Nu Mass Models at Colliders: Worries and Hopes

Beyond 3×3 - Pittsburgh

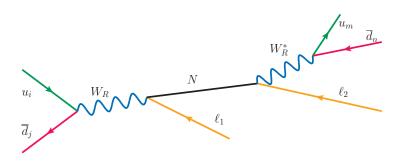
Richard Ruiz

Center for Cosmology, Particle Physics, and Phenomenology (CP3)

Universite Catholique de Louvain

November 09, 2018

This is a talk where I will share my feelings


This is a talk where I will share my feelings (about neutrinos)

:)

Worry: Limitations and Robustness of Benchmarks

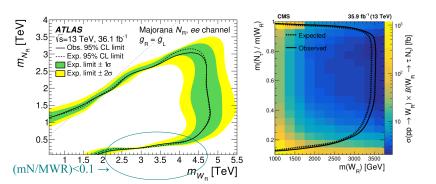
¹See talks by Pavel (Sunday) and Miha (today)

Worry: Limitations and Robustness of Benchmarks

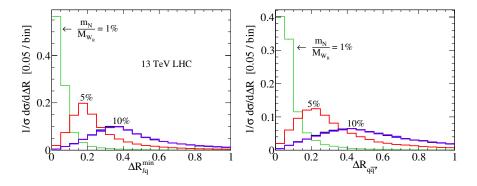
mass hierarchies in neutrino mass models with new gauge fields¹

¹See talks by Pavel (Sunday) and Miha (today)

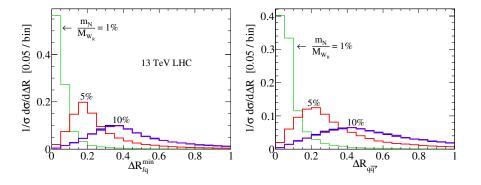
Mass Hierarchies within Nu Mass Models


Majorana N can be produced through new gauge bosons, e.g., W_R, Z_{B-L}

- Canonical/simplified channels, e.g., $pp \to \ell_i^{\pm} \ell_k^{\pm} + nj$, very sensitive but **not designed** for mass hierarchies
 - ▶ E.g., $M_{WR} \sim g_L v_R \sim 5-6$ TeV $\gg m_N \sim y^N v_R \sim y^\tau v_R \sim 100$ GeV

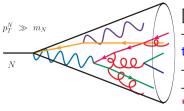

Mass Hierarchies within Nu Mass Models

Majorana N can be produced through new gauge bosons, e.g., W_R, Z_{B-L}


- Canonical/simplified channels, e.g., $pp \to \ell_i^{\pm} \ell_k^{\pm} + nj$, very sensitive but **not designed** for mass hierarchies
 - ▶ E.g., $M_{WR} \sim g_L v_R \sim 5 6$ TeV $\gg m_N \sim y^N v_R \sim y^\tau v_R \sim 100$ GeV

For $(m_N/M_{W_R}) \ll 1$, i.e., boosted N, searches losing sensitivity!

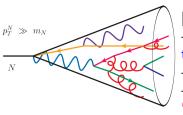
For a 1 o 2 process, $m_{ij}^2 = (p_i + p_j)^2 \approx 2E_iE_j(1 - \cos\theta_{ij}) \approx E_iE_j\theta_{ij}^2$


For a
$$1 \to 2$$
 process, $m_{ij}^2 = (p_i + p_j)^2 \approx 2E_iE_j(1 - \cos\theta_{ij}) \approx E_iE_j\theta_{ij}^2$

$$\Rightarrow \Delta R_{ij} \sim \frac{m_N}{\sqrt{E_iE_i}} \sim \frac{4m_N}{M_{W_R}} \Rightarrow \text{For } \left(\frac{m_N}{M_{W_R}}\right) < 0.1, \Delta R_{\ell X}^{\min} = 0.4 \text{ iso. req. fails}$$

K&S process $pp \to \ell^{\pm}\ell^{\pm}jj + X$ contains two same-sign charged leptons

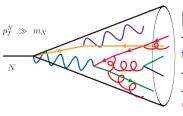
- S/B power comes from high-p_T leptons + little/no MET
- **Subtle**: 2 jets (composite/dressed) vs quarks (elementary/undressed) **Question:** Is it necessary to identify the second lepton or jet multiplicity?


Merged topologies impact both hadronic and lepton observables

The formation of "neutrino jets" is a bit funny [1607.03504; 1610.08985]

- Seeded by a $1 \rightarrow 3$ splitting: the charged lepton disappears
- Driven by kinematics: $m_N \ll M_{WR}$
- Little to do with nature of W_R , e.g., "lepton jets" [Izaguirre and Shuve, 1504.02470]

Merged topologies impact both hadronic and lepton observables


The formation of "neutrino jets" is a bit funny [1607.03504; 1610.08985]

- Seeded by a $1 \rightarrow 3$ splitting: the charged lepton disappears
- Driven by kinematics: $m_N \ll M_{WR}$
- Little to do with nature of W_R , e.g., "lepton jets" [Izaguirre and Shuve, 1504.02470]

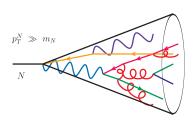
Worry: Applicable to searches for long-lived / displaced N

- For $m_N \lesssim 10$ GeV, then in $W/Z \to NX$ decays, $N \to \ell q \overline{q}$ decays are actually neutrino jet at detector level
- No collider study to date has taken this into account for low-scale Type I seesaw (SM+N). Ditto for Type I+III seesaw.

Merged topologies impact both hadronic and lepton observables

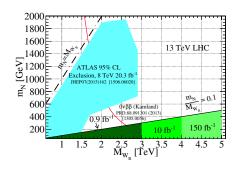
The formation of "neutrino jets" is a bit funny [1607.03504; 1610.08985]

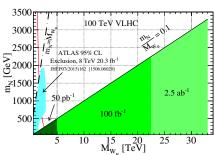
- Seeded by a $1 \rightarrow 3$ splitting: the charged lepton disappears
- Driven by kinematics: $m_N \ll M_{WR}$
- Little to do with nature of W_R , e.g., "lepton jets" [Izaguirre and Shuve, 1504.02470]


Worry: Applicable to searches for long-lived / displaced N

- For $m_N \lesssim 10$ GeV, then in $W/Z \to NX$ decays, $N \to \ell q \overline{q}$ decays are actually neutrino jet at detector level
- No collider study to date has taken this into account for low-scale Type I seesaw (SM+N). Ditto for Type I+III seesaw.

Hope: There is a language and have tools, and they work!




Like boosted t, treat decays of boosted N as a single **neutrino jet** (j_N)

 $pp \rightarrow \ell + j_N$ sensitivity (green) is precisely where $\ell\ell jj$ searches exclusion (blue) stop [1607.03504; 1610.08985]

 W_R sensitivity recovered and can reach 5 - 6 (35 - 45) TeV at $\sqrt{s}=$ 14 (100) TeV

Worry: Feasibility of Lepton Number Violation at Colliders

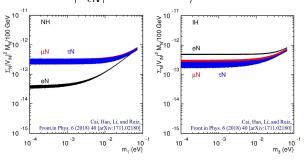
Canonical Type I Seesaw Mechanism

... extends the Standard Model (SM) field content with N_R , and supposes the existence of Dirac and RH Majorana masses:

$$\mathcal{L}_{\mathrm{Type~I}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\textit{N~Kin.}} - \underbrace{y_{\nu} \overline{L} \tilde{\Phi} \textit{N}_{\textit{R}} + \textit{H.c.}}_{\mathrm{Dirac~mass}} - \underbrace{\mu_{\textit{R}} \overline{\textit{N}_{\textit{R}}^{\textit{c}}} \textit{N}_{\textit{R}}}_{\mathrm{Majorana~mass}}$$

Combining the mass terms makes manifest neutrino mass-mixing

$$\mathcal{L}_{D+M} = -\frac{1}{2}\overline{\tilde{N}}\tilde{M}\tilde{N} = \begin{pmatrix} \overline{\nu_L} & \overline{N_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & \mu_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$


which gives in the following mass eigenvalues when $\mu_R \gg m_D$:

$$m_1 \approx -m_D |V|^2 = -m_D \frac{m_D}{\mu_R}, \quad m_2 \approx \mu_R$$

Realistic models have large and messy mass matrix \tilde{M} , where

$$ilde m_
u = - ilde M_D ilde M_R^{-1} ilde M_D^T$$
 with active-sterile mixing $ilde V = ilde M_D ilde M_R^{-1}$

Plugging in measured ν mass splittings and solving for mixing reveals very small $|V_{\ell N}|$ for three EW/TeV-scale N

This suggests that N might decouple from colliders experiments²

- For MeV N, rate okay if can be produced from meson decays
- Many attempts to invoke flavor symmetries to obtain sizable mixing
- Exception³ when (lots) more N added with **small** Majorana mass $\mu_X \ll m_D, \mu_R$, leading to $\tilde{m}_{\nu} = -\tilde{M}_D^T \tilde{M}_R^{T-1} \mu_X \tilde{M}_R^{-1} \tilde{M}_D$

 $^{^2}$ Pilaftsis [hep-ph/9901206] and Kersten & Smirnov [0705.3221]

³Inverse and Linear Seesaw mechs. in literature, and N₁ is Dirac-like/pseudo-Dirac ∽ ५ ०

Clarity on Lepton Number Violation vs Colliders

Whether or not N_i decouple from collider experiments has been clarified

• Theorem⁴: In SM + arbitrary number of gauge singlet/sterile fermions, $\tilde{m}_{\nu} = 0 \Leftrightarrow$ lepton number (L) conservation

⁴Moffat, et al [1712.07611]

⁵See Yuber's and Brian's talks tomorrow!

Clarity on Lepton Number Violation vs Colliders

Whether or not N_i decouple from collider experiments has been clarified

- Theorem⁴: In SM + arbitrary number of gauge singlet/sterile fermions, $\tilde{m}_{\nu} = 0 \Leftrightarrow$ lepton number (L) conservation
- ⇒ In pure Type I scenarios, L violation decouples one of two ways:
- **1** High-scale seesaw: $\mu_M \gg \langle \Phi_{SM} \rangle \implies m_\nu \sim m_D \left(\frac{m_D}{\mu_M} \right), \ m_N \sim \mu_M$
- ② Low-scale seesaw: $\mu_M \ll \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \mu_M \left(\frac{m_D}{m_R} \right)^2$, $m_N \sim m_R$

⁴Moffat, et al [1712.07611]

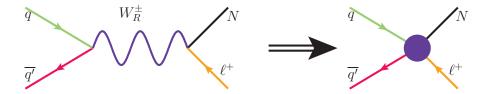
⁵See Yuber's and Brian's talks tomorrow!

Clarity on Lepton Number Violation vs Colliders

Whether or not N_i decouple from collider experiments has been clarified

- Theorem⁴: In SM + arbitrary number of gauge singlet/sterile fermions, $\tilde{m}_{\nu} = 0 \Leftrightarrow$ lepton number (L) conservation
- \implies In pure Type I scenarios, L violation decouples one of two ways:
- **1** High-scale seesaw: $\mu_M \gg \langle \Phi_{SM} \rangle \implies m_\nu \sim m_D \left(\frac{m_D}{\mu_M} \right), \ m_N \sim \mu_M$
- **2** Low-scale seesaw: $\mu_M \ll \langle \Phi_{SM} \rangle \implies m_\nu \sim \mu_M \left(\frac{m_D}{m_R} \right)^2$, $m_N \sim m_R$
- \implies In Type I scenarios, EW/TeV-scale Dirac-like N_i do not decouple⁵

Collider observation of $N_i + L$ -violation \implies more new particles!


 Important since concrete example of a realistic Type II Seesaw mimicking the canonical Type I collider signature

⁴Moffat, et al [1712.07611]

⁵See Yuber's and Brian's talks tomorrow!

Mimicking Type I Seesaw

If gauge mediators are too heavy, light ${\it N}$ are still accessible

Mimicking Type I Seesaw

If gauge mediators are too heavy, light N are still accessible

When $M_{W_R} \gg \sqrt{\hat{s}}$ but $m_N \lesssim \mathcal{O}(1)$ TeV, $pp \to N\ell + X$ production in the LRSM and minimal Type I Seesaw are not discernible⁶


- ullet Occurs near threshold $\sqrt{\hat{s}}\sim m_N$ and same ℓ_1^\pm polarization
- Differentiation requires polar and azimuthal polarization measurements of the full $pp \to \ell^{\pm}\ell^{\pm} + nj + X$ final state

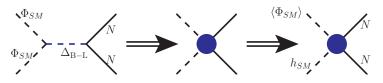
12 / 28

⁶Han, Lewis, **RR**, Si, PRD ('12) [1211.6447]; **RR**, EPJC ('17) [1703.04669]

"Type I" searches and sensitivities for Majorana N can be reinterpreted⁷ in the context of LRSM when $M_{W_R} \gtrsim \sqrt{s} \gg \sqrt{\hat{s}}$

• Signature: $pp \to \ell^{\pm}\ell^{\pm} + nj + X + p_{\tau}^{\ell} \gtrsim \mathcal{O}(m_N) + \text{no MET}$

At 14 (100) TeV with $\mathcal{L}=1$ (10) ab⁻¹, $M_{W_R}\lesssim 9$ (40) TeV can be probed


DO NOT STOP SEARCHING FOR TYPE I LNV

⁷RR [1703.04669]

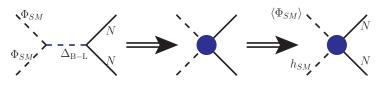
13 / 28

Collider LNV from Inaccessible Mediators

If other mediators are too heavy, light N are still accessible 8

SM-invariant effective field theories with sterile neutrinos exist!9

Heavy Neutrinos EFT (NEFT) [Aparici, 0904.3244]


$$\mathcal{L}_{\mathrm{NEFT}} = \mathcal{L}_{\mathrm{Type~I}} + \sum_{5} \sum_{i} \frac{\alpha_{i}^{(d)}}{\Lambda^{(d-4)}} \mathcal{O}_{i}^{(d)}, \qquad \mathcal{O}_{V}^{(6)} = \left(\overline{d}\gamma^{\mu} P_{R} u\right) \left(\overline{e}\gamma_{\mu} P_{R} N_{R}\right)$$

⁸For Higgs-Neutrino relationship, see afternoon talks!

⁹See Mike's talk Wednesday and [1703.04415] for relevant (SM)EFT details; and Bibhushan's talk Wednesday for example!

Collider LNV from Inaccessible Mediators

If other mediators are too heavy, light N are still accessible 8

SM-invariant effective field theories with sterile neutrinos exist!9

Heavy Neutrinos EFT (NEFT) [Aparici, 0904.3244]

$$\mathcal{L}_{ ext{NEFT}} = \mathcal{L}_{ ext{Type I}} + \sum_{5} \sum_{i} \frac{\alpha_{i}^{(d)}}{\Lambda^{(d-4)}} \mathcal{O}_{i}^{(d)}, \qquad \mathcal{O}_{V}^{(6)} = \left(\overline{d}\gamma^{\mu} P_{R} u\right) \left(\overline{e}\gamma_{\mu} P_{R} N_{R}\right)$$

One subtlety [RR, 1703.04669]: N_R here is *chiral/interaction* state

- Must decompose into mass basis: $N_R = \sum X_{\ell m} \nu_m + \sum Y_{\ell m'} N_{m'}$
- After EWSB, maps onto light neutrino NSI operators!

⁸For Higgs-Neutrino relationship, see afternoon talks!

⁹See Mike's talk Wednesday and [1703.04415] for relevant (SM)EFT details; and Bibhushan's talk Wednesday for example!

Worry: Monte Carlo Resources

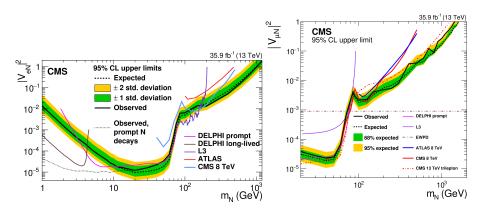
Collider Monte Carlo for Seesaws

Until 2015-16, few public codes existed to simulate Seesaws colliders:

	Pythia	ALPGEN	FeynRules ¹⁰
Dirac <i>N</i>			
Majorana N	√	√	√
Drell-Yan: LH Current		√	
Drell-Yan: RH Current	√		✓
Vector Boson Fusion			
Gluon Fusion			
Triplet Leptons/Scalars DY	√	√	√
Triplet Leptons/Scalars VBF	√		✓
Triplet Leptons/Scalars GF			

No Monte Carlo ⇒ no experimental interpretation Lack of tests tied to lack of tools!

Collider Monte Carlo for Seesaws


Now

	Pythia	ALPGEN	FeynRules ¹¹
Dirac N			√
Majorana N	√	√	√
Drell-Yan: LH Current		√	NLO
Drell-Yan: RH Current	√		NLO
Vector Boson Fusion			NLO
Gluon Fusion			LO
Triplet Leptons/Scalars DY	√	√	√/NLO
Triplet Leptons/Scalars VBF	√		√/NLO
Triplet Leptons/Scalars GF			/LO

New Monte Carlo tools \implies experimental test possible

 $^{^{11}}$ Input libraries for MadGraph, Herwig, Sherpa, WHIZARD, $^{\bullet}$ $^$

These tools now standard for LHC experiments!

Plotted: Exclusion on mixing $|V_{\ell N}|^2$ vs heavy N mass (m_N)

- (L) Search for $pp \rightarrow N\ell \rightarrow 3\ell + X$ [1802.02965]
- (R) Search for $pp \to N\ell \to \ell^{\pm}\ell^{\pm} + nj + X$ [1806.10905]

Public Libraries

Models files are being (re)written based on need / interest [feynrules.irmp.ucl.ac.be/wiki/NLOModels]

Lots more work still to do! (happy to collaborate)

Description	Contact	Reference	FeynRules model files	UFO libraries
Dark matter simplified models (more details)	K. Mawatari	⇒arXiv:1508.00564 , ⇒arXiv: 1508.05327 , ⇒arXiv: 1509.05785	-	DMsimp_UFO.2.zip
Dark Matter Gauge invariant simplified model (scalar s-channel mediator) (more details)	G. Busoni	⇒arXiv:1612.03475 , ⇒arXiv: 1710.10764 ,	-	-
Effective LR symmetric model (more details)	R. Ruiz	⇒arXiv:1610.08985	effLRSM.fr	EffLRSM UFO
GM (more details)	A. Peterson	⇒arXiv:1512.01243	-	GM_NLO UFO
Heavy Neutrino (more details)	R. Ruiz	⇒arXiv:1602.06957	heavyN.fr	HeavyN NLO UFO
Higgs characterisation (more details)	K. Mawatari	⇒arXiv:1311.1829 , ⇒ arXiv:1407.5089 , ⇒arXiv: 1504.00611	-	HC_NLO_X0_UFO.zip
Inclusive sgluon pair production	B. Fuks	⇒arXiv:1412.5589	sgluons.fr	sgluons_ufo.tgz
Pseudoscalar top-philic resonance (more details)	D.B. Franzosi	⇒ http://arxiv.org/abs/1707.06760	-	AHttbar NLO UFO
Spin-2 (more details)	C. Degrande	→ http://arxiv.org/abs/1605.09359	dm_s_spin2.fr	SMspin2 NLO UFO
Stop pair -> t tbar + missing energy	B. Fuks	⇒arXiv:1412.5589	stop_ttmet.fr	stop_ttmet_ufo.tgz
SUSY-QCD	B. Fuks	⇒arXiv:1510.00391	-	susyqcd_ufo.tgz
Two-Higgs-Doublet Model (more details)	C. Degrande	⇒arXiv:1406.3030	-	2HDM_NLO
Top FCNC Model (more details)	C. Zhang	⇒arXiv:1412.5594	TopEFTFCNC.fr	TopFCNC UFO
Vector like quarks	B. Fuks	⇒arXiv:1610.04622	VLQ_v3.fr	UFO in the 5FNS, UFO in the 4FNS, event generation scripts, coupling calculator in the LO conventions
W'/Z' model (more details)	R. Ruiz, B. Fuks	⇒arXiv:1701.05263	vPrimeNLO.fr	vPrimeNLO UFO

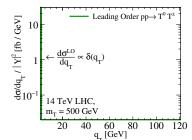
Worry: Modeling hard pp scattering

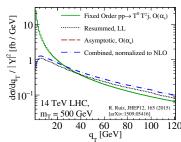
Worry: Modeling hard pp scattering

BSM@NLO?

Precision of Normalization \neq Precision of Distribution

Not all observables $\hat{\mathcal{O}}$ are well-defined (physically meaningful) when total cross section σ is known only at Born/leading order (**LO**)


Precision of Normalization \neq Precision of Distribution

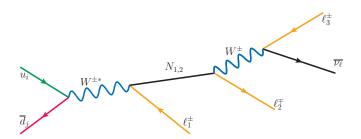

Not all observables $\hat{\mathcal{O}}$ are well-defined (physically meaningful) when total cross section σ is known only at Born/leading order (**LO**)

Ex: transverse momentum (q_T) of W/Z system in $pp \rightarrow V + X$

- ullet $q_T=0$ at Born-level and singular at $\mathcal{O}(lpha_s)$
- Lowest order q_T physical is when σ is known at NLO w/ leading log. (LL) resummation (or +PS) $\implies d\sigma/dq_T$ is LO+LL accurate

Due to color structure, also true for heavy leptons and dark γ_D/Z'

Collider Monte Carlo for Seesaws


BSM at 1-loop systematically possible [Degrande, 1406.3030]

ullet Follows OPP expansion and R_2 term expressed as Feynman rule

	Pythia	ALPGEN	FeynRules ¹²
Dirac N			√
Majorana N	√	√	✓
Drell-Yan: LH Current		√	NLO
Drell-Yan: RH Current	√		NLO
Vector Boson Fusion			NLO
Gluon Fusion			LO
Triplet Leptons/Scalars DY	√	√	√/NLO
Triplet Leptons/Scalars VBF	√		√/NLO
Triplet Leptons/Scalars GF	·		/LO

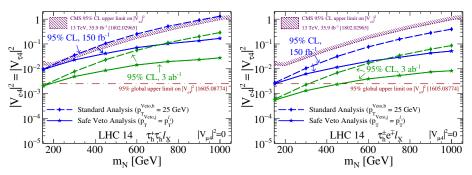
 $\textbf{BSM@NLO in QCD} \implies \textbf{jet observables at least LO+LL accurate!}$

Heavy Neutrinos and Jet Vetoes¹³

Benchmark flavor mixing scenario:

$$|V_{e4}| = |V_{\tau 4}|
eq 0$$
 and $|V_{\mu 4}| = 0$

Two complementary signal processes ($\ell_X = e, \mu, \tau_h$):

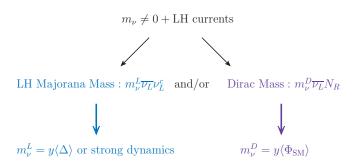

Signal I: $pp \to \tau^+ \tau^- \ell_X + \text{MET}$ and **Signal II:** $pp \to \tau^\pm e^\mp \ell_X + \text{MET}$

Benchmark flavor mixing scenario:

$$|V_{e4}| = |V_{\tau 4}|
eq 0$$
 and $|V_{\mu 4}| = 0$

Two complementary signal processes $(\ell_X = e, \mu, \tau_h)$:

Signal I: $pp \to \tau^+ \tau^- \ell_X + \text{MET}$ and Signal II: $pp \to \tau^\pm e^\mp \ell_X + \text{MET}$


- Dash = standard search with *b*-jet veto (13 TeV CMS for e/μ)
- Solid = "improved" analysis with special type of jet veto

Improved sensitivity up to $10-11\times$ with $\mathcal{L}=3$ ab at LHC 14.

Hope: New Particles Must Exists!

Keeping an Open Mind on Origin of Neutrinos Masses

Nonzero neutrino masses implies new degrees of freedom exist [Ma'98]:

 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

- New particles might be charged under new or old gauge symm., e.g., (N_R, e_R) form $SU(2)_R$ doublet and Δ_L is scalar $SU(2)_L$ triplet
- Exciting since long "to do" list in case of discovery!

I worry, a lot:

- Language we use to describe phenomena matches reality
 - Partons vs jets picture has qualitative impact
- Limitations of benchmark signatures
 - ▶ Benchmarks not designed for all parameter space regions
- Do we have the necessary tools?

Lack of clear guidance from data and theory means we must take a broad, open approach to uncovering the origin of tiny ν masses.

Hope: a community effort is working to address this

- Review on Nu Mass Models at Colliders [arXiv:1711.02180],
 Y. Cai, T. Han, T. Li, RR
- HL/HE-LHC Yellow Book Chapter on Nu Mass Modes, T. Han, T. Li, X. Marcano, S. Pascoli, RR, C. Weiland
- Other community documents, both "public" and "in preparation"

Be encouraged! More data soon!

