High luminosity opportunities for BSM

Ahmed Ismail University of Pittsburgh

July 30, 2018

US ATLAS Workshop 2018

BSM

...and the LHC

Hierarchy problem

MET-based searches

Dark matter

Exotic fermions

Neutrino masses

Resonances

Baryogenesis

Mono-X

Strong CP

L-violating final states

Flavor

Higgs physics

Cosmological constant

Rare meson decays

. . .

SM precision

Outline—what can we probe at HL-LHC?

Emphasis on physics with most gains at high luminosity

Direct BSM production

 states that hide under large backgrounds or have low statistics

BSM from SM physics

- rare, exotic decays
- precision to extract indirect effects

Direct production of new states

Estimate from parton luminosity scaling: largest gains at low mass for current LHC → HL-LHC

e.g. gluino reach doesn't gain significantly after a few hundred fb-1

Improved analysis techniques

Jet substructure for low mass dijet resonances

Limits now below 100 GeV

Already used for boosted Higgs → bb

Electroweak searches for high luminosity

Motivation 1, naturalness
In SUSY Higgsino mass affects
fine-tuning at tree level

Motivation 1', naturalness
top partners charged under
different SU(3) from color, but
still under EW group
folded SUSY Burdman, Chacko, Goh,
Harnik hep-ph/0609152
quirky little Higgs Cai, Cheng,
Terning 0812.0843

Motivation 2, dark matter
Simple example of WIMP
paradigm for dark matter
(thermal masses tricky at LHC)

New electroweak states and MET

Assume:

EW multiplet odd under Z_2 symmetry, to avoid decays into SM particles that are covered by resonance searches

Q = 0 member of multiplet is lightest state, and hence invisible at colliders

Any non-trivial $SU(2)_L$ multiplet χ contains at least one charged particle

Can produce charged particle and look for decay products plus MET

Mass splitting in EW multiplets

Small mass difference from radiative corrections

$$M(\chi^{+}) - M(\chi^{0}) = \left(1 + \frac{2Y}{c_{w}}\right) \frac{\alpha_{2}}{2} M_{W} (1 - c_{w})$$

 $\approx 166 + 189(2Y) \text{ MeV}$

Extra splitting possible from EWSB (scalar: dimension 4)

$$\mathcal{L} \supset \frac{i}{\Lambda} \left(\bar{\chi} \vec{\sigma} \chi \right) \left(H^{\dagger} \vec{\sigma} H \right) \to M(\chi^{+}) - M(\chi^{0}) \sim \frac{v^{4}}{\Lambda^{2} m_{\chi}}$$

Signatures: small splitting

For mass difference well below GeV, $\chi^+ \to \chi^0 + \pi^+$ gives disappearing tracks

Insertable B-layer allows reconstruction of particles with significantly shorter lifetime, 12 cm rather than 30 cm

$$\Gamma \propto G_F^2 \Delta M^3 f_\pi^2 \sqrt{1 - \frac{m_\pi^2}{\Delta M^2}}$$

$$\tau \approx \frac{44 \text{ cm}}{n^2 - 1} \quad \text{Y = 0 } \textit{n-plet}$$

The future of disappearing track searches

Prospects for triplet increase to 0.5-0.9 TeV with full luminosity, depending on background

Han, Mukhopadhyay, Wang 1805.00015

Getting closer to beam would improve reach further

Intermediate splittings?

For mass differences between \sim 0.5-5 GeV, leptons from χ^+ decay are too soft to see in detector

But decay is prompt enough to avoid disappearing tracks!

→ alternative: go back to mono-X

searches

canonical example: EW doublets with $Y = \frac{1}{2}$

8 TeV monojet limits

 $ATLAS: m_{\chi} > 103 \, GeV \, (SR4)$

 $CMS: m_{\chi} > 73 \, \text{GeV} \, (SR5),$

Han et al., 1401.1235

Current limits comparable to LEP

Need to go beyond monojets

Future monojet sensitivity hindered by large V + jet backgrounds

Table 1: Summary of the statistical and systematic contributions to the total uncertainty on the $Z(\nu\nu)$ background.

$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) $ ightarrow$	>250	>300	>350	>400	>450	>500	>550
(1) $Z(\mu\mu)$ +jets statistical unc.	1.7	2.7	4.0	5.6	7.8	11	16
(2) Background	1.4	1.7	2.1	2.4	2.7	3.2	3.9
(3) Acceptance	2.0	2.1	2.1	2.2	2.3	2.6	2.8
(4) Selection efficiency	2.1	2.2	2.2	2.4	2.7	3.1	3.7
(5) R _{BF}	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Total uncertainty (%)	5.1	5.6	6.6	7.9	9.9	13	18

CMS, 1408.3583

Current background errors smaller, still above 2%

Exclusive Signal Region	EM2	EM4	EM6	EM8	EM9
Observed events (36.1 fb ⁻¹)	67475	27843	2975	512	223
SM prediction	67100 ± 1400	27640 ± 610	2825 ± 78	463 ± 19	213 ± 9

ATLAS, 1711.03301

Multiple systematics: jet quality, pile-up, shower modelling, PDFs each near 1%

Photon final-state radiation

Even if χ^+ decays promptly and invisibly, it can still produce electroweak radiation

Take advantage of photon radiation by boosting

In monojet events with $p_{\tau}(j) > m_{_{\chi}}$, jet recoils against missing energy

+ any radiation x^{\pm} x^{0} Al, Izaguirre, Shuve 1605.00658

Pay statistical price of α for radiation, but benefit from low backgrounds and extra kinematic handle in γ + j + MET

Limits – electroweak doublet

Adding photon to monojet final state helps, improving search that is independent of model-dependent mass splitting

Photon + jet + MET

Monojet

Combination

Solid: 5% systematics

Dashed: 2% systematics

Probing BSM with SM precision

Higgs measurements: see Dorival's talk

EW gauge boson production

	\int " γ " $t \rightarrow Zu$	" σ " t → Zu
Reference	$4.3 \cdot 10^{-5}$	$4.3 \cdot 10^{-5}$

Top physics

Z physics

Layout	Set	t→Hu	t→Hc	t→Hu+Hc
Deference	A	$2.4 \cdot 10^{-4}$	$2.0\cdot 10^{-4}$	$1.1 \cdot 10^{-4} \\ 1.1 \cdot 10^{-4}$
Reference	В	$2.4 \cdot 10^{-4}$	$2.0 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$

Jets

ATL-PHYS-PUB-2016-019

Rare top decays

High energy measurements of α_s constrain running, probing new colored states

Becciolini et al. 1403.7411

Z bosons at high luminosity

2 × 10⁷ Z bosons recorded at LEP, all experiments and decays

HL-LHC: 5×10^9 leptonic Z events per detector

Opportunity to probe rare decays and subtle new physics effects

Rare Z decays

First observed with 13 TeV data with BR $\sim 10^{-6}$

Still not seen: $Z \rightarrow \ell^+ \ell^- \gamma$

OPAL BR bound $< 5-6 \times 10^{-4}$

Future: radiative decay as background AI and Katz 1712.01840

More with SM processes: limiting general NP

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

B, L conservation, MFV → 59 independent dim. 6 operators

Higher dimension operators grow with energy

Look for interference with SM

LHC is already competitive see Chris's talk

Interference suppression

SM and BSM give different helicities for any $2 \rightarrow 2$ process involving a transverse V

Channel	SM	BSM_6
++++	ε_V^4	$arepsilon_V^0$
+++-	ε_V^2	ε_V^0
++	$arepsilon_V^0$	$arepsilon_V^2$
${+\frac{1}{2}-\frac{1}{2}++}$	$arepsilon_V^2$	$arepsilon_V^0$
$+\frac{1}{2}-\frac{1}{2}+-$	$arepsilon_V^0$	ε_V^2
$+\frac{1}{2}-\frac{1}{2} 0 +$	$arepsilon_V^1$	$arepsilon_V^1$
$\frac{+\frac{1}{2}-\frac{1}{2}\ 0\ 0}{}$	$arepsilon_V^0$	$arepsilon_V^0$

Channel	SM	BSM_6		
0+++	$arepsilon_V^3$	$arepsilon_V^1$		
0 + + -	$arepsilon_V^1$	$arepsilon_V^1$		
$0 \ 0 + +$	$arepsilon_V^2$	ε_V^0		
$0 \ 0 + -$	$arepsilon_V^0$	$arepsilon_V^2$		
$0\ 0\ 0\ +$	$arepsilon_V^1$	$arepsilon_V^1$		
$0\ 0\ 0\ 0$	ε_V^0	ε_V^0		
$\epsilon_V = m_V/\sqrt{s}$				

Azatov, Contino, Machado, Riva 1607.05236

$$0 = V_{L}, \phi$$

+, - = V_{T}
+\frac{1}{2}, -\frac{1}{2} = \psi

e.g. in W_TW_T and W_TW_L production, interference between SM and EFT does not grow with E Baglio, Dawson, Lewis 1708.03332

Restoring interference

Intermediate particles with different helicities interfere

Use azimuthal angles to disentangle full $2 \rightarrow 4$

Azatov, Elias-Miro, Reyimuaji, Venturini 1707.08060 Panico, Riva, Wulzer 1708.07823

Go beyond LO

Originally used to probe G³ operator in 3-jet events Dixon and Shadmi hep-ph/9312363

Example – W³ in Z decay at NLO

Suppressed interference in $q q \rightarrow W W$

No tree level contribution, but appears at one loop Dawson and Al 1808.xxxxx

Z 2-point function

also: Z-photon mixing

loop correction

NLO Z decay in SMEFT

Keep only HWB and W³ operators for simplicity

Input parameters G_F , M_W , M_Z , M_H , M_t

HWB operator gets contribution from W³ operator at one loop

$$\mathcal{O}_{HWB} = H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$$
$$\mathcal{O}_W = \epsilon_{abc} W^{\nu a}_{\mu} W^{\rho b}_{\nu} W^{\mu c}_{\rho}$$

W 2-point function

affects input parameter M_w

Renormalize with MS-bar scheme for EFT operators, on shell scheme for SM parameters

 $\Lambda=1\;\text{TeV}$ 0.04 0.02 Z pole measurements improve on limits 0.00 from WW production -0.02 ■ S □ LHC Run I VV Full LEP Z pole -0.04-2 -42 4 C_W

NLO in Drell-Yan

Gauge boson operators at one loop also affect q q $\rightarrow \ell \ell$, $\ell \nu$

Take advantage of interference increasing with energy

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{W}{4m_W^2} \left(D_\rho W_{\mu\nu}^a \right)^2$$
$$- \frac{Y}{4m_W^2} \left(\partial_\rho B_{\mu\nu} \right)^2$$

Farina et al., 1609.08157

Summary

High luminosity offers probes of new physics that is often different from what was tested in Runs 1 and 2

Analysis and detector improvements can increase reach more than expected

EW BSM: can probe genuinely new space using HL, depending on systematics

SM processes: lots of data gives possibilities to probe rare decays and do precision studies

Backup

Signatures: large splitting

For several GeV mass splittings, can still use leptons from $\chi^+ \rightarrow \chi^0 + W^*$

Schwaller and Zurita, 1312.7350; Han et al., 1401.1235; Low and Wang, 1404.0682

Multiple states also give leptons from off-shell Z

Standard example: gaugino sector of MSSM

Photon + jet + MET search

Trigger on hard jet and missing energy, then look for soft photon (15 GeV) with small angular separation from MET

Backgrounds: $Z + \gamma + j$, $W + \gamma + j$, tops, QCD fakes

Require photon $m_T > m_W$, $p_T(j_1)$ / MET > 0.5; optimize other cuts

125 GeV Higgsino

Z, W backgrounds

Future: radiative decay as background

New GeV-scale U(1)' with mixed anomaly with SM

Lepton-jet search at low mass

Al and Katz 1712.01840

29

Constraining SMEFT operators

Fit to EWPO, LHC diboson and Higgs data shows where LHC bounds already compete with those from LEP

Ellis, Murphy, Sanz, You 1803.03252