
4/g4. Thus

�(N ! ⌫�)S1

�(NR ! 3⌫)S1

⇡ 32⇥ 192↵

⇡ g4
⇠ 10

3. (4.4)

4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)

) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the ˜R
2

, U
1

, and S
1

mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 10

14

(mNR/keV)

�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the
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The other end of lifetime possibility: 
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The underlying theory could contain additional light νR 

(multiple generations, entropy dilution, low scale seesaw…), 

with new physics couplings similar to NR  
!

do not contribute to R(D(*)) due to reduced couplings / too 

heavy to be produced 

!
but could be produced via other processes at colliders /  

neutrino experiments 

!
similar displaced decay signals 

!
if sufficiently heavy (GeV scale or above), could even have 

tree level decay channels from NP couplings: instantaneous 

decays to exotic final states!

ADDITIONAL STERILE NEUTRINOS
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cays are not significantly modified in the presence of the NP currents. The B ! D(⇤)⌧ ⌫̄

branching ratios are extracted from a simultaneous float of background and signal data,
so that significant modification of the acceptances versus the SM template may alter the
extracted values.

To estimate the size of these potential effects, we examine the cascades B ! (D⇤ !
D⇡)(⌧ ! `⌫̄`⌫⌧ )⌫̄ and B ! D(⌧ ! `⌫⌫)⌫, comparing the purely SM predictions with the
predictions for the 2� fit regions of the simplified models. We take NR to be massless, and
include the phase space cuts,

q2 = (pB � pD(⇤))
2 > 4 GeV2 , E` > 400 MeV , m2

miss

> 1.5 GeV2 , (2.20)

as an approximate simulation of the BaBar and Belle measurements performed in Refs. [2, 3].
These distributions are generated as in Ref. [33], using a preliminary version of the Hammer
library [36]. In Appendix A we show the variation of the normalized differential distributions
over the 2� fit regions in Fig. 2 – i.e. assuming real couplings, for simplicity – for the detector
observables ED, E`, m2

miss

, cos ✓D` and q2 compared to the SM distributions.
As already found in Ref. [17], the variation of the W 0 model with respect to the SM

is negligible. However, the ˜R
2

, U
1

and S
1

theories, since they include interfering scalar
and/or tensor currents, may significantly modify the spectra, as seen also in Ref. [33] for
the NP tensor current coupling to a SM neutrino. Thus, a fully self-consistent R(D(⇤)

) fit
for these models will require a forward-folded analysis by the experimental collaborations:
Our analysis above and CLs should be taken only as an approximate guide, within likely
1� variations in the values of R(D(⇤)

).

3 Collider constraints on simplified models

The simplified models are subject to low energy flavor constraints as well as bounds from
collider searches. These depend crucially on the assumed flavor structure of the couplings
in Table 1. Furthermore, the sensitivity of the collider searches depend on other open decay
channels of the mediators. In this section, we discuss these constraints for the simplified
models.

For the S
1

and ˜R
2

models, the best fit points are naively excluded by bounds on
b ! s⌫⌫̄ transitions. These can be avoided by including higher dimensional operators, due
to a new set of heavy states, inevitably introducing greater model dependence for LHC
studies. To remain as model independent as possible, we study the collider signatures for
these models using their (Bc ! ⌧⌫ consistent) best fit points for R(D(⇤)

) as a benchmark,
assuming that any new fields required to ameliorate large b ! s⌫⌫̄ (and/or large neutrino
mass contributions) are sufficiently heavy that they do not affect mediator production or
decay.

3.1 W 0
coupling to right-handed SM fermions

The charged vector boson W 0
µ couples to SU(2)L singlets only, and transforms as W 0

µ ⇠
(1, 1)

1

, with
L =

gVp
2

cijq ū
i
R /W

0
djR +

gVp
2

ciN
¯`iR /W

0
NR + h.c., (3.1)
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Figure 4. The bound on Br(W 0 ! ⌧⌫) as a function of W 0 mass from the 13 TeV ATLAS search
[37] (solid blue) and the projected reach at the end of the high-luminosity LHC run (dashed blue),
for the case c23q = c3N , W 0 mass given by Eq. (3.3) to fit to R(D(⇤)

) data, and the W 0 couplings to
all the other SM quarks set to zero. In this case Br(W 0 ! ⌧⌫) = 0.25 (dashed grey line) if no other
W 0 decay channels are open. The region excluded by unitarity is shaded in grey.

where i, j = 1, 2, 3 are generational indices. As in Table 1, the coefficients cijq and ciN encode
the flavor structure of the interactions, while gV is the overall coupling strength (in simple
gauge models for W 0 it can be identified with the gauge coupling constant [16, 17]). A tree
level exchange of W 0 generates the operator O

VR

, cf. eqs. (2.8b) and (2.7), with

c
VR

⇤

2

e↵

= �g2V c
23

q c3N
2m2

W 0
. (3.2)

The best fit values for c
VR

in Table 2 then imply [17]

mW 0 ' 540

��c23q c3N
��1/2


gV
0.6

�
40⇥ 10

�3

Vcb

�
1/2

GeV . (3.3)

In Fig. 4 we show the minimal set of experimental constraints on such models, applicable
to the simplified W 0 model. For this plot we set c23q = c3N , take Eq. (3.3) to provide the W 0

mass that fits the R(D(⇤)
) data, and set the W 0 couplings to all other SM quarks to zero.

For this scenario, the ATLAS search at 13 TeV with 36.1 fb�1 luminosity [37] converts to
a 95 % CL bound on Br(W 0 ! ⌧⌫) shown in Fig. 4 (blue line), see also Refs. [38, 39]. The
dashed blue line denotes a naive extrapolation of the expected bound from Ref. [37] to the
end of the high-luminosity LHC Run 5, assuming 3000 fb�1 integrated luminosity at 14
TeV. For c23q = c3N the two branching ratios of W 0 are Br(W 0 ! ⌧⌫) : Br(W 0 ! 2j) ' 1 : 3;
the former is denoted by the horizontal grey dashed line in Fig. 4. The two branching ratios
can be correspondingly smaller if other decay channels are open (for instance, to extra
vector-like fermions, as contemplated in Refs. [16, 17]). The grey shaded region is excluded
by unitarity, which constrains 3(c23q )

2

+ (c3N )

2 < 16⇡/g2V [40]. Bounds on W 0 from di-jet
production [41–45] are less stringent and are not relevant for this simplified model.

Since the W 0
µ couples to right-handed quarks, there is significant freedom in terms of

the flavor structure of the cijq and ciN couplings. We have limited the discussion to the
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Figure 5. The LHC bounds from [48] (grey) and [49] (brown) on the Uµ
1 vector leptoquark mass,

assuming the relation ↵33
`d ' �5.8↵33

LQ, arising from the U1 best fit WCs to the R(D(⇤)
) data.

Branching ratios for U1 ! c⌫, b⌧ , t⌫ decays are fixed by the remaining ratio of coupling constants
rU1 = (↵2

uN/↵33
LQ)

2, assuming no other channels are open. Blue dashed lines denote contours
satisfying the U1 best fit mass relation (3.7) for ↵33

LQ = 0.15, 0.3, 0.5, 1.0, and 2.0.

=

0.03

1 + 0.03rU1

:

0.97

1 + 0.03rU1

:

0.03rU1

1 + 0.03rU1

,

where

rU1 =

✓
↵2

uN

↵33

LQ

◆
2

. (3.11)

Here, for simplicity, we have neglected the final state masses and the small corrections
due to the off-diagonal CKM matrix elements in the ↵ij

LQ

�
¯Li
L�µQ

j
L

�
Uµ†
1

. The presence
of left-handed quark doublets also inevitably leads to CKM suppressed transitions U

1

!
c⌫̄⌧ , u⌫̄⌧ , s⌧, d⌧ .

The corresponding LHC bounds for U
1

are shown in Fig. 5, assuming no other decay
channels are open. The most stringent bounds come from pp ! U

1

U
1

pair production, with
both leptoquarks decaying either as U

1

! cNR [48] (grey region) or U
1

! b⌧ [49] (brown
region). Ref. [48] also gives bounds for the decay channel U

1

! t⌫⌧ , which are not shown
in Fig. 5 as they are always weaker in our setup. We see that direct searches still allow for
mU1 � 1.5 TeV, where the parameters of the model are still perturbative, as an explanation
for the R(D(⇤)

) anomalies. It is worth noting that a simultaneous fit to all three decay
channels by the experiments would improve the sensitivity to U

1

; such an analysis is likely
the most optimal strategy for discovering a U

1

state responsible for the R(D(⇤)
) anomalies.

3.3 Scalar leptoquark S
1

The scalar leptoquark S
1

⇠ (

¯

3, 1)
1/3 has the following interaction Lagrangian,

L � zu( ¯U
c
R`R)S1

+ zd( ¯d
c
RNR)S1

+ zQ( ¯Q
c
L✏LL)S1

. (3.12)
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minimal case, taking only c23q , c3N 6= 0, which is non-generic but possible, for instance, in
flavor-locked models [17, 46]. In most flavor models all the cijq , ciN are non-zero, leading to
constraints from precision measurements. In UV completions (see Refs. [16, 17]), the W 0

boson is expected to be accompanied by a Z 0 state. The Z 0 can, however, be parametrically
heavier than the W 0, in particular if additional sources of symmetry breaking are present.
The collider constraints on W 0 and Z 0 are often comparable, while the flavor constraints
from FCNCs are far more stringent for Z 0 in the presence of any appreciable off-diagonal
couplings [17]: Contributions from W 0 exchange to flavor changing neutral currents only
arise at one-loop and are significantly less constraining.

3.2 Vector leptoquark Uµ
1

The interaction Lagrangian for the Uµ
1

⇠ (3, 1)
2/3 vector leptoquark is

L � ↵ij
LQ

�
¯Li
L�µQ

j
L

�
Uµ†
1

+ ↵ij
`d

�
¯`iR�µd

j
R

�
Uµ†
1

+ ↵i
uN

�
ūiR�µNR

�
Uµ
1

+ h.c., (3.4)

while the kinetic term, following the notation in [47], is

L � �1

2

U †
µ⌫U

µ⌫
+m2

U1
U †
1µU

µ
1

� igsU
†
1µT

aU
1⌫G

aµ⌫ , (3.5)

with Uµ⌫ = DµU1⌫ �D⌫U1µ the field strength tensor, and  a dimensionless coupling.
When the leptoquark is integrated out, eq. (3.4) gives two four-fermion operators,

relevant for R(D(⇤)
) anomalies, with the Wilson coefficients

c
(µ)
SL

⇢
SL

⇤

2

e↵

= 2

↵33

LQ↵
2

uN

m2

U1

,
c
VR

⇤

2

e↵

= �↵33

`d↵
2

uN

m2

U1

. (3.6)

The best fit values for the U
1

WCs in Table 2 then imply

mU1 ' 3.2
��↵33

LQ↵
2

uN

��1/2

40⇥ 10

�3

Vcb

�
1/2

TeV , (3.7)

with
↵33

`d ' �5.8↵33

LQ, (3.8)

where we used the lower set of best fits for U
1

in Table 2 (the upper set is excluded by
Bc ! ⌧⌫, see Fig 2). If one instead sets c

SL

= 0, the best fit simply maps onto the W 0

result (since both models then have the same non-zero coupling c
VR

): |c
VR

| ' 0.46, and

mU1 ' 1.3
��↵33

`d↵
2

uN

��1/2

40⇥ 10

�3

Vcb

�
1/2

TeV . (3.9)

At the LHC, the U
1

leptoquark can be singly or pair produced. The pair production,
pp ! U

1

U †
1

, proceeds through gluon fusion, via the color octet term in (3.5), for which we
take  = 1 following Ref. [48]. The collider signatures of U

1

pair production depend on the
U
1

decay channels. In the minimal set-up we switch on only three couplings, ↵33

LQ,↵
33

ld and
↵2

uN , where ↵33

LQ and ↵33

ld are related through Eq. (3.8), resulting in the branching ratios

Br[U
1

! t⌫̄⌧ ] : Br[U
1

! b⌧ ] : Br[U
1

!c ¯NR] = |↵33

LQ|2 :
�|↵33

LQ|2 + |↵33

ld |2
�
: |↵2

uN |2 (3.10)

– 12 –

minimal case, taking only c23q , c3N 6= 0, which is non-generic but possible, for instance, in
flavor-locked models [17, 46]. In most flavor models all the cijq , ciN are non-zero, leading to
constraints from precision measurements. In UV completions (see Refs. [16, 17]), the W 0

boson is expected to be accompanied by a Z 0 state. The Z 0 can, however, be parametrically
heavier than the W 0, in particular if additional sources of symmetry breaking are present.
The collider constraints on W 0 and Z 0 are often comparable, while the flavor constraints
from FCNCs are far more stringent for Z 0 in the presence of any appreciable off-diagonal
couplings [17]: Contributions from W 0 exchange to flavor changing neutral currents only
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Best fit:

Figure 5. The LHC bounds from [48] (grey) and [49] (brown) on the Uµ
1 vector leptoquark mass,

assuming the relation ↵33
`d ' �5.8↵33

LQ, arising from the U1 best fit WCs to the R(D(⇤)
) data.

Branching ratios for U1 ! c⌫, b⌧ , t⌫ decays are fixed by the remaining ratio of coupling constants
rU1 = (↵2

uN/↵33
LQ)

2, assuming no other channels are open. Blue dashed lines denote contours
satisfying the U1 best fit mass relation (3.7) for ↵33

LQ = 0.15, 0.3, 0.5, 1.0, and 2.0.
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Here, for simplicity, we have neglected the final state masses and the small corrections
due to the off-diagonal CKM matrix elements in the ↵ij

LQ

�
¯Li
L�µQ

j
L

�
Uµ†
1

. The presence
of left-handed quark doublets also inevitably leads to CKM suppressed transitions U

1

!
c⌫̄⌧ , u⌫̄⌧ , s⌧, d⌧ .

The corresponding LHC bounds for U
1

are shown in Fig. 5, assuming no other decay
channels are open. The most stringent bounds come from pp ! U

1

U
1

pair production, with
both leptoquarks decaying either as U

1

! cNR [48] (grey region) or U
1

! b⌧ [49] (brown
region). Ref. [48] also gives bounds for the decay channel U

1

! t⌫⌧ , which are not shown
in Fig. 5 as they are always weaker in our setup. We see that direct searches still allow for
mU1 � 1.5 TeV, where the parameters of the model are still perturbative, as an explanation
for the R(D(⇤)

) anomalies. It is worth noting that a simultaneous fit to all three decay
channels by the experiments would improve the sensitivity to U

1

; such an analysis is likely
the most optimal strategy for discovering a U

1

state responsible for the R(D(⇤)
) anomalies.
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Figure 6. The LHC bounds from pair production of S1 leptoquarks followed by S1 ! bNR decays
[48] (grey region) and S1 ! c⌧ [49] (brown region) as a function of mS1 and the ratio rS1 =

(z3d/z
23
u )

2 (3.18). The remaining ratio of coupling constants is fixed by the relation z23u ' 1.1z23Q ,
arising from the S1 best fit WCs to the R(D(⇤)

) data (2.14). Contours satisfying the S1 best fit
mass relation (3.15) are shown by blue dashed lines for z33u = 0.25, 0.5, 1.0, and 2.0.

3.4 Scalar leptoquark

˜R
2

The scalar leptoquark ˜R
2

⇠ (3, 2)
1/6 has the following interaction Lagrangian,
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Integrating out the ˜R
2

generates
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The best fit values for the ˜R
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WC in Table 2 then imply
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The leptoquark doublet ˜R
2

contains two states: the charge +2/3 state ˜R
2/3
2

and the
charge �1/3 state ˜R

�1/3
2

. Keeping only the couplings relevant for the R(D(⇤)
) anomaly

nonzero, ↵33

Ld,↵
2

QN 6= 0, the ˜R
2

states have two decay channels
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where we have neglected differences due to the masses of the final state particles.
Assuming ˜R

2/3
2

and ˜R
�1/3
2

are degenerate, the LHC bounds from leptoquark pair pro-
duction are shown in Fig. 7 as a function of m

˜R2
and the ↵33

Ld coupling. The remaining
coupling, ↵2

QN , is set by the ˜R
2

best fit mass relation (3.21). We show bounds from LHC
searches for all four decay channels: ˜R

2/3
2

! b⌧̄ [49] (dark grey region), ˜R
�1/3
2

! b⌫̄⌧ [48]
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Integrating out the leptoquark generates the following interaction Lagrangian above the
electroweak scale

LS1
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µ⌫Qb
L)

i
+ h.c.,

(3.13)

where the operators Q
VR

, Q
SR

, Q
T

are defined in (2.3). The b ! c⌧ ¯NR decay is generated if
z23u z3d 6= 0 or z23Q z3d 6= 0. The two operators in the second line give rise to the b ! c⌧⌫i decay
for z3iQz23u 6= 0, where ⌫i are the SM neutrinos, which interfere with the SM contribution;
for simplicity, we therefore only consider the b ! c⌧ ¯NR decay, setting z3iQ = 0, so that only
the operators in the first line in (3.13) are generated (alternatively, one may consider the
regime zu, zQ ⌧ zd, so that the contribution from the second line is negligible).

In the analysis of collider constraints, we conservatively keep only the minimal set
of S

1

couplings required for the R(D(⇤)
) anomaly nonzero: z23u , z3d, z

23

Q 6= 0. The Wilson
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The best fit values for the S
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WCs in Table 2 then imply
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with
z23u ' 1.1z23Q . (3.16)

using the lower set of best fits for S
1

in Table 2 (the upper set is excluded by Bc ! ⌧⌫, see
Fig 2). The branching ratios for S

1

decays are thus

Br[S
1
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! bNR] : Br[S
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z3d
z23u

◆
2

. (3.18)

The resulting bounds from pp ! S
1

S
1

pair production at the 13 TeV LHC are shown
in Fig. 6. The grey shaded region is excluded by the CMS search [48] with 35.9 fb�1

integrated luminosity, assuming both S
1

decay as S
1

! bNR with the branching ratio
in (3.17). The brown shaded region is excluded by the CMS search [49] using 12.9 fb�1

integrated luminosity, assuming pp ! S
1

S
1

followed by S
1

! c⌧ decay, with the rdu
dependent branching ratio in (3.17). We have assumed the S

1

best fit mass relation (3.16)
to R(D(⇤)

) data to derive these bounds. Our analysis indicates that the S
1

leptoquark can
be consistent with the R(D(⇤)

) anomaly for mS1 as low as 600 GeV, and with perturbative
couplings (the required values of z23u are shown by dashed blue lines in Fig. 6).
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Best fit:
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RNR)S1
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zQ( ¯Q
c
L✏LL)S1

c
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, c
SR

(µ) =

�4rc
T

(µ)

Table 1. The tree-level mediators that can generate the four-fermion operators with right-handed
neutrino, NR, in Eqs. (2.8). The relevant Wilson coefficients are shown in the final column,
explicitly defined at scale µ where relevant, and including the factor r ⌘ ⇢SR/⇢T ' 2.0.

but with N c
R replacing the SM neutrino ⌫⌧ . Eqs. (2.8) and (2.13) together form a complete

basis of b ! c⌧ ¯NR dimension-six four-fermion operators. Since the Wilson coefficients of
the operators in Eq. (2.13) are suppressed by additional powers of v

EW

/⇤
e↵

, we will only
focus on the dimension-6 operators listed in Eq. (2.3) and (2.8) in the remainder of this
paper.

2.2 Fits to R(D(⇤)
) data

The present experimental world-averages for R(D(⇤)
) are [7]

R(D)

��
exp

= 0.407± 0.046 , R(D⇤
)

��
exp

= 0.304± 0.015 , corr. = �0.20 . (2.14)

The SM predictions, e.g. making use of the model-independent form factor fit ‘Lw�1

+SR’
of Ref. [8] (see also Refs. [9, 10]), are

R(D)

��
th

= 0.299± 0.003, R(D⇤
)

��
th

= 0.257± 0.003, corr. = +0.44 . (2.15)

With the addition of a right-handed neutrino decay mode, the B ! D(⇤)⌧ ⌫̄ decays become
an incoherent sum of two contributions: the SM decay b ! c⌧ ⌫̄⌧ and the new mode b !
c⌧ ¯NR. The NR contributions therefore increase both of the B ! D(⇤)⌧ ⌫̄ branching ratios
above the SM predictions, as would be required to explain the experimental measurements
of R(D(⇤)

).
In Fig. 1, we show for each simplified model of Table 1 the accessible contours or regions

in the R(D) � R(D⇤
) plane, compared to the experimental data. The predictions for NP

corrections to R(D(⇤)
) are obtained from the expressions in Ref. [33], making use of the

form factor fit ‘Lw�1

+SR’ of Ref. [8]. This fit was performed at next-to-leading order in
the heavy quark expansion, with matching scale µ =

p
mbmc and quark masses defined

in the ⌥(1S) scheme, relevant for a self-consistent treatment of the Bc ! ⌧⌫ constraints
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for z3iQz23u 6= 0, where ⌫i are the SM neutrinos, which interfere with the SM contribution;
for simplicity, we therefore only consider the b ! c⌧ ¯NR decay, setting z3iQ = 0, so that only
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regime zu, zQ ⌧ zd, so that the contribution from the second line is negligible).
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with
z23u ' 1.1z23Q . (3.16)

using the lower set of best fits for S
1

in Table 2 (the upper set is excluded by Bc ! ⌧⌫, see
Fig 2). The branching ratios for S

1

decays are thus

Br[S
1
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1

! bNR] : Br[S
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�|z23u |2 + |z23Q |2� : |z3d|2 : |z23Q |2

=
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where we have defined

rS1 =
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z3d
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◆
2
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The resulting bounds from pp ! S
1

S
1

pair production at the 13 TeV LHC are shown
in Fig. 6. The grey shaded region is excluded by the CMS search [48] with 35.9 fb�1

integrated luminosity, assuming both S
1

decay as S
1

! bNR with the branching ratio
in (3.17). The brown shaded region is excluded by the CMS search [49] using 12.9 fb�1

integrated luminosity, assuming pp ! S
1

S
1

followed by S
1

! c⌧ decay, with the rdu
dependent branching ratio in (3.17). We have assumed the S

1

best fit mass relation (3.16)
to R(D(⇤)

) data to derive these bounds. Our analysis indicates that the S
1

leptoquark can
be consistent with the R(D(⇤)

) anomaly for mS1 as low as 600 GeV, and with perturbative
couplings (the required values of z23u are shown by dashed blue lines in Fig. 6).
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Figure 6. The LHC bounds from pair production of S1 leptoquarks followed by S1 ! bNR decays
[48] (grey region) and S1 ! c⌧ [49] (brown region) as a function of mS1 and the ratio rS1 =

(z3d/z
23
u )

2 (3.18). The remaining ratio of coupling constants is fixed by the relation z23u ' 1.1z23Q ,
arising from the S1 best fit WCs to the R(D(⇤)

) data (2.14). Contours satisfying the S1 best fit
mass relation (3.15) are shown by blue dashed lines for z33u = 0.25, 0.5, 1.0, and 2.0.

3.4 Scalar leptoquark

˜R
2

The scalar leptoquark ˜R
2

⇠ (3, 2)
1/6 has the following interaction Lagrangian,

L � ↵Ld

�
¯LLdR

�
✏ ˜R†

2

+ ↵QN
�
¯QLNR

�
˜R
2

+ h.c.. (3.19)

Integrating out the ˜R
2

generates

c
(µ)
SR

⇢
SR
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2

e↵

= 4

c
(µ)
T

⇢
T

⇤

2

e↵

=

↵33

Ld↵
2

QN

2m2

˜R2

. (3.20)

The best fit values for the ˜R
2

WC in Table 2 then imply

m
˜R2

' 0.95
��↵33

Ld↵
2

QN

��1/2

40⇥ 10

�3

Vcb

�
1/2

TeV . (3.21)

The leptoquark doublet ˜R
2

contains two states: the charge +2/3 state ˜R
2/3
2

and the
charge �1/3 state ˜R

�1/3
2

. Keeping only the couplings relevant for the R(D(⇤)
) anomaly

nonzero, ↵33

Ld,↵
2

QN 6= 0, the ˜R
2

states have two decay channels

Br[ ˜R2/3
2

! b⌧̄ ]

Br[ ˜R2/3
2

! cNR]
=

Br[ ˜R�1/3
2

! b⌫̄⌧ ]

Br[ ˜R�1/3
2

! sNR]
=

⇣ ↵33

Ld

↵2

QN

⌘
2

, (3.22)

where we have neglected differences due to the masses of the final state particles.
Assuming ˜R

2/3
2

and ˜R
�1/3
2

are degenerate, the LHC bounds from leptoquark pair pro-
duction are shown in Fig. 7 as a function of m

˜R2
and the ↵33

Ld coupling. The remaining
coupling, ↵2

QN , is set by the ˜R
2

best fit mass relation (3.21). We show bounds from LHC
searches for all four decay channels: ˜R

2/3
2

! b⌧̄ [49] (dark grey region), ˜R
�1/3
2

! b⌫̄⌧ [48]
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Figure 7. The LHC bounds from pair production of ˜R
2/3
2 and ˜R

�1/3
2 leptoquarks, for the decay

channels ˜R
2/3
2 ! b⌧̄ [49] (dark grey region), ˜R

�1/3
2 ! b⌫̄⌧ [48] (light grey region), and ˜R

2/3
2 ! cNR,

˜R
�1/3
2 ! sNR [48] (brown shaded region), as a function of ˜R2 mass and the coupling constant

↵33
Ld. Contours satisfying the S1 best fit mass relation (3.21) are shown by blue dashed lines, fixing

↵2
QN = 0.25, 0.5, 1.0, and 2.0.

(light grey), and the combined pp ! ˜R
2/3
2

˜R
2/3⇤
2

and pp ! ˜R
�1/3
2

˜R
�1/3⇤
2

cross sections, fol-
lowed by ˜R

2/3
2

! cNR and ˜R
�1/3
2

! sNR decays, which appear in the detector as 2j+MET
[48] (brown shaded region). We see that m

˜R2
& 800 GeV consistent with the R(D(⇤)

)

anomaly is allowed, with perturbative couplings, even if no other decay channels are open.

4 Sterile Neutrino Phenomenology

In this section, we discuss the phenomenology associated with the right-handed (sterile)
neutrino NR. As we will see below, the coupling of NR to the SM fermions through one of
the higher dimension operators in Eq. (2.8), needed to explain R(D(⇤)

), carries interesting
implications for neutrino masses, cosmology, and collider signatures. We will assume that
NR is a Majorana fermion with mass . O(100) MeV so that it remains compatible with the
measured missing invariant mass spectrum in the B ! D(⇤)⌧ ⌫̄ decay chain. As in Sec. 3,
we do not consider the � model as it is excluded by Bc ! ⌧⌫ constraints.

4.1 Neutrino masses

The effective operators (2.8) induce a NR–⌫L Dirac mass at the two loop order via contri-
butions of the form

mD
¯NR⌫L ⇠

NR ⌫L
¯b

Wc

⌧

. (4.1)

Here, the simplified model mediator has been integrated out, producing an effective four-
fermion vertex, shown in gray. Depending on the chiral structure of the simplified model,
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and the ↵33
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QN , is set by the ˜R
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Figure 6. The LHC bounds from pair production of S1 leptoquarks followed by S1 ! bNR decays
[48] (grey region) and S1 ! c⌧ [49] (brown region) as a function of mS1 and the ratio rS1 =

(z3d/z
23
u )

2 (3.18). The remaining ratio of coupling constants is fixed by the relation z23u ' 1.1z23Q ,
arising from the S1 best fit WCs to the R(D(⇤)

) data (2.14). Contours satisfying the S1 best fit
mass relation (3.15) are shown by blue dashed lines for z33u = 0.25, 0.5, 1.0, and 2.0.
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THE W’ (3221) MODEL

Field SU(3)c SU(2)L SU(2)V U(1)0

SM-like chiral fermions

q0iL 3 2 1 1/6

`0iL 1 2 1 -1/2

u0iR 3 1 1 2/3

d0iR 3 1 1 -1/3

e0iR 1 1 1 -1

⌫ 0iR 1 1 1 0

Extra vector-like fermions

Q0i
L,R 3 1 2 1/6

L0i
L,R 1 1 2 -1/2

Scalars

H 1 2 1 1/2

HV 1 1 2 1/2

Table 1. Matter content of the model in the unbroken phase of gauge group G. The flavour index
i 2 {1, 2, 3}. Singlet representation is denoted with 1, while fundamental of SU(3) (SU(2)) is 3
(2). The last column shows the Y 0 quantum number.

3 Explicit UV completion: The ‘3221’ gauge model

A massive vector requires a UV completion. We consider a ‘3221’-type gauge theory,

with a gauge group G = SU(3)c ⇥ SU(2)L ⇥ SU(2)V ⇥ U(1)0. The U(1)0 together with

the SU(2)V symmetry will generate heavy vectors under spontaneous symmetry breaking

SU(2)V ⇥ U(1)0 ! U(1)Y . Our notation for the gauge fields in the G-symmetric phase

is Ga
µ, W

i
µ, W

0j
µ , and B0

µ, respectively, with gs, gL, gV , and g0 the corresponding gauge

couplings. The content of the model is shown in Table 1: Three generations of SM-like

chiral field content, denoted by primes, is extended by a right-handed neutrino ⌫ 0R. Also

included are one or more generations of vector-like quarks and leptons, Q0i
L,R and L0i

L,R that

transform as doublets under SU(2)V . We will consider the phenomenological implications

for the cases where either one, two, or three sets of vector-like fermions are introduced. In

the remainder of this section, we give a detailed account of this UV completion, while the

related phenomenology is discussed in Section 4.

3.1 Gauge symmetry and the spontaneous symmetry breaking pattern

The gauge group G is spontaneously broken in two steps, first G ! GSM ⌘ SU(3)c ⇥
SU(2)L ⇥ U(1)Y , and then GSM ! U(1)em. The first step of spontaneous symmetry

breaking, G ! GSM, occurs when the scalar, HV obtains a nonzero vacuum expectation

value (vev),

hHV i = 1p
2

 
0

vV

!
. (3.1)
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W’ talks to SM fermions only 

via mixing with vector-like 

fermions. Can appropriately 

engineer this mixing so that 

W’ talks significantly only to 

(right-handed) b,c,τ   
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GAUGE BOSON (W’,Z’) CONSTRAINTS

800

1500

2500

3500
4400

Z'���

Z'��� W'���

R(D(*))
1�

1000 1500 2000 2500 3000

1.0

1.5

2.0

2.5

3.0

�� [���]

� �

LHC exclusions: FL-23, 1 VL family

800

1500

2500

3500
4400

W'���

Z'���

Z'���

R(D(*))
1�

1000 1500 2000 2500 3000

1.0

1.5

2.0

2.5

3.0

�� [���]

� �

LHC exclusions: FL-23, 2 VL families

Figure 3. The LHC exclusion limits on the Z 0 andW 0 resonances from ATLAS ⌧+⌧� [57], `+`� [58]
(` = e, µ), and ⌧⌫ [59] searches, respectively, projected on the (vV , gV ) plane for the FL-23 scenario
assuming the maximal fermion mixing angles s✓b , s✓c , s✓e and s✓N (that is c23q , c3N ! 1). The
vertical green band represents 1� range for R(D(⇤)) anomaly. Dashed blue (red) isolines are the
predicted masses for Z 0 (W 0) gauge bosons. The plot on the left is for the minimal matter content,
while the plot on the right assumes an additional family of the vector-like fermions mixing weakly
with the SM fermions. Their masses are set to 0.8 TeV, above the limits from [61].

⌧+⌧� [57] and `+`� [58] (` = e, µ) searches gives the exclusion regions in the (vV , gV )

plane shown in Fig. 3 for ⌧+⌧� (brown) and `+`� (gray), respectively. The parameter

space consistent with the LHC data has gV � g0, or tV ⌧ 1. This is required to suppress

Z 0 couplings to valence quarks and light charged leptons. In this regime, the dominant

decay modes are to bb̄, cc̄, ⌧+⌧� and NRNR, and the main production mechanism is from

the charm fusion. Comparing instead the �(pp ! W 0) ⇥ B(W 0 ! ⌧⌫) to the upper limits

from the ATLAS analysis [59] (see also [60]), leads to constraints shown with light blue.

Introducing another vector-like fermion family helps reduce these constraints as shown in

the right plot. Here we set the masses of vector-like fermion to 0.8 TeV, which is above the

limits from the quark partner pair production [61]. We also checked that in the interesting

region of parameter space the W 0, Z 0 induced production is always subleading compared

to the QCD pair production.

4.2 Flavor constraints

We next turn our attention to the flavor constraints. In FL-23 model all the tree-level

FCNCs are strongly suppressed, and are phenomenologically negligible. The one-loop

induced FCNCs are also negligible, suppressed by both mW 0 � mW and the extreme

smallness of the flavor-changing couplings cijq , for ij 6= 23.

Other flavor models, beside flavor-locking, may lead to a flavor structure similar to

– 14 –

dashed blue (red): contours of Z’(W’) masses 

additional content can reduce relevant branching ratios, alleviate collider constraints
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THE NEUTRINO SECTOR

relevant W 0 boson couplings are, up to small corrections due to EW symmetry breaking,

given by

c23q ⇡ sin ✓bR sin ✓cR , c3N ⇡ sin ✓⌧R sin ✓N . (3.16)

The corrections to R(D(⇤)) are maximised in the limit c23q , c3N ! 1, in which case Eq. (2.7)

implies vV ⇡ 1.8 TeV in the minimal model, where all the breaking of SU(2)V ⇥ U(1)0 !
U(1)Y is due to HV .

3.4 Neutrino masses

The neutrino mass matrix, for a simplified case of a single SM-like neutrino flavor, has the

following form in the basis (⌫ 0L, ⌫
0 c
R , N 0

L, N
0c
R ),

M⌫ =

0

BBBB@

0 y⌫vEWp
2

0 0
y⌫vEWp

2
µ �⌫vVp

2
0

0 �⌫vVp
2

0 ML

0 0 ML 0

1

CCCCA
, (3.17)

where we have included a Majorana mass term µ for ⌫ 0R, which is a singlet under G. For

vEW = 0, the SM neutrino ⌫ 0L decouples from the system and remains massless. In the

remaining system of three Weyl fermions, the µ = 0 limit produces a massless Majorana

neutrino N c
R = cos ✓N⌫ 0cR�sin ✓NN 0c

R , where tan ✓N = (�⌫vV )/(
p
2ML), while the other two

Weyl fermions combine into a Dirac fermion with mass

MN 0 ⌘ ML

p
1 + tan2 ✓N . (3.18)

As with the charged fermions (discussed above), for �⌫vV � ML the massless right-handed

neutrino has a large admixture of N 0c
R , which is charged under SU(2)V ; this large mixing

is necessary to induce a large coupling of the massless state to W 0 in order to explain the

R(D(⇤)) anomaly. Introducing a nonzero but small µ ⌧ ML,�⌫vV results in the lightest

right-handed neutrino NR obtaining a mass MNR ⇡ µ (ML/MN 0)2 and a small admixture

of N 0
L. The heavy Dirac fermion becomes a pseudo-Dirac state, composed of two O(MN 0)

mass states split by O(µ).

The above features persist for y⌫vEW 6= 0, i.e., when the SM ⌫ 0L state is coupled to

this system, in the phenomenologically interesting limit y⌫vEW ⌧ µ. This also leads to

a Type-I seesaw step that generates light Majorana neutrino masses ⇡ y2⌫v
2
EW/(2µ). It is

straightforward to extend the above discussion to three generations of neutrinos, thereby

accounting for the observed neutrino oscillation phenomena. In addition to the tree level

neutrino masses discussed here, a Dirac mass term analogous to y⌫vEW is also generated

at two loops. The size of this contribution depends on the flavor structure of the theory,

which will be discussed in the next section. Hence we postpone a discussion of the two

loop Dirac mass term, along with the discussion of the phenomenology of the additional

neutrino states, until Section 5.
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(                 )

vectorlike states give pseudo-Dirac state of mass                                   split by O(µ)

responsible for anomaly

The Yukawa couplings y ν   can be appropriately chosen such that y ν  vEW << µ and the 

SM neutrinos get the right masses via a low scale type-I seesaw 



�51

MEDIATORS RECAP

mediator irrep �L
int

WCs

W 0
µ (1, 1)

1

g0
�
cqūR /W

0
dR + cN ¯`R /W

0
NR

�
c
VR

� (1, 2)
1/2

yuūRQL✏�+ yd ¯dRQL�
†
+

yN ¯NRLL✏�
c
SL

, c
SR

Uµ
1

(3, 1)
2/3

�
↵LQ

¯LL�µQL + ↵`d
¯`R�µdR

�
Uµ†
1

+

↵uN
�
ūR�µNR

�
Uµ
1

c
SL

, c
VR

˜R
2

(3, 2)
1/6 ↵Ld

�
¯LLdR

�
✏ ˜R†

2

+ ↵QN
�
¯QLNR

�
˜R
2

c
SR

= 4c
T

S
1

(

¯

3, 1)
1/3

zu( ¯U
c
R`R)S1

+ zd( ¯d
c
RNR)S1

+

zQ( ¯Q
c
L✏LL)S1

c
VR

,

c
SR

= �4c
T

Table 1. The tree level mediators that can lead to the four-fermion operators with right-handed
neutrino, NR, in Eqs. (2.9), as indicated in the last column.

basis of b ! c⌧NR dimension 6 four-fermion operators. For instance, there is only one
non-vanishing tensor operator, since �µ⌫PL ⌦ �µ⌫PR = 0, which immediately follows from
the relation �µ⌫ ⌦ �µ⌫�

5

= �µ⌫�5 ⌦ �µ⌫ .

2.2 Fits to R(D(⇤)
) data

The present experimental world-averages for R(D(⇤)
) are [7]

R(D)

��
exp

= 0.407± 0.046 , R(D⇤
)

��
exp

= 0.304± 0.015 , corr. = �0.20 . (2.11)

The SM predictions, making use of the model-independent form factor fit ‘Lw�1

’ of Ref. [8]
(see also Refs. [JZ: missing]), are

R(D)

��
th

= 0.298± 0.003, R(D⇤
)

��
th

= 0.261± 0.004, corr. = +0.19. (2.12)

With the addition of a right-handed neutrino decay mode, the B ! D(⇤)⌧ ⌫̄ decays become
an incoherent sum of two contributions: One from the SM decay, b ! c⌧ ⌫̄⌧ , and one from
b ! c⌧ ¯NR. The NR contributions therefore increase both of the B ! D(⇤)⌧ ⌫̄ branching
ratios above the SM expectation, matching the direction of the experimental observations
for R(D(⇤)

) compared to the SM values.
In Fig. 1 we show, for each simplified model of Table 1, the allowed contours or regions

in the R(D)�R(D⇤
) plane, compared to the experimental data, assuming for the moment

that all Wilson coefficients are real. The predictions for NP corrections to R(D(⇤)
) are

obtained from the expressions in Ref. [18], making use of the form factor fit ‘Lw�1

+SR’
of Ref. [8]. This fit was performed at next-to-leading order in the heavy quark expansion,
with matching scale µ =

p
mbmc and quark masses defined in the ⌥(1S) scheme, relevant

for self-consistent treatment of the Bc ! ⌧⌫ constraints below. Because the W 0 and ˜R
2

simplified models have only a single free Wilson coefficient, these two models are therefore
constrained to a contour. By contrast, �, U

1

and S
1

have two free Wilson coefficients,

– 4 –

vector

scalar

le
pt

oq
ua

rk
s

excluded by Br(Bc → τν) 

borderline consistent w/ Br(Bc → τν) 

b → sνν requires cSR to be small 
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Including recent W Õ æ ·‹ CMS search, model can only survive if
W Õ is broad
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Latest collider results are already turning the crank…



SUMMARY

persistent anomalies in measurements of R(D(*)) at several experiments 

could arise from couplings to sterile neutrinos. many UV completions possible 

measurable deviations in kinematic distributions of events possible 

predicts heavier mediator particles - LHC can look for them! 

exotic sterile neutrino phenomenology:  

relic sterile neutrinos can give measurable dark radiation or small fraction of 
dark matter that can possibly give gamma ray signals.  

short lifetimes / additional sterile neutrinos: displaced decays at direct searches 
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