Optimizing Boosted Dark Matter Searches at Large-Mass Neutrino and Dark Matter Detectors

Doojin Kim

NuTheories Workshop by PITT PACC, November 6th, 2018

In collaboration with Pedro Machado, Jong-Chul Park and Seodong Shin, in progress

Nonrelativistic Dark Matter Searches

No observation of DM signatures via non-gravitational interactions while many searches/interpretations designed/performed under nonrelativistic WIMP/WIMP-like scenarios ⇒ merely excluding more parameter space in dark matter models

CMS (Monolepton ξ = +1)

CMS (Monolepton ξ =

Nonrelativistic Dark Matter Searches

■ No observation of DM signatures via non-gravitational interactions while many searches/interpretations designed/performed under nonrelativistic WIMP/WIMP-like scenarios ⇒ merely excluding more parameter space in dark matter models

[Cushman, Calbiati, McKinsey (2013); Baudis (2014)]

[CMS mono-photon search (2014)]

Time to change our approach?

⇒ Relativistically produced invisible particle (DM) search! (see Josh's talk)

Boosted/Relativistic Dark Matter: Intensity Frontier

- ☐ Signals coming from particle accelerators, additional model building not always necessary
- ☐ If dark sectors (containing dark matter) are more "weakly" connected to the SM sector, high intensity experiments are motivated, e.g., fixed target experiments.
 - ✓ BDX, NA64, MicroBooNE, SeaQuest, LDMX, T2HKK, DUNE, SHiP, and many more

Boosted/Relativistic Dark Matter: Intensity Frontier

- ☐ Signals coming from particle accelerators, additional model building not always necessary
- ☐ If dark sectors (containing dark matter) are more "weakly" connected to the SM sector, high intensity experiments are motivated, e.g., fixed target experiments.
 - ✓ BDX, NA64, MicroBooNE, SeaQuest, LDMX, T2HKK, DUNE, SHiP, and many more

Boosted/Relativistic Dark Matter: Intensity Frontier

- ☐ Signals coming from particle accelerators, additional model building not always necessary
- ☐ If dark sectors (containing dark matter) are more "weakly" connected to the SM sector, high intensity experiments are motivated, e.g., fixed target experiments.
 - ✓ BDX, NA64, MicroBooNE, SeaQuest, LDMX, T2HKK, DUNE, SHiP, and many more

Quite a few phenomenological studies/proposals in the context of dark photon decays, elastic/inelastic scattering of DM, etc. [LoSecco et al. (1980); Bjorken, Essig, Schuster, Toro (2009); Batell, Pospelov, Ritz (2009); deNiverville, Pospelov, Ritz (2011); Izaguirre, Krnjaic, Schuster, Toro (2014); Izaguirre, Kahn, Krnjaic, Moschella (2017); Berlin, Gori, Schuster, Toro (2018); Bonivento, DK, Park, Shin in progress, and many more]

Boosted/Relativistic Dark Matter: Cosmic Frontier

- ☐ Simply waiting for signals coming from the universe today
- ☐ (Often) doing nontrivial model building to create boosted dark matter (an example mechanism in the next slide)
- ☐ (Typically) probing cosmological dark matter (nonrelativistic) through its boosted "partners"

Two-component Boosted DM Scenario

A possible relativistic source: BDM scenario, stability of the two DM species ensured by separate symmetries, e.g., $Z_2 \otimes Z_2'$, $U(1) \otimes U(1)'$, etc.

Two-component Boosted DM Scenario

A possible relativistic source: BDM scenario, stability of the two DM species ensured by separate symmetries, e.g., $Z_2 \otimes Z_2'$, $U(1) \otimes U(1)'$, etc.

"Assisted" freeze-out mechanism
[Belanger, Park (2011)]

Two-component Boosted DM Scenario

A possible relativistic source: BDM scenario, stability of the two DM species ensured by separate symmetries, e.g., $Z_2 \otimes Z_2'$, $U(1) \otimes U(1)'$, etc.

20

30

 $x=m_{\chi_1}/T$

50

70

15

 10^{-14}

10

100

"Relativistic" Dark Matter Search

- ✓ Heavier relic χ_0 : hard to detect it due to tiny/negligible coupling to SM
- ✓ Lighter relic χ_1 : hard to detect it due to small amount

"Relativistic" Dark Matter Search

- ✓ Heavier relic χ_0 : hard to detect it due to tiny/negligible coupling to SM
- ✓ Lighter relic χ_1 : hard to detect it due to small amount

Other Mechanisms

- Boosted dark matter from decaying dark matter [Bhattacharya, Gandhi, Gupta (2014); Kopp, Liu, Wang (2015);

 DK, Park, Park, Shin, in progress]
- \square Semi-annihilation in e.g., Z_3 models [D'Eramo, Thaler (2010)]
- ☐ Fast-moving DM via induced nucleon decays [Huang, Zhao (2013)]
- ☐ Energetic cosmic-ray-induced (semi-)relativistic dark matter scenarios [Yin (2018); Bringmann,

Pospelov (2018); Ema, Sala, Sato (2018)]

Flux of Boosted Dark Matter

 \Box Flux of boosted γ near the earth

$$\mathcal{F}_{\gamma} \propto (\text{interaction strength}) \times (\chi_0 \text{ number})^2$$

$$\sim 0.8 \times 10^{-7} \text{cm}^{-2} \text{s}^{-1} \left(\frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \gamma \gamma}}{10^{-26} \text{cm}^3 \text{s}^{-1}} \right) \left(\frac{20 \text{ GeV}}{m_0} \right)^2$$

Flux of Boosted Dark Matter

 \square Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \propto (\text{interaction strength}) \times (\chi_0 \text{ number})^2$$

$$\sim 0.8 \times 10^{-7} \text{cm}^{-2} \text{s}^{-1} \left(\frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{10^{-26} \text{cm}^3 \text{s}^{-1}} \right) \left(\frac{20 \text{ GeV}}{m_0} \right)^2 \qquad \text{from DM number density}$$

□ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ to be ~10⁻²⁶ cm³s⁻¹ and assuming Navarro-Frenk-White DM halo profile, a standard profile, one finds

$$\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$$
 for WIMP mass-range χ_0 [e.g., $\mathcal{O}(20 \text{ GeV})$]

Search Proposals at Large-Mass Detectors

- \square No sensitivity in conventional (small-mass, say, < 1 ton) dark matter direct detection experiments
 - ⇒ large-mass neutrino and/or dark matter detectors motivated

Search Proposals at Large-Mass Detectors

- \square No sensitivity in conventional (small-mass, say, < 1 ton) dark matter direct detection experiments
 - ⇒ large-mass neutrino and/or dark matter detectors motivated
- ☐ Example detectors and pheno. studies include
 - ✓ Super-K/Hyper-K [Agashe, Cui, Necib, Thaler (2014); Berger, Cui, Zhao (2014); Kong, Mohlabeng, Park (2014); Necib, Moon, Wongjirad, Conrad (2016); DK, Park, Shin (2016)]
 - ✓ DUNE [Necib, Moon, Wongjirad, Conrad (2016); Alhazmi, Kong, Mohlabeng, Park (2016); **DK**, Park, Shin (2016); Alhazmi, Dienes, **DK**, Kong, Park, Shin, Thomas, in progress]
 - ✓ IceCube/PINGU [Agashe, Cui, Necib, Thaler (2014); Bhattacharya, Gandhi, Gupta (2014); Kong, Mohlabeng, Park (2014); Kopp, Liu, Wang (2015); **DK**, Park, Park, Shin, in progress]
 - ✓ Dark Matter detectors (Xenon1T, LZ, etc) [Cherry, Frandsen, Shoemaker (2015); Giudice, DK, Park, Shin (2017); Bringmann, Pospelov (2018)]
 - ✓ Surface-based detectors (e.g., ProtoDUNE, SBN etc) [Chatterjee, De Roeck, DK, Moghaddam, Park, Shin, Whitehead, Yu (2018), DK, Kong, Park, Shin (2018)]

Experimental Effort

- ☐ Inelastic boosted dark matter search at the COSINE detector (an official result will appear soon).
- ☐ Inelastic boosted dark matter search planned in DUNE, ProtoDUNE, and ICARUS (Gran Sasso data)
- ☐ Elastic boosted dark matter search planned in DUNE (see Josh's and Yun-Tse's talks)

Many More Well-Motivated Experiments

DM	Target	Vol	Volume [t]		E_{th}		Resolution		DID	Run	D - C
Experiment	Material	Active	Fiducial	[m]	[keV]	Position [cm]	Angular [°]	Energy [%]	PID	Time	Refs.
DarkSide	LAr	46.4	36.9	3,800	(0/1)	0.1 1		9		0010	[no]
-50	DP-TPC	kg	kg	m.w.e.	O(1)	$\sim 0.1 - 1$	_	?	-	2013-	[83]
DarkSide	LAr		3,800	(2/1)	0.1 1		?		goal:	[no]	
-20k	DP-TPC	23	20	m.w.c.	O(1)	$\sim 0.1 - 1$	_	ſ	_	2021-	[30]
XENON1T	LXe	2.0	1.3	3,600	(2)(1)	~ 0.1 - 1	_	?		2016	[05 100]
	DP-TPC	2.0	1.5	m.w.e.	O(1)	~ 0.1 - 1	_	1	_	-2018	[85, 100]
XENONnT	LXe	r 0	4	3,600	(2/1)	~ 0.1 - 1		?		goal:	[100]
AENONIII	DP-TPC	5.9	~ 4	m.w.c.	O(1)	~ 0.1 - 1	_	1	_	2019-	[100]
DEAP	SP LAr	3.26	2.2	2,000	O(10)	< 10	_	?	_	2016-	[86, 87]
-3600	S1 only	3.20	2.2	2,000	O(10)	< 10	_	1	_	2010-	[00, 01]
DEAP		150	50	2,000	O(10)	O(10)	-	?	-	_	[86]
-50T											
LUX-	LXe	7	5.6	4,300	O(1)	~ 0.1 - 1		?		goal:	[88]
ZEPLIN	DP-TPC	-	0.6	m.w.e.	O(1)	~ 0.1 - 1	_	1	_	2020-	[66]
Neutrino	Target	Volume [kt]		Depth	$E_{\rm th}$		Resolution		DID	Run p	D 6
Experiment	Material	Active	Fiducial	[m]	[MeV]	Vertex [cm]	Angular [°]	Energy [%]	PID	Time	Refs.
Borexino	organic	0.070	0.1	3,800		0.17	9	5	9	> 5.6	[ool
	LS	0.278	0.1	m.w.e.	~ 0.2	~9-17	?	$\sqrt{E (\text{MeV})}$?	year	[89]
			0.0000	4.000		12-13		6.4-6.9		~ 10	[00.04]
KamLAND	LS	1	0.2686	1,000	0.2 - 1	$\frac{12-13}{\sqrt{E \text{ (MeV)}}}$?	$\sqrt{E (\text{MeV})}$?	year?	[90, 91]
JUNO					< 1,		μ:		μ^{\pm} vs π^{\pm} ,	goal:	
	LS	_	20	700	goal: 0.1	$\frac{12}{\sqrt{E \text{ (MeV)}}}$	L > 5 m: < 1,	$\frac{3}{\sqrt{E \text{ (MeV)}}}$	e^{\pm} vs π^{0} :	2020-	[92]
						VE (MeV)	L > 1 m: < 10	VE (MeV)	difficult		. ,
DUNE		Total:	(SP: 10 +		e: 30,			$e: 1 \oplus \frac{15}{\sqrt{E \text{ (MeV)}}}$	good	10 kt:	
	T A-TEDG	17.5	DP: 10.6)	1500	p:	1.0	$e, \mu, \pi^{\pm} : 1,$	p: 10 (p < 0.4 GeV),	e, μ, π^{\pm}, p	2025-,	[c o1 oo]
	LArTPC	×4	×2	1900	21-50	1-2	p, n : 5		separation	20 kt:	[6, 31-33]
		~ .	^2		21 00		p, 10 . 0	$5 \oplus \frac{30}{\sqrt{E(\text{GeV})}}$	in pair de l'oir		
								(p > 0.4 GeV)		2026-	
SK	Water	Total:			e: 5,	5 MeV: 95,	10 MeV: 25,	10 MeV: 16,	e, μ :	$\gtrsim 15$	foo orl
	Cherenkov	50	22.5	1,000	p:1.07	10 MeV: 55,	0.1 GeV: 3,	1 GeV: 2.5	good	year	[93-95]
					GeV	20 MeV: 40	1.33 GeV: 1.2				
НК		Total:	4.05	Japan:	e : < 5,	5 MeV: 75,			e, μ :		
	Water	258	187	650,	p:1.07	10 MeV: 45,	similar	better	good,	goal:	[34-36]
	Cherenkov	$\times 2$	$\times 2$	Korea:	GeV	15 MeV: 40,	to SK	than SK	π^{0}, π^{\pm} :	2026-	. ,
				1,000		0.5 GeV: 28			mild		
	Target		fective	Depth	$E_{\rm th}$		Resolution		PID	Run	Refs.
	Material		ime [Mt]	[m]	[GeV]	Vertex [m]	Angular [°]	Energy [%]		Time	
IceCube DeepCore	Ice	100 GeV: ~ 30,		1,450	~ 100	vertical: 5,	μ -track: ~ 1 ,	~ 15	only	2011-	[96]
	Cherenkov	200 GeV: ∼ 200		Ice		horizontal: 15	shower: ~ 30		μ	(2008)	[]
	Ice		10 GeV: ~ 5 ,		2,100 ~ 10	better	μ -track: \sim 1,	?	only	2011-	[37]
	Cherenkov		SeV: ∼ 30	Ice			shower: ≥ 10		μ	(2010)	[]
PINGU	Ice		eV: ~ 1 ,	2,100	~ 1	much	1 GeV: 25,	?	only	>	97
	Cherenkov	10 G	GeV : ~ 5	Ice		better	10 GeV: 10		μ	2023	()
Gen2	Ice	~	10 Gt	1,360	~ 50	worse	μ -track: < 1	?	only	_	[98]
	Cherenkov			Ice	TeV		shower: ~ 15		μ		

- Many existing/upcoming experiments which are potentially capable of testing models conceiving boosted dark matter
- ☐ Additional physics opportunity on top of the main missions of experiments

[DK, Machado, Park, Shin, in progress]

Questions

For a model,

- ☐ Parameter space to which an experiment would be
 - best sensitive?
- ☐ Better-motivated channels to investigate in terms
 - of signal searches?

Topics in the Rest of the Talk

- ☐ Proton scattering vs. DIS in elastic/inelastic BDM
 - searches
- ☐ Proton scattering vs. electron scattering in
 - elastic/inelastic BDM searches
- ☐ Example data analysis (in DUNE and Hyper-K)

Benchmark Model: Building Blocks

$$\mathcal{L}_{\text{int}} \ni \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu}\right) + \left(g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 X_{\mu}\right) + \left(g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 X_{\mu}\right) + \text{h. c.} + (\text{others})$$

■ Vector portal (e.g., dark photon scenario)

X ϵ e^+

- ☐ Fermionic DM
 - \star χ_2 : a heavier (unstable) dark-sector state
 - ❖ Flavor-conserving interaction ⇒ elastic scattering

❖ Flavor-changing interaction ⇒ inelastic scattering

- ☐ Everything happens inside a detector fiducial volume.
- ☐ The secondary interaction point may be displaced due to either long-lived
 - ✓ χ_2 when it decays via an off-shell X (i.e., $m_2 < m_1 + m_X$) or
 - \checkmark on-shell *X* − when kinetic mixing parameter is sufficiently small.
- If $\delta m = m_2 m_1$ is large enough, other final states (e.g., $\mu^+\mu^-$, $\pi^+\pi^-$, etc) are available.

p-Scattering vs. DIS

- ☐ If a momentum transfer is too large, a proton may break apart.
- ☐ What is large? \Rightarrow A Super-K simulation study [Fechner et al, PRD (2009)] showed about 50 % events accompany (at least) a pion or a secondary particle for $p_p \approx 2$ GeV.
- ☐ We categorize any event with p_p < 2 GeV as the p-scattering (i.e., simplified step-function-like transition).

p-Scattering vs. DIS: Numerical Study

- □ We study $\sigma_{\chi_1 e}/\sigma_{\text{DIS}}$ first $(\sigma_{\chi_1 p}/\sigma_{\text{DIS}}$ coming up), but due to $\sigma_{\chi_1 p} > \sigma_{\chi_1 e}$ over the parameter space of interest (in a few slides), the argument later on holds.
- ☐ For sub-GeV or lighter mediator (here dark photon), *p*-scattering dominates over DIS.
- ☐ Even in the region where DIS is sizable, the expected number of DIS events is small.

p-Scattering vs. DIS: Numerical Study

- \square DIS-preferred region expands, but a similar observation still holds with higher incoming energy of χ_1 .
- \square (χ_1 with $E_1 > 100$ GeV may come with too small flux, depending on the underlying "boost" mechanism.)

(Semi-)analytic Understanding

 \square *p*-scattering:

- ✓ The differential cross section is peaking towards small recoil momentum.
- ✓ p-scattering cross section rises in decreasing $m_X (\ll m_p \approx 1 \text{ GeV})$ as long as $p_p \lesssim m_X$.

(Semi-)analytic Understanding

\square *p*-scattering:

$$rac{d\sigma_{\chi_1 p}}{dp_p} \propto rac{1}{\{2m_p(E_2-E_1)-m_X^2\}^2} \simeq rac{1}{(p_p^2+m_X^2)^2}$$
 t-channel propagator in the limit of $p_p \ll m_p$

- ✓ The differential cross section is peaking towards small recoil momentum.
- ✓ *p*-scattering cross section rises in decreasing $m_X (\ll m_p \approx 1 \text{ GeV})$ as long as $p_p \lesssim m_X$.

☐ DIS:

$$\frac{d^2\sigma_{\rm DIS}}{dxdy} \propto \frac{1}{(Q^2 + m_X^2)^2} \approx \frac{1}{Q^4}$$

- ✓ The energy transfer Q is larger than ~2 GeV, and in turn, much larger than m_X (\ll 1 GeV) under consideration.
- ✓ DIS cross section does not vary much in decreasing m_X ($\ll m_p \approx 1$ GeV).

(Semi-)analytic Understanding

\square *p*-scattering:

$$rac{d\sigma_{\chi_1 p}}{dp_p} \propto rac{1}{\{2m_p(E_2-E_1)-m_X^2\}^2} \cong rac{1}{(p_p^2+m_X^2)^2}$$
 t-channel propagator in the limit of $p_p \ll m_p$

- ✓ The differential cross section is peaking towards small recoil momentum.
- ✓ *p*-scattering cross section rises in decreasing $m_X (\ll m_p \approx 1 \text{ GeV})$ as long as $p_p \lesssim m_X$.

☐ DIS:

$$\frac{d^2 \sigma_{\rm DIS}}{dx dy} \propto \frac{1}{(Q^2 + m_X^2)^2} \approx \frac{1}{Q^4}$$

- ✓ The energy transfer Q is larger than ~2 GeV, and in turn, much larger than m_X ($\ll 1$ GeV) under consideration.
- ✓ DIS cross section does not vary much in decreasing m_X ($\ll m_p \approx 1$ GeV).
- \square Our numerical study suggests that $\sigma_{\chi_1 p}$ be larger than σ_{DIS} for $m_X \approx 0.1$ GeV and $E_1 < 100$ GeV.
- As far as a mediator is within sub-GeV or smaller, DIS-induced events, which often involve complicated final states, would be negligible (cf. neutrino-induced DIS via $\mathcal{O}(100 \text{ GeV})$ W/Z gauge boson exchange).

p-Scattering vs. e-Scattering: Theory Level

- \square A "perfect" detector (no resolution issue, no energy threshold, secondary decay appearing inside the detector) is assumed, only with $p_p < 2$ GeV taken into consideration.
- Boundaries are defined by $\sigma_{\chi_1 e} = 0.9 \sigma_{\chi_1 p}$ as the *p*-scattering cross section is at least slightly greater than the *e*-scattering over the region of interest.

p-Scattering vs. e-Scattering: Moral

- ☐ If a BDM search hypothesizes a heavy dark photon (say, sub-GeV range), the proton channel may expedite discovery.
- ☐ If a model conceiving inelastic BDM (iBDM) signals allows for large mass gaps between χ_1 and χ_2 , the proton channel is more advantageous.
- \square On the other hand, the electron channel becomes comparable/complementary in probing the parameter regions with smaller m_1 and m_X .
- \square As the boosted χ_1 comes with more energy, more parameter space where the electron channel is comparable opens up.

p-Scattering vs. e-Scattering: a DUNE-like Detector

☐ Selection criteria

- i) $p_e > 30 \text{ MeV}$, $30 \text{ MeV} < p_p < 2 \text{ GeV}$,
- ii) $\Delta\theta_{e-i} > 1^{\circ}$, $\Delta\theta_{p-i} > 5^{\circ}$ with i denoting the other visible final state particles, and
- iii) both primary and secondary vertices should appear in the detector fiducial volume.
- □ For each of 5,600 scanning points over the parameter space of interest, we generate 5 million events using the TGenPhaseSpace module in the ROOT package and reweight them with matrix element values.
- ☐ The number of expected signal events are calculated by

$$N_{\rm sig} = \sigma_{\chi_1 p(e)} \mathcal{F}_1 A t_{\rm exp} N_{p(e)}$$

with *A* calculated from considering all selection criteria and 40 kt·yr assumed.

p-Scattering vs. *e*-Scattering: a DUNE-like Detector

- □ e-scattering can be larger than p-scattering,
 because more events populate in smaller proton
 recoil energy, and a harder angular cut on
 proton rejects some fraction of events.
- \square Many signal events would be expected in the region with small m_X , but may suffer from large backgrounds such as neutrino-induced events (only target recoil).
 - ⇒ Directionality helps to suppress backgrounds.

p-Scattering vs. *e*-Scattering: a DUNE-like Detector

- \square White regions: kinematically not allowed to create an e^-e^+ pair.
- ☐ Gray regions: barely allowed to have inelastic BDM events, but fail to pass cuts.
- \Box *e*-scattering can be larger than *p*-scattering, because more events populate in smaller proton recoil energy, and a harder angular cut on proton rejects some fraction of events.
- \Box e-scattering preferred region with large m_X , the e^-e^+ pair in the p-channel often fails to pass angle cut.

p-Scattering vs. e-Scattering: a HK-like Detector

- ☐ Selection criteria
 - i) $p_e > 100 \text{ MeV}$, 1.07 GeV $< p_p < 2 \text{ GeV}$,
 - ii) $\Delta\theta_{e-i} > 3^{\circ}$, $\Delta\theta_{p-i} > 3^{\circ}$ with *i* running over the other visible final state particles, and
 - iii) both primary and secondary vertices should appear in the detector fiducial volume.
- □ For each of 5,600 scanning points over the parameter space of interest, we generate 5 million events using the TGenPhaseSpace module in the ROOT package and reweight them with matrix element values.
- ☐ The number of expected signal events are calculated by

$$N_{\text{sig}} = \sigma_{\chi_1 p(e)} \mathcal{F}_1 A t_{\text{exp}} N_{p(e)}$$

with *A* calculated from considering all selection criteria and 380 kt·yr assumed.

p-Scattering vs. e-Scattering: a HK-like Detector

- □ *e*-scattering preferred region is significantly extended because a proton needs enough kinetic energy to create Cherenkov radiation.
- □ Gray regions become much wider than corresponding results for DUNE due to the larger thresholds and angular resolution. \Rightarrow In order for HK to probe parameter space with small m_X and/or m_1 , search strategies getting around these issues are motivated.

Exploring Dark Photon Parameter Space: HK vs. DUNE

- □ The exclusion limits are for the case of $m_X > 2m_1$, but $\delta m = m_2 m_1 < m_X$ so that χ_2 is guaranteed to decay visibly.
- \square *p*-scattering is advantageous than *e*-scattering in increasing m_X as expected.
- \square For larger E_1 , the proton scattering channel in HK begins to cover some region of parameter space.
 - ⇒ Better angular resolution, lower threshold energy would enable HK to cover more parameter space.

Exploring Dark Photon Parameter Space: HK vs. DUNE

- \square The exclusion limits are for the case of $m_X < 2m_1$.
- \square p-scattering is advantageous than e-scattering in increasing m_X as expected.
- \square A transition happens at $\delta m = m_X$ where χ_2 decays to an e^-e^+ pair through on-shell $X \leftrightarrow$ off-shell X.
- \square For larger E_1 , the proton scattering channel in HK begins to cover some region of parameter space.
 - ⇒ Better angular resolution, lower threshold energy would enable HK to cover more parameter space.

(In)elastic BDM Searches in Various Experiments

(In)elastic BDM Searches in Various Experiments

Detectors are **complementary** to one another rather than superior to the others!

Conclusions

- ☐ Boosted dark matter searches at the cosmic frontier are **promising**.
- ☐ They may provide an alternative avenue to explore dark sector physics (including dark matter).
- ☐ Theoretical/phenomenological studies have been **actively** conducted and in progress.
- ☐ There are many ongoing/projected large-volume neutrino/dark matter experiments in which they can be tested.
- Search strategies and analysis designs depend on models to explore.
 - ✓ Elastic vs. inelastic BDM
 - ✓ Proton vs. electron scattering channels
 - ✓ High-performance detectors are better for signals with many features.

Back-up

Generic Features: e-scattering - Cross Section

$$\frac{d\sigma}{dE_T} = \frac{m_T}{8\pi\lambda(s,m_T^2,m_1^2)} \frac{8(\epsilon e g_{12})^2 m_T}{\{2m_T(E_2-E_1)-m_X^2\}^2} \left[m_T(E_1^2+E_2^2) - \frac{(m_2-m_1)^2}{2}(E_2-E_1+m_T) + m_T^2(E_2-E_1) + m_1^2E_2 - m_2^2E_1 \right]$$

From PS, same for elastic scattering

From matrix element, expression for elastic scattering in the limit of $m_2 \rightarrow m_1$

- ☐ A **large boost factor** is preferred to access heavier dark sector states.
- ☐ Cross section is **peaking towards lower energy** electron recoil. (The generic trend is relevant to elastic scattering.)

Generic Features: p-scattering - Cross Section

$$\frac{d\sigma}{dE_{T}} = \frac{m_{T}}{8\pi\lambda(s, m_{T}^{2}, m_{1}^{2})} |\mathcal{M}|^{2}$$

$$|\mathcal{M}|^{2} = \frac{8(\epsilon e g_{12})^{2} m_{T}}{\{2m_{T}(E_{2} - E_{1}) - m_{X}^{2}\}^{2}} \times \left[\mathcal{M}_{0}(F_{1} + \kappa F_{2})^{2} + \mathcal{M}_{1}\{-(F_{1} + \kappa F_{2})\kappa F_{2} + \frac{(\kappa F_{2})^{2}}{4m_{T}}(E_{1} - E_{2} + 2m_{T})\}\right]. \qquad (2)$$

$$\mathcal{M}_{0} = \left[m_{T}(E_{1}^{2} + E_{2}^{2}) - \frac{(\delta m)^{2}}{2}(E_{2} - E_{1} + m_{T}) + m_{T}^{2}(E_{2} - E_{1}) + m_{1}^{2}E_{2} - m_{2}^{2}E_{1}\right], \qquad (3)$$

$$\mathcal{M}_{1} = m_{T} \left[\left\{(E_{1} + E_{2}) - \frac{m_{2}^{2} - m_{1}^{2}}{2m_{T}}\right\}^{2} + (E_{1} - E_{2} + 2m_{T})\left\{(E_{2} - E_{1}) - \frac{(\delta m)^{2}}{2m_{T}}\right\}\right], \quad \delta m \equiv m_{2} - m_{1}$$

- ☐ A large boost factor is **not necessary** to access heavier dark sector states.
- □ Cross section is **peaking towards lower energy** proton recoil, while **high energy recoil regime** where DIS becomes relevant is negligible for small m_X (cf. for large m_X , the behavior becomes similar to that for neutrino scattering). \Leftarrow **large momentum transfer suppression** via the dark photon propagator.
- □ DIS-induced messy final states mostly come from backgrounds!