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Motivation



Beyond a minimal WIMP

e Spin dependent interactions only

Velocity suppression at low v

Non-SM annihilation modes

Non-minimal stabilization symmetry

Multi-component DM sector

High(er) velocity flux (i.e. boosted)



Thermal relic dark matter is slow

Nucleus Kinetic Energy O(10 KeV)




Boosted DM: “Elastic” scattering

Nucleon Kinetic Energy O (100 MeV)




Boosted DM: Inelastic scattering

Multihadron production




BDM Benchmark Models



Simple BDM models exist

/3 Dark Matter with Two component
semi-annihilation Dark Matter

XB
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First benchmark: Axial Z’

e |n addition to annihilation, there is a scattering
process that allows for detection

L o> -/ gZ’Z X (7°)x
_ZQf gzZ G (7°)ar

e As a first benchmark, take

Q,'VZO
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Note on two component case

e Two component: annihilation with Z’ with

Y X X ——vwWwwn 7/
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e Abundance of x much less than v

e Charge of ¢ floats the thermal relic abundance
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BDM Flux

13



Solar capture & detection
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Solar capture & detection

Capture

Hadron scattering
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Solar capture & detection

Annihilation
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Solar capture & detection

Rescattering

Hadron scattering
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Solar capture & detection

Detection

Hadron scattering
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DM capture: Framework

w2

C = /dV duoy (W = V)|y<y., — nyny f(u)
u

® Ox,p ~ ODD

e w/u: Velocity enhancement

e n,: Halo DM density

e ny: Solor hydrogen density (from model AGSS-09)

e f(u): DM (Boltzmann) velocity distribution at
r=o00

ii5)



DM annihilation

e DM annihilation determined by equilibrium
AN>=C—EN

e Assuming annilation o ~ pb, to > 7

e DM evaporation: DM upscattering by tail of H
thermal distribution

e Evaporation negligible for m, > 5 Gev
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DM detection rate

e Flux at Earth is given by
~ C
47 AU?
e Combining to determine the detection rate

R=®x0,,xexN,
e Detection rates accessible to kton detectors
R ~ 1 yr ‘kton™?

for accessible allowed parameter space
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BDM Monte Carlo
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A New Tool

Elastic scattering off free nucleons can be calculated

analytically

Nuclear physics at scale 250 MeV

DIS above scale 2 GeV

New Monte Carlo tool as part of GENIE
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Nuclear Effects Matter
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Courtesy of Yun-Tse Tsail!
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Fixed target kinematics primer
!/
k K X
X
p/n / X

p
p = (My,0,0,0)

X: p/n for elastic, mess of hadrons for inelastic
¢ =-Q=(p-p’ & W=k
0<Q*<4pioy & My<W<\s—M,
Inelastic can begin at v 2 1+ M, /My
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Three different processes

Elastic

Relatively easy

Needs form factor

Resonant

Dominated by A, N*
W e [1,2] GeV

Needs a model

Rein & Sehgal:
Ann.Phys.133, 79 (1981)

N{I—=—} x

Deep Inelastic

Use standard parton

model

DM beam?
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All processes could be important
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Elastic scattering

e Three form factors required to describe elastic

M = F(q*) " + Fo(q%) o ig, + Fa(q?) "~

2 My

e Assume the standard dipole form
1
(1+ @2/ M 4)°

e F1(0) constrained by charge conservation

F

e F,(0) given by anomalous magnetic moments
e F4(0) fit from data or lattice (spin form factors)
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Deep inelastic scattering

e Low W: semi-empirical Koba-Nielsen-Olesen model

e |mported from v/ data, so inaccurate

e High W: simplified Pythia model
e Treats beam remnant as a diquark
e Fragments and hadronizes final state quark-diquark pair

e Radiation not be handled correctly—relevant at high W
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Nuclear effects are important

Model large nucleus as Fermi gas with pr ~ 250 MeV

Fermi motion 3.0
2.5
2.0
%&é 15
Pauli blocking R
0.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
pPIpF
Final state interactions do do

dp — d—p,e(Pl — PF)
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Current Status of BDM in GENIE

v 2 models: fermion or scalar DM, axial Z’ coupling
v Elastic and Deep Inelastic scattering implemented
v Framework mostly set for further models

V" Integrated into GENIE v3
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Conclusions
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Conclusions

e Traditional direct detection continues to put
pressure on minimal WIMP scenarios

e Boosted dark matter models are an alternative with
signals at large volume neutrino detectors

e New Monte Carlo tools required to determine
sensitivity to BSM at fixed target experiments
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