

US ATLAS Workshop Pittsburgh - 07.30.2018

SM could be valid all the way to exponentially high scales

Maybe solutions to naturalness problem, DM... have taken a more subtle incarnation

Many exciting opportunities ahead!!!

Directly Measuring ttH

ttH channel observation:

 6.3σ observed $(5.1\sigma$ expected) – ATLAS 5.2σ observed $(4.2\sigma$ expected) – CMS

Dorival Gonçalves

Expected precisions:

Scenario I: systematic uncertainties same as now

Scenario II: theoretical uncertainty divided by 1/2 and systematic by 1/sqrt(L)

Directly Measuring ttH

ttH channel observation:

 6.3σ observed $(5.1\sigma$ expected) – ATLAS 5.2σ observed $(4.2\sigma$ expected) – CMS

Can we go beyond and directly measure Higgs-top CP structure at the LHC?

$$\mathcal{L} \supseteq -rac{m_t}{v} K ar{t} \left(\coslpha + i \gamma_5 \sinlpha
ight) t \; H$$

Buckley, DG (PRL-2015), Lopez-val, DG (2016) J. Ellis, Hwang, Sakurai, Takeuchi (2014) Boudjemaa, Godbole, Guadagnoli,Mohan (2015)

CPV - collider constraints

• At LHC CPV HVV interaction is already extensively tested (clean target H>4leptons)

Gritsan, Melnikov Schulze, et al (2013)

$$\mathcal{L}_0 = g_1^{(0)} H V_\mu V^\mu - \frac{g_2^{(0)}}{4} H V_{\mu\nu} V^{\mu\nu} - \frac{g_3^{(0)}}{4} A V_{\mu\nu} \widetilde{V}^{\mu\nu}$$

While CP-odd HVV is loop suppressed, CP-odd Hff can manifest at tree-level:

- Mixture possible in some models, e.g., 2HDM
- Not excluded from Higgs measurements

$$\mathcal{L} \supset -\frac{m_f}{v} Kh\bar{f}(\cos\alpha + i\gamma_5\sin\alpha)f$$

CPV - EDM constraints

Dorival Gonçalves

Pittsburgh - 07.30.2018

Proposal looking only at the signal and at parton level via angular correlations

J. Ellis, Hwang, Sakurai, Takeuchi (2014); Boudjemaa, Godbole, Guadagnoli, Mohan (2015)

 $\Delta \phi_{ll} = sign[\vec{p_t}.(\vec{p_{l^-}} \times \vec{p_{l^+}})] arccos[|(\hat{\vec{p_{l^+}}} \times \hat{\vec{p_t}}).(\hat{\vec{p_{l^-}}} \times \hat{\vec{p_t}})|]|_{t\bar{t}}$

Analogous situation to correlated vs uncorrelated top decays

Parke, Mahlon (1996,2010)

Proposal looking only at the signal and at parton level via angular correlations

J. Ellis, Hwang, Sakurai, Takeuchi (2014); Boudjemaa, Godbole, Guadagnoli, Mohan (2015)

$$\Delta \phi_{ll} = sign[\vec{p}_t.(\vec{p}_{l^-} \times \vec{p}_{l^+})] arccos[|(\hat{\vec{p}}_{l^+} \times \hat{\vec{p}}_t).(\hat{\vec{p}}_{l^-} \times \hat{\vec{p}}_t)|]|_{t\bar{t}}$$

Analogous situation to correlated vs uncorrelated top decays Parke, Mahlon (1996,2010)

$$\mathcal{L} \supseteq -rac{m_t}{v} K ar{t} \left(\cos lpha + i \gamma_5 \sin lpha
ight) t \; H$$

Spin correlations of top and anti-top affected by nature of interaction $\Delta \phi_{tt}$ distribution directly reflects on $\Delta \phi_{ll}$:

Parke, Mahlon (2010) $\mathcal{L} \supseteq -rac{m_t}{v} K \overline{t} \left(\cos lpha + i \gamma_5 \sin lpha
ight) t H$ 0.55□ $\sigma_{H\, \underline{\overline{t}}_i t_i}$ 40 $0^{+}\ \overline{t}t_{LL+RR}$ $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi_{u}}$ 0⁺ tt tt_{II+BB} $\frac{d\sigma}{d\Delta \phi_{...}}$ [fb] 0.5 $0^+ \bar{t}t_{IR+RL}$ $-0^{\overline{}}$ tt ŧt^{LR+RL} 35 0⁻ tt_{LL+RR} 0 ītt_{LL+RR} 0.8 0.45 0⁻ Ītt_{LR+RL} $0^{-} \bar{t}t_{LR+RL}$ 30 0.4 Lab-frame 0.6 25 0.35 0.3 20 0.4 0.25 15 0.2 Lab-frame p_>10 GeV 10 0.2 1.5 $\sigma_{0^{-}tt}/\sigma_{0^{+}tt}$ p____200 GeV 0.5^L 100 200 300 400 2 3 2 p_{T.H} [GeV] $\Delta \phi_{...}$ $\Delta \phi_{**}$ Top mass effects in presence of a further massive H boson pushes chiral limit to higher scales $\mathcal{M}_{0^- t \bar{t}_{LR+RL}} \propto \cos\left(\frac{\Delta \phi_{tt}}{2}\right)$ $\mathcal{M}_{0^+ t \bar{t}_{LR+RL}} \propto \sin\left(\frac{\Delta \phi_{tt}}{2}\right)$

Dorival Gonçalves

Buckley, DG (PRL-2015) Pittsburgh - 07.30.2018

Spin correlations of top and anti-top affected by nature of interaction $\Delta \phi_{tt}$ distribution directly reflects on $\Delta \phi_{ll}$:

Boosted Higgs (pTH>200GeV) nicely match with H>bb BDRS algorithm

Buckley, DG (PRL-2015)

Plehn, Salam, Spannowsky (2009)

Dorival Gonçalves

Pittsburgh - 07.30.2018

Spin correlations of top and anti-top affected by nature of interaction $\Delta \phi_{tt}$ distribution directly reflects on $\Delta \phi_{ll}$:

Parke, Mahlon (2010)

Multivariate analysis problem

Rich final state with many more relevant observables:

 \rightarrow New powerful observables can be defined at tt CM frame, e.g, θ^*

At the HL-LHC, we can probe the top Yukawa CP up to cosα=0.7 DG, Kong, Kim (2018)

Gritsan, Rontsch, Schulze, Xiao (2016); Amor dos Santos et al. (2017)

Dorival Gonçalves

Pittsburgh - 07.30.2018

Hidden states could show up in the scale dependence of Higgs couplings, or more broadly in Higgs production processes through quantum corrections

Off-shell Higgs carries information on the H couplings at different energy scales

$$\sigma_{\rm on} \propto \frac{g_i^2(m_h^2)g_f^2(m_h^2)}{m_h\Gamma_h}$$

Hidden states could show up in the scale dependence of Higgs couplings, or more broadly in Higgs production processes through quantum corrections

Off-shell Higgs carries information on the H couplings at different energy scales

Just recently, we start to recognize the importance of the Off-Shell Higgs since $\Gamma_H/m_H \sim 3 \times 10^{-5}$ one naively expects very small off-shell rates

However, at least 15% of the $H \rightarrow 4l$ cross-section comes from $m_{4l} > 300$ GeV

Spectacular fail of Narrow Width Approximation

Interference with background: $gg \rightarrow h^* \rightarrow ZZ$ with $gg \rightarrow ZZ$;

ZZ Threshold;

and top mass effects change our naive expectation

Carries information on the Higgs couplings at different energy scales

Case study I: Weakly Coupled Scenario RG Evolution

Alves, Galloway, Ruderman, Walsh (2014); Berger, Nadolsky, Olness, Pumplin (2004); Sannino, Spanno et al. (2014)

Can we use the off-shell Higgs to probe BSM deviations on the running of H couplings?

$$\sigma_{\rm on} \propto \frac{g_i^2(m_h^2)g_f^2(m_h^2)}{m_h\Gamma_h}$$

 $\sigma_{\rm off} \propto \frac{g_i^2(Q^2)g_f^2(Q^2)}{Q^2}$

DG, Han, Mukhopadhyay (2018) Pittsburgh - 07.30.2018

Case study I: Weakly Coupled Scenario RG Evolution

Case study I: Weakly Coupled Scenario RG Evolution

$$\mathcal{L} \supset \partial_\mu S \partial^\mu S^* - \mu^2 |S|^2 - \lambda_S |S|^2 |H|^2$$
 with \mathcal{Z}_2 symmetry

The Higgs may serve as a "portal" to a "Hidden sector"

Pittsburgh - 07.30.2018

$$\mathcal{L}\supset \partial_\mu S\partial^\mu S^*-\mu^2|S|^2-\lambda_S|S|^2|H|^2$$
 with \mathcal{Z}_2 symmetry

Separably renormalizable and gauge-invariant subset

Corrections are also at $\delta\sigma^{NLO}_{gg
ightarrow 4l} \propto \lambda_S^2~$ order

DG, Han, Mukhopadhyay (PRL-2017)

Dorival Gonçalves

Pittsburgh - 07.30.2018

$$\mathcal{L} \supset \partial_{\mu}S\partial^{\mu}S^* - \mu^2|S|^2 - \lambda_S|S|^2|H|^2$$
 with \mathcal{Z}_2 symmetry

New states could have a direct connection to Naturalness: $\delta M_h^2 = rac{1}{16\pi^2} (\lambda_S - 2N_c y_t^2) \Lambda^2$

If $\lambda_S(\Lambda^2) = 6y_t^2(\Lambda^2)$ singlet is like stop Alleviate the "little hierarchy" problem

DG, Han, Mukhopadhyay (PRL-2017) Pittsburgh - 07.30.2018

Dorival Gonçalves

$$\mathcal{L} \supset \partial_\mu S \partial^\mu S^* - \mu^2 |S|^2 - \lambda_S |S|^2 |H|^2$$
 with \mathcal{Z}_2 symmetry

New states could have a direct connection to Naturalness:

 $\delta M_h^2 = \frac{1}{16\pi^2} (\lambda_S - 2N_c y_t^2) \Lambda^2$

If $\lambda_S(\Lambda^2) = 6y_t^2(\Lambda^2)$ singlet is like stop Alleviate the "little hierarchy" problem

Scalar singlet presents connections to DM & EW baryogenesis (1st order phase transition) J. McDonald (2007); C.P. Burgess et al. (2000) Batell, Gori, Wang (2011)...

```
Works for the maximally hidden scenario!
```


DG, Han, Mukhopadhyay (PRL-2017) Pittsburgh - 07.30.2018

The Higgs boson is a new particle type. Likely a portal to new physics!

- Analogously to the Higgs-top signal strength measurement, ttH provides a direct probe Higgs-top CP-structure. Relevant target for the forthcoming experimental analyses
- Off-shell Higgs can provide an important probe to new physics. Hidden states could appear in the scale dependency of Higgs couplings:
 - Weakly couple running (RGE): Extra dimension ____ asymptotically power law running!
- New probe to the maximally hidden Higgs portal scenario. May display connections to hierarchy problem, DM...

Thank you for your attention!

Dorival Gonçalves

Pittsburgh - 07.30.2018