STANDARD MODEL EFFECTIVE FIELD THEORY: NEW PHYSICS THROUGH PRECISION MEASUREMENTS

CHRIS HAYS, OXFORD UNIVERSITY

US ATLAS WORKSHOP 30 JULY 2018

OVERVIEW

• **QFT** interferometry and the SMEFT

• Global fit strategy

Observables

• Fit results

INTERFEROMETRY

Interference provides unique sensitivity to small effects (cf. gravity waves)

Non-relativistic QM example: double-slit experiment (or how to discover a pinhole)

QFT INTERFEROMETRY

Interference provides unique sensitivity to small effects (e.g. non-SM interactions)

QFT example: ttH production

JHEP 10 (2016) 123

SCALE SEPARATION

A Sta	FLAS Exotics tus: July 2018	Search	es* -	95%	6 CL	Upper Exclusion Limits	[£ dt =	ATL (3.2 – 79.8) fb ⁻¹	AS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	^{b-1}] Limit	J -	` ,	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-2j$ $\geq 2j$ $\geq 3j$ $-$ el $\geq 1 b, \geq 1J/2$ $\geq 2 b, \geq 3j$	Yes - - - - 2j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	М _D M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass g _{KK} mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 8.2 TeV 9.55 Te 4.1 TeV 2.3 TeV 3.8 TeV	n = 2 n = 3 HLZ NLO n = 6 $n = 6$, $M_D = 3$ TeV, rot BH $n = 6$, $M_D = 3$ TeV, rot BH $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ Z' \to bb \\ \mathrm{Leptophobic}\ Z' \to \ell\nu \\ \mathrm{SSM}\ W' \to \ell\nu \\ \mathrm{SSM}\ W' \to \tau\nu \\ \mathrm{HVT}\ V' \to WV \to qqqq \ \mathrm{mode} \\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{model}\ \mathrm{B} \\ \mathrm{LRSM}\ W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 1 \ B \\ 0 \ e, \mu \\ \end{array}$ multi-channe multi-channe	- 2 b ≥ 1 b, ≥ 1J/2 - 2 J el el	- - Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass W' mass	4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.15 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
DM	Axial-vector mediator (Dirac DN Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM)	1) 0 e, μ DM) 0 e, μ 0 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$	Yes Yes Yes	36.1 36.1 3.2	mmed 1.55 mmed 1.6 M. 700 GeV	i TeV 57 TeV	$\begin{split} g_q = 0.25, g_\chi = 1.0, m(\chi) &= 1 \; \text{GeV} \\ g = 1.0, m(\chi) &= 1 \; \text{GeV} \\ m(\chi) &< 150 \; \text{GeV} \end{split}$	1711.03301 1711.03301 1608.02372
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow \mathit{Ht}/\mathit{Zt}/\mathit{Wb} + X \\ VLQ\;\mathit{BB} \rightarrow \mathit{Wt}/\mathit{Zb} + X \\ VLQ\;\mathit{T_{5/3}}T_{5/3} \rightarrow \mathit{Wt} + X \\ VLQ\;\mathit{Y} \rightarrow \mathit{Wb} + X \\ VLQ\;\mathit{Y} \rightarrow \mathit{Wb} + X \\ VLQ\;\mathit{B} \rightarrow \mathit{Hb} + X \\ VLQ\;\mathit{QQ} \rightarrow \mathit{WqWq} \end{array} $	multi-channe multi-channe $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el $\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 4 \text{ j}$	Yes Yes Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 T B mass 1.34 T T _{5/3} mass 1.6 Y mass 1.6 B mass 1.21 TeV Q mass 690 GeV	eV eV i4 TeV TeV /	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-XXX 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j - -	- - - -	37.0 36.7 36.1 20.3 20.3	q* mass q* mass b* mass t* mass v* mass 1.	6.0 TeV 5.3 TeV 2.6 TeV 3.0 TeV 6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$ \frac{1 \ e, \mu}{2 \ e, \mu} \\ 2,3,4 \ e, \mu (St \\ 3 \ e, \mu, \tau \\ 1 \ e, \mu \\ - \\ - \\ \sqrt{s} = 8 \ TeV $	≥ 2 j 2 j S) - 1 b - - -	Yes - Yes - - TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 560 GeV N ⁰ mass 870 GeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 Ti 10 ⁻¹ 1	2.0 TeV	$m(W_R) = 2.4 \text{ TeV, no mixing}$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
						10 1		' Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

EFFECTIVE FIELD THEORY

For new processes at a large scale Λ , the new interactions can be approximated by a Lagrangian with **effective operators** containing only **SM fields** and expanded in inverse powers of Λ , i.e. an **effective field theory**

Processes are described by transition amplitudes derived from the action

A Lagrangian density with dimension m⁴ defines interactions

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \mathcal{L}_8 + \cdots$$

 $\mathcal{L} d^4 x$

S =

The Standard Model effective field theory (SMEFT): The Lagrangian respects SM gauge symmetries, SU(3) x SU(2) x U(1) The fields are in the multiplets defined by the SM

SMEFT OPERATORS

 \mathcal{L}_5 One operator violating lepton number conservation

C_6	76 operators conserving baryon number
	(one generation)
	2499 operators for three generations
	4 operators violating baryon number

- \mathcal{L}_7 30 operators violating B or L, and B-L
- \$\mathcal{L}_8\$
 993 operators (one generation)
 44807 operators for three generations

Separate dimension-6 operators into classes

Define a nearly flavour-universal scenario with a handful of third generation operators

vatio	on							
	$1: X^3$	2:1	H^6		$3:H^4$	D^2	5	: $\psi^2 H^3$ + h.c.
Q_G $Q_{\tilde{G}}$ Q_W	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $\epsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$	$Q_H \mid (I$	$(H^{\dagger}H)^3$	$Q_{H\square}$ Q_{HD}	$(H^{\dagger}H)$ $(H^{\dagger}D_{\mu}H)$	$(H^{\dagger}H) \square (H^{\dagger}H)$ $(H^{\dagger}D_{\mu})^{*} (H^{\dagger}D_{\mu})$	$\begin{array}{c} Q_{eH} \\ H \end{pmatrix} \qquad Q_{uH} \\ Q_{uH} \end{array}$	$ \begin{vmatrix} (H^{\dagger}H)(\bar{l}_{p}e_{r}H) \\ (H^{\dagger}H)(\bar{q}_{p}u_{r}\hat{H}) \\ (H^{\dagger}H)(\bar{q}_{r}d_{r}H) \end{vmatrix} $
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	6	. al. ² V I	Itha			₹aH	(II II)(<i>qpa</i> _{<i>r</i>} II)
<i>Q</i> _{<i>HG</i>} <i>Q</i> _{<i>HĞ</i>} <i>Q</i> _{<i>HW</i>} <i>Q</i> _{<i>HW</i>} <i>Q</i> _{<i>HB</i>} <i>Q</i> _{<i>HW</i>}	$ \begin{array}{c} H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu} \\ H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} \\ H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \\ H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu} \\ H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \\ H^{\dagger}HB_{\mu\nu}B^{\mu\nu} \\ H^{\dagger}HB_{\mu\nu}B^{\mu\nu} \\ H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu} \\ H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu} \end{array} $	Q_{eW} Q_{eB} Q_{uG} Q_{uW} Q_{uB} Q_{dG} Q_{dW} Q_{dB}	$(\bar{l}_{p}\sigma^{\mu\nu})$ $(\bar{l}_{p}\sigma^{\mu\nu})$ $(\bar{q}_{p}\sigma^{\mu\nu})$ $(\bar{q}_{p}\sigma^{\mu\nu})$ $(\bar{q}_{p}\sigma^{\mu\nu})$ $(\bar{q}_{p}\sigma^{\mu\nu})$ $(\bar{q}_{p}\sigma^{\mu\nu})$	$e_r)\tau^I HV$ $e_r)HB_{\mu}$ $T^A u_r)\tilde{H}$ $u_r)\tau^I \tilde{H} V$ $v^{\nu} u_r)\tilde{H} B$ $T^A d_r)H$ $d_r)\tau^I H V$	$V^{I}_{\mu u}$ $W^{I}_{\mu u}$ $V^{I}_{\mu u}$ $G^{A}_{\mu u}$ $V^{I}_{\mu u}$ $V^{I}_{\mu u}$ μu	$Q_{Hl}^{(1)}$ $Q_{Hl}^{(3)}$ Q_{He} $Q_{Hq}^{(1)}$ $Q_{Hq}^{(3)}$ Q_{Hq} Q_{Hu} Q_{Hd} Q_{Hud} + h.c	$(H^{\dagger}i\overrightarrow{D}_{\mu})$	$\mu H)(\bar{l}_{p}\gamma^{\mu}l_{r})$ $H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ $\mu H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $\mu H)(\bar{q}_{p}\gamma^{\mu}q_{r})$ $H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ $\mu H)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $\mu H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
	$8:(ar{L}L)(ar{L}L)$		8:($\bar{R}R)(\bar{R}R$)		$8:(\bar{L}L)(\bar{R})$	R)
$egin{aligned} Q_{ll} \ Q_{qq}^{(1)} \ Q_{qq}^{(3)} \ Q_{lq}^{(3)} \ Q_{lq}^{(3)} \ Q_{lq}^{(3)} \ Q_{lq}^{(3)} \ Q_{lq}^{(3)} \end{aligned}$	$\begin{split} &(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)\\ &(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)\\ &(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t) \end{split}$	Q_{ee} Q_{uu} Q_{dd} Q_{eu} Q_{ed} $Q_{ud}^{(1)}$ $Q_{ud}^{(8)}$	(\bar{e}) (\bar{u}) (\bar{d}) (\bar{e}) (\bar{e}) (\bar{u}) (\bar{u}) (\bar{u})	$p_{p}\gamma_{\mu}e_{r})(ar{e})$ $p_{p}\gamma_{\mu}u_{r})(ar{u})$ $p_{p}\gamma_{\mu}d_{r})(ar{d})$ $p_{p}\gamma_{\mu}e_{r})(ar{u})$ $p_{p}\gamma_{\mu}e_{r})(ar{d})$ $p_{p}\gamma_{\mu}u_{r})(ar{d})$	$s\gamma^{\mu}e_{t})$ $s\gamma^{\mu}u_{t})$ $s\gamma^{\mu}d_{t})$ $s\gamma^{\mu}d_{t})$ $s\gamma^{\mu}d_{t})$ $s\gamma^{\mu}d_{t})$ $s\gamma^{\mu}T^{A}d_{t})$	$egin{aligned} Q_{le} & & \ Q_{lu} & & \ Q_{ld} & & \ Q_{qe} & & \ Q_{qu}^{(1)} & & \ Q_{qu}^{(8)} & & \ Q_{qu}^{(1)} & & \ Q_{du}^{(1)} & & \ Q$	$\begin{split} (\bar{l}_p \gamma_\mu l_r)((\bar{l}_p \gamma_\mu l_r))(\bar{l}_p \gamma_\mu l_r)(\bar{l}_p \gamma_\mu l_r)(\bar{l}_p \gamma_\mu l_r)(\bar{l}_p \gamma_\mu q_r)(\bar{l}_p \gamma_\mu q_r)(\bar{l}_p \gamma_\mu q_r)(\bar{l}_p \gamma_\mu T^A q_r)(\bar{l}_p \gamma_\mu q_r))$	$ar{e}_s \gamma^\mu e_t) \ ar{u}_s \gamma^\mu u_t) \ ar{d}_s \gamma^\mu d_t) \ ar{d}_s \gamma^\mu e_t) \ ar{u}_s \gamma^\mu u_t) \ ar{d}_s \gamma^\mu e_t) \ ar{u}_s \gamma^\mu u_t) \ ar{u}_s \gamma^\mu u_t) \ ar{u}_s \gamma^\mu u_t) \ ar{u}_s \gamma^\mu t^A u_t) \ ar{d}_s \gamma^\mu d_t)$
to ~	30 operato	ors	(<i>~p</i> /µ		= =	$\left \begin{array}{c} Q_{qd}^{(8)} \\ Q_{qd}^{(8)} \end{array} \right $	$(\bar{q}_p \gamma_\mu T^A q_r)($	$\bar{d}_s \gamma^\mu T^A d_t)$
ıt	$\frac{8:(LR)}{Q_{ledq}}$	$\frac{\partial (RL) + h}{(\bar{l}_p^j e_r)(\bar{d}_s q)}$	$\frac{c.}{t_j} = \frac{c}{c}$	$\frac{8:(}{2^{(1)}_{quqd}}$	$\frac{LR)(LR)}{(\bar{q}_p^j u_r)\epsilon_j}$ $\bar{q}_p^j T^A u_r)\epsilon_j$	+ h.c. $_{k}(\bar{q}_{s}^{k}d_{t})$ $_{k}(\bar{q}_{s}^{k}T^{A}d_{t})$	- 1610 Sec	.07922, . III.2.3

 $Q_{lequ}^{(1)}$

 $Q_{lequ}^{(3)}$

 $(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$

 $(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$

At LO most top/EW/Higgs processes are sensitive to ~30 operator Similar to the number of parameters in a PDF fit $\frac{8:(\bar{L}R)(\bar{L}R)}{2}$

7

NEW PHYSICS

A given resonance can map to a large number of parameters at LO

and share and		
Fields	Operators	Fields Operators
N	$\mathcal{O}_{z} \mathcal{O}^{(1)} \mathcal{O}^{(3)}$	$\mathcal{B} \qquad \mathcal{O}_{ll}, \mathcal{O}_{qq}^{(1)}, \mathcal{O}_{lq}^{(1)}, \mathcal{O}_{ee}, \mathcal{O}_{dd}, \mathcal{O}_{uu}, \mathcal{O}_{ed}, \mathcal{O}_{eu}, \mathcal{O}_{ud}^{(1)}, \mathcal{O}_{le}, \mathcal{O}_{ld}, \mathcal{O}_{lu}, \mathcal{O}_{qe}, \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qd}^{(1)}, $
1.	JHEP 03 (2018) 109	$\mathcal{O}_{\phi D}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}, \mathcal{O}_{\phi l}^{(1)}, \mathcal{O}_{\phi q}^{(1)}, \mathcal{O}_{\phi e}, \mathcal{O}_{\phi d}, \mathcal{O}_{\phi u}$
E	$\mathcal{O}_{e\phi}, \mathcal{O}_{eB}, \mathcal{O}_{\phi l}^{(1)}, \mathcal{O}_{\phi l}^{(3)}$	$\mathcal{B}_1 \qquad \mathcal{O}_{\phi 4}, \mathcal{O}_{ud}^{(1)}, \mathcal{O}_{ud}^{(8)}, \mathcal{O}_{\phi}, \mathcal{O}_{\phi D}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}, \mathcal{O}_{\phi ud} $
Λ_1	Oct. O.R. Ocw. Occ	$\mathcal{W} \qquad \mathcal{O}_{\phi 4}, \mathcal{O}_{ll}, \mathcal{O}_{qq}^{(3)}, \mathcal{O}_{lq}^{(3)}, \mathcal{O}_{\phi}, \mathcal{O}_{\phi D}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}, \mathcal{O}_{\phi l}^{(3)}, \mathcal{O}_{\phi q}^{(3)}$
-1		$\mathcal{W}_1 = \mathcal{O}_{\phi 4}, \mathcal{O}_{\phi}, \mathcal{O}_{\phi D}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}$
Δ_3	$\mathcal{O}_{e\phi}, \mathcal{O}_{\phi e}$	$\mathcal{G} = \mathcal{O}_{qq}^{(1)}, \mathcal{O}_{qq}^{(3)}, \mathcal{O}_{dd}, \mathcal{O}_{uu}, \mathcal{O}_{ud}^{(8)}, \mathcal{O}_{qu}^{(8)}, \mathcal{O}_{qd}^{(8)}$
Σ	$\mathcal{O}_5, \mathcal{O}_{e\phi}, \mathcal{O}_{\phi l}^{(1)}, \mathcal{O}_{\phi l}^{(3)}$	$\mathcal{G}_1 = \mathcal{O}_{ud}^{(1)}, \mathcal{O}_{ud}^{(8)}$
∇	$\mathcal{O} = \mathcal{O} = \mathcal{O}^{(1)} \mathcal{O}^{(3)}$	$\mathcal{H} = \mathcal{O}_{qq}^{(1)}, \mathcal{O}_{qq}^{(3)}$ (1) (2) (1) (2) (1) (1) (1)
\angle_1	$\mathcal{O}_{e\phi}, \mathcal{O}_{eW}, \mathcal{O}_{\phi l}, \mathcal{O}_{\phi l}$	$\mathcal{L}_1 = \mathcal{O}_{\phi 4}, \mathcal{O}_{y^e}, \mathcal{O}_{y^d}, \mathcal{O}_{y^u}, \mathcal{O}_{le}, \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qu}^{(8)}, \mathcal{O}_{qd}^{(1)}, \mathcal{O}_{qd}^{(8)}, \mathcal{O}_{ledq}, \mathcal{O}_{quqd}^{(1)}, \mathcal{O}_{lequ}^{(1)},$
U	$\mathcal{O}_{u\phi}, \mathcal{O}_{uB}, \mathcal{O}_{uG}, \mathcal{O}_{\phi q}^{(1)}, \mathcal{O}_{\phi q}^{(3)}$	$\mathcal{O}_{\phi}, \mathcal{O}_{\phi D}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{\phi B}, \mathcal{O}_{\phi \tilde{B}}, \mathcal{O}_{\phi W}, \mathcal{O}_{\phi \tilde{W}}, \mathcal{O}_{\phi WB}, \mathcal{O}_{\phi W\tilde{B}}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}, $
D	$\mathcal{O}_{d\phi}, \mathcal{O}_{dB}, \mathcal{O}_{dC}, \mathcal{O}_{d}^{(1)}, \mathcal{O}_{d}^{(3)}$	$\mathcal{O}_{eB}, \mathcal{O}_{eW}, \mathcal{O}_{dB}, \mathcal{O}_{dW}, \mathcal{O}_{uB}, \mathcal{O}_{uW}, \mathcal{O}_{\phi l}^{(1)}, \mathcal{O}_{\phi l}^{(3)}, \mathcal{O}_{\phi q}^{(1)}, \mathcal{O}_{\phi q}^{(3)}, \mathcal{O}_{\phi e}, \mathcal{O}_{\phi d}, \mathcal{O}_{\phi u}$
2	$\mathcal{O}_{u\phi}, \mathcal{O}_{uB}, \mathcal{O}_{uG}, \mathcal{O}_{\phi q}$	$\mathcal{L}_3 \mathcal{O}_{le}$
Q_1	$\mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}, \mathcal{O}_{dB}, \mathcal{O}_{dW}, \mathcal{O}_{dG}, \mathcal{O}_{uB}, \mathcal{O}_{uW}, \mathcal{O}_{uG}, \mathcal{O}_{\phi d}, \mathcal{O}_{\phi u}, \mathcal{O}_{\phi ud}$	$\mathcal{U}_2 = \mathcal{O}_{lq}^{(1)}, \mathcal{O}_{lq}^{(3)}, \mathcal{O}_{ed}, \mathcal{O}_{ledq}$
Q_5	$\mathcal{O}_{d\phi}, \mathcal{O}_{\phi d}$	$\mathcal{U}_5 \mathcal{O}_{eu}$
0	o o c c $b_2 = c_B$ New heavy	$\mathcal{Q}_1 = \mathcal{O}_{lu}, \mathcal{O}_{qd}^{(1)}, \mathcal{O}_{qd}^{(8)}, \mathcal{O}_{duq}$
Q_7	$U_{u\phi}, U_{\phi u}$ (1) (2)	$\mathcal{Q}_5 = \mathcal{O}_{qe}, \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qu}^{(8)}, \mathcal{O}_{ledq}, \mathcal{O}_{duq}, \mathcal{O}_{qqu}$
T_1	$\mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}, \mathcal{O}_{dW}, \mathcal{O}_{\phi q}^{(1)}, \mathcal{O}_{\phi q}^{(3)}$ vector-like	$\mathcal{X} = \mathcal{O}_{lq}^{(1)}, \mathcal{O}_{lq}^{(3)}$
T_2	$\mathcal{O}_{4\pm} \mathcal{O}_{\pm\pm} \mathcal{O}_{\pm\pm} \mathcal{O}_{\pm\pm} \mathcal{O}_{\pm}^{(1)} \mathcal{O}_{\pm}^{(3)}$ formions	$\mathcal{Y}_1 = \mathcal{O}_{qd}^{(1)}, \mathcal{O}_{qd}^{(8)}$ New heavy vector bosons
- 4	$[e_{u\phi}, e_{u\phi}, e_{uw}, e_{\phi q}, e_{\phi q}]$	$\mathcal{Y}_5 = \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qu}^{(8)}$
		B^{μ}

One source of parameter increase is through field redefinitions

$$B'_{\mu} \rightarrow B_{\mu} + b_{2} \frac{H^{\dagger} i \overleftrightarrow{D}_{\mu} H}{\Lambda^{2}}$$
Field redefinitions cancel redundant operators
related through field equations '

$$\mathcal{L}_{B}' - g_{1} b_{2} \Delta B$$

$$\Delta B = y_{l} Q^{(1)}_{Hl} + y_{c} Q_{Hc} + y_{q} Q^{(1)}_{Hq} + y_{u} Q_{Hu} + y_{d} Q_{Hd}, + y_{H} (Q_{H\Box} + 4Q_{HD}) + \frac{1}{g_{1}} B^{\mu\nu} \partial_{\mu} (H^{\dagger} i \overleftrightarrow{D}_{\nu} H)$$
M. Trott,
ATLAS EFT
workshop

MATCHING AND RUNNING

$$\begin{array}{c} \left(\mathcal{L}_{\mathrm{EFT}}(\phi_{\mathrm{SM}},\mu=\Lambda) \right) \\ \left(\mathcal{L}_{\mathrm{EFT}}(\phi_{\mathrm{SM}},\mu=\Lambda) \right) \\ \mathcal{L}_{\mathrm{EFT}}(\phi_{\mathrm{SM}},\mu=v) \end{array} \right) \end{array}$$

The matching of the UV theory to the EFT parameters is performed at the scale Λ

The measurements are performed at the scale v

Running changes the values of the parameters

It can also introduce a dependence on new parameters

At = 1 TeV: CtG = 1, $C_{t\phi} = 0$;

At = 173 GeV: CtG = 0.98, $C_{t\phi} = 0.45$

NLO corrections will also introduce a dependence on new parameters

F. Maltoni, ATLAS EFT workshop

OPERATOR REDUCTION

"What's the problem with fitting 2500 parameters?" - S. Forte (as recounted by I. Brivio)

In a first fit organize operators using experimental sensitivity

Can reduce to ~30 operators by:

(1) neglecting flavor structure (projected to SM structure through interference)

(2) factorizing CP-odd operators

(3) using resonances to enhance interference effects

Operator sensitivity (~10 each):

EV

L

LH

VPD and dibasans	$Q_{HWB}, Q_{HD}, Q_{H\ell}^{(1)}, Q_{H\ell}^{(3)}, Q_{Hq}^{(1)}, Q_{Hq}^{(3)}, Q_{He}, Q_{Hu}, Q_{Hd}, Q_{\ell\ell} \qquad Q_W \mid \epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q_{I}
IC Higgs data	$ \begin{array}{c c} Q_{eH} & (H^{\dagger}H)(\bar{l}_{p}e_{r}H) & Q_{H\square} \\ Q_{uH} & (H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H}) & Q_{H\square} \\ Q_{dH} & (H^{\dagger}H)(\bar{q}_{p}d_{r}H) & \mathcal{O}(10) \ll 76 & Q_{HD} \\ \hline & (H^{\dagger}H)(\bar{q}_{p}d_{r}H) & \mathcal{O}(10) \ll 76 & Q_{HD} \\ \end{array} $	$egin{array}{c} Q_{H} \ Q_{H} \ Q_{H} \ Q_{H} \ Q_{I} \ Q_{I} \end{array}$
IC top data	$ \begin{array}{lll} O_{\phi q}^{3} & i(\phi^{\dagger}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q) & O_{qq}^{1} & (\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q) \\ O_{tW} & (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W_{\mu\nu}^{I} & O_{qq}^{3} & (\bar{q}\gamma_{\mu}\tau^{I}q)(\bar{q}\gamma^{\mu}\tau^{I}q) \\ O_{tG} & (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G_{\mu\nu}^{A} & O_{qu}^{8} & (\bar{q}\gamma_{\mu}T^{A}q)(\bar{u}\gamma^{\mu}T^{A}u) \\ \end{array} $	$egin{array}{c} Q_{H} \ Q_{H} \ Q_{H} \end{array}$
JHEP 04 (2016) 015	$O_{G} f_{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\lambda} G_{\lambda}^{C\mu} \qquad O_{qd}^{8} (\bar{q}\gamma_{\mu} T^{A} q) (\bar{d}\gamma^{\mu} T^{A} d) \\ O_{\tilde{\alpha}} f_{ABC} \tilde{G}^{A\nu} G^{B\lambda} G_{\nu}^{C\mu} \qquad O_{qd}^{8} (\bar{q}\gamma_{\mu} T^{A} q) (\bar{d}\gamma^{\mu} T^{A} d) \\ O_{\tilde{\alpha}} f_{ABC} \tilde{G}^{A\nu} G^{B\lambda} G_{\nu}^{C\mu} \qquad O_{qd}^{8} (\bar{q}\gamma_{\mu} T^{A} q) (\bar{d}\gamma^{\mu} T^{A} d) $	

7	$H^{\dagger}H G^{A}_{\mu\nu} G^{A\mu\nu}$
ř	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$
1	$H^{\dagger}H W^{I}_{\mu\nu} W^{I\mu\nu}$
Ŧ	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$
3	$H^{\dagger}H B_{\mu u}B^{\mu u}$
ž	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$
В	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$
В	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$

A GLOBAL EFT FIT

The general expectation of multiple non-zero EFT coefficients and the sensitivity of measurements across sectors (Higgs, electroweak, top) motivates a global EFT fit

There are several motivations for the experiments to perform a global EFT fit: A better understanding of important measurements and inputs will improve sensitivity The institutional framework can incorporate the most complete set of measurements Will incorporate the most complete set of systematic correlations Can compare constraints to more targeted fits for specific scenarios Provides a benchmark against which external fitters can validate

ELECTROWEAK PARAMETERS

Dimension-6 operators modify pole masses, vertex factors, and the vev

Q_{HWB}, Q_{HD}	$Q_{H\ell}^{(1)}, Q_{H\ell}^{(3)}, Q_{Hq}^{(1)}, Q_{Hq}^{(3)}, Q_{He}, Q_{Hu}, Q_{Hd},$	$Q_{\ell\ell}$	
		\sim	/
~~		\square	

100	Damamatan	Input Value	$\mathbf{D}_{\mathbf{o}}\mathbf{f} = \mathbf{b}_{\mathbf{o}}\mathbf{f}$
1996	Farameter	input value	$\Gamma e \mu \rightarrow e + \nu_e + \nu_\mu$
PLOUR PLU	\hat{m}_Z G_F	91.1875 ± 0.0021	[19, 32, 33]
Service and	\hat{G}_F	1.1663787(€)(\$0)6€576	$[32, 33]M_W_Z \ll 1$
A SHID	\hat{lpha}_{ew}	1/137.035999074(94)	[32, 33]

$$\begin{split} \bar{M}_{Z}^{2} &= \frac{\bar{v}_{T}^{2}}{4} \left(\bar{g}_{1}^{2} + \bar{g}_{2}^{2} \right) + \frac{1}{8} \bar{v}_{T}^{4} C_{HD} \left(\bar{g}_{1}^{2} + \bar{g}_{2}^{2} \right) + \frac{1}{2} \bar{v}_{T}^{4} \bar{g}_{1} \bar{g}_{2} C_{HWB} \\ s_{\theta}^{2} &= \frac{\bar{g}_{1}^{2}}{\bar{g}_{2}^{2} + \bar{g}_{1}^{2}} + \frac{\bar{g}_{1} \bar{g}_{2} \left(\bar{g}_{2}^{2} - \bar{g}_{1}^{2} \right)}{\left(\bar{g}_{1}^{2} + \bar{g}_{2}^{2} \right)^{2}} \bar{v}_{T}^{2} C_{HWB} \\ \bar{M}_{W}^{2} &= M_{W}^{2} \left(1 + \frac{\delta s_{\theta}^{2}}{s_{\theta}^{2}} + \frac{c_{\theta}}{s_{\theta} \sqrt{2} \hat{G}_{F}} C_{HWB} + \sqrt{2} \delta G_{F} \right) \\ \bar{e} &= \bar{g}_{2} \, s_{\bar{\theta}} = \sqrt{4\pi \hat{\alpha}} \left[1 + \frac{c_{\theta}}{s_{\theta}} \frac{1}{2\sqrt{2} \hat{G}_{F}} C_{HWB} \right] \\ \hat{\alpha} &= \frac{1}{2} \int_{-\infty}^{1} \frac{1}{2\sqrt{2}} \left(\sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \right) \left(\sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} + \sigma_{T}^{2} \right) \right) \left(\sigma_{T}^{2} + \sigma_{T$$

$$\overline{v}_{T} = \left(1 + \frac{3C_{H}v^{2}}{8\lambda}\right)v$$

$$\overline{v}_{T} = \left(1 + \frac{3C_{H}v^{2}}{8\lambda}\right)v$$

$$\begin{split} \delta(g_{V}^{\ell})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{He} - C_{H\ell}^{(1)} + C_{H\ell}^{(3)} + C_{H\ell}^{(3)} \right) - \delta s_{\theta}^{2}; \\ \delta(g_{A}^{\ell})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} + \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{He} + C_{H\ell}^{(1)} - C_{H\ell}^{(3)} \right), \\ \delta(g_{V}^{\nu})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} \right), \\ \delta(g_{V}^{\nu})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} \right), \\ \delta(g_{V}^{u})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} + C_{Hu} \right) + \frac{2}{3}\delta s_{\theta}^{2}; \\ \delta(g_{V}^{u})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} + \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} + C_{Hu} \right) + \frac{2}{3}\delta s_{\theta}^{2}; \\ \delta(g_{V}^{u})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} + C_{Hu} \right) , \\ \delta(g_{V}^{u})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} + C_{Hu} \right) , \\ \delta(g_{V}^{d})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} - \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} + C_{H\ell} \right) - \frac{1}{3}\delta s_{\theta}^{2}, \\ \delta(g_{V}^{d})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} + \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} - C_{H\ell} \right) - \frac{1}{3}\delta s_{\theta}^{2}, \\ \delta(g_{V}^{d})_{pr} &= -\frac{\delta G_{F}}{\sqrt{2}} - \frac{\delta M_{Z}^{2}}{2\dot{M}_{Z}^{2}} + \frac{1}{4\sqrt{2}}\dot{G}_{F}} \left(-s_{\hat{\theta}}c_{\hat{\theta}}C_{HWB} - C_{H\ell}^{(1)} - C_{H\ell}^{(3)} - C_{H\ell} \right) - \frac{1}{3}\delta s_{\theta}^{2}, \\ \delta(g_{V}^{d})_{pr} &= -\delta\left(g_{A}^{d}\right)_{pr} = \frac{1}{2\sqrt{2}}\dot{G}_{F}} \left(C_{H\ell}^{(3)} + C_{H\ell$$

JHEP 05 (2015) 024

ELECTROWEAK OBSERVABLES

Modified parameters give the effect of dimension-6 operators on electroweak observables

$$A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \qquad \qquad \frac{3}{4} (A_\ell A_f)_{\rm SM} \left(\frac{\delta (\sigma_F - \sigma_B)}{(\sigma_F - \sigma_B)_{\rm SM}} - \frac{\delta (\sigma_F + \sigma_B)}{(\sigma_F + \sigma_B)_{\rm SM}} \right) \qquad \text{four-fermion operators}$$

$$a_{\rm FB}^{0,f} = \frac{3}{4} A_e A_f, \quad A_e = 2 \frac{g_V^\ell g_A^\ell}{(g_V^\ell)^2 + (g_A^\ell)^2}, \quad A_f = 2 \frac{g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2} \qquad \delta A_{\rm FB}^{0,f} = \frac{3}{4} \left[\delta A_\ell (A_f)_{\rm SM} + (A_\ell)_{\rm SM} \, \delta A_f \right] \qquad \text{vertex corrections}$$

Observable	Experimental Value	Ref.	SM Theoretical Value	Ref.
$\hat{m}_Z[\text{GeV}]$	91.1875 ± 0.0021	[19]	-	-
$\hat{m}_W[\text{GeV}]$	80.385 ± 0.015	[49]	80.365 ± 0.004	[50]
$\Gamma_Z[\text{GeV}]$	2.4952 ± 0.0023	[19]	2.4942 ± 0.0005	[48]
R_{ℓ}^{0}	20.767 ± 0.025	[19]	20.751 ± 0.005	[48]
R_c^0	0.1721 ± 0.0030	[19]	0.17223 ± 0.00005	[48]
R_b^0	0.21629 ± 0.00066	[19]	0.21580 ± 0.00015	[48]
$\sigma_h^0 [\mathrm{nb}]$	41.540 ± 0.037	[19]	41.488 ± 0.006	[48]
$A_{\rm FB}^{\ell}$	0.0171 ± 0.0010	[19]	0.01616 ± 0.00008	[32]
$A_{\rm FB}^c$	0.0707 ± 0.0035	[19]	0.0735 ± 0.0002	[32]
$A^b_{\rm FB}$	0.0992 ± 0.0016	[19]	0.1029 ± 0.0003	[32]

$$\delta\Gamma_{Z} = \frac{4\sqrt{2}\hat{G}_{F}\hat{M}_{Z}^{3}}{3\pi} \left[\frac{1}{4}\delta g_{A}^{\nu} + \frac{1}{4}\delta g_{V}^{\nu} - \frac{1}{4}\delta g_{A}^{\ell} + \frac{1}{4}\left(-1 + 4s_{\hat{\theta}}^{2}\right)\delta g_{V}^{\ell}, \\ + \frac{1}{2}\delta g_{A}^{u} - \frac{1}{6}\left(-3 + 8s_{\hat{\theta}}^{2}\right)\delta g_{V}^{u} - \frac{3}{4}\delta g_{A}^{d} + \frac{1}{4}\left(-3 + 4s_{\hat{\theta}}^{2}\right)\delta g_{V}^{d} \right] \\ + \delta\Gamma_{Z \to Had,\psi^{4}} + 3\delta\Gamma_{Z \to \ell\bar{\ell},\psi^{4}} + 3\delta\Gamma_{Z \to \nu\bar{\nu},\psi^{4}}.$$

$$R_f^0 = \frac{\Gamma_{had}}{\Gamma_{Z\bar{f}f}}$$

 $\delta R_f^0 = \frac{1}{\left(\Gamma(Z \to f\bar{f})^2\right)_{\rm SM}} \left[\delta \Gamma_{Z \to Had}(\Gamma(Z \to f\bar{f}))_{\rm SM} - \delta \Gamma_{Z \to f\bar{f}}(\Gamma(Z \to {\rm Had})_{\rm SM})\right]$

$$\frac{\delta\sigma_h^0}{\sigma_h^0} \simeq \frac{\delta\Gamma_{Z\to\ell\bar{\ell}}}{\Gamma_{Z\to\ell\bar{\ell}}} + \frac{\delta\Gamma_{Z\toHad}}{\Gamma_{Z\toHad}} - \frac{\delta\omega(M_Z^2)}{\omega(M_Z^2)} - \frac{\delta\omega^\star(M_Z^2)}{\omega\star(M_Z^2)}$$

JHEP 05 (2015) 024

 $\overline{\sigma}_{h}^{0} = 3\pi \, \frac{\overline{\Gamma}_{Z \to e\bar{e}} \overline{\Gamma}_{Z \to Had}}{|\overline{\omega}(M_{Z}^{2})|^{2}}$

 $\overline{\omega}(M_Z^2) = \overline{M}_Z \overline{\Gamma}_Z$

FIT TO ELECTROWEAK DATA

Fitting the LEP data gives

$$C_{\text{fit}} = \frac{\bar{v}_T^2}{\Lambda^2} \left\{ C_{Hq}^{(1)}, C_{Hq}^{(3)}, C_{Hu}, C_{Hd}, C_{H\ell}^{(1)}, C_{H\ell}^{(3)}, C_{He}, C_{Hl}, C_{HD}, C_{HWB} \right.$$

 $= \left\{-3.0, 7.9, 12, 87, -14, 3.4, -11 \times 10^1, 9.2, 0.13, -1.4 \times 10^{-2}\right\} \times 10^{-4}$

Four-fermion operators suppressed by using resonant data Can be included in the fit with off-shell measurements (PEP, TRISTAN, PETRA)

LEPII also gives access to WWV vertex

Some eigenvectors >20 TeV for unit coupling Data and EFT relations available to experiments

JHEP 02 (2016) 069

LHC OBSERVABLES & EFT VALIDITY

pp processes probe a range of scales so the EFT expansion can break down $|\mathcal{M}_{SMEFT}|^{2} = |\mathcal{M}_{SM}|^{2} + \mathcal{M}_{SM}^{*}\mathcal{M}_{d6} + \mathcal{M}_{SM}\mathcal{M}_{d6}^{*} + |\mathcal{M}_{d6}|^{2} + \mathcal{M}_{SM}^{*}\mathcal{M}_{d8} + \mathcal{M}_{SM}\mathcal{M}_{d8}^{*} + \dots$ $\sim c_{6}Q^{2}/\Lambda^{2} \qquad \sim c_{6}^{2}Q^{4}/\Lambda^{4} \qquad \sim c_{8}Q^{4}/\Lambda^{4}$

In a **specific model** the non-zero coefficients are known and the inclusion of $|\mathcal{M}_{d6}|^2$ will generally provide a more accurate estimate of the observable

In a **generic global fit** the non-zero terms are not known and one cannot in general constrain operators that first appear at $|\mathcal{M}_{d6}|^2$ $\mathcal{M}_{SM}^*\mathcal{M}_{d8} + \mathcal{M}_{SM}^*\mathcal{M}_{d8}$ terms are at the same order of suppression: one would have to introduce assumptions and break the global nature of the fit

A general requirement for the expansion is $\mathcal{M}_{SM}^* \mathcal{M}_{d6} > |\mathcal{M}_{d6}|^2$ The $|\mathcal{M}_{d6}|^2$ term is then subleading and its inclusion is a choice

Including only up to Msm* Md6 allows a consistent linearization

OPERATOR DEPENDENCE

EFT tools facilitate experimental studies and global fits

SMEFTsim is a complete flavour-general dimension-6 implementation NLO implementation soon available in Madgraph

JHEP 02 (2016) 069

At LO one can separately generate the $M_{SM}^* M_{d6} \& |M_{d6}|^2$ terms in Madgraph

Derive linear equations for truth- or detector-level observables: Scan operators to see which ones provide a non-zero $|\mathcal{M}_{d6}|^2$ cross-section Generate one point for each operator with a non-zero cross section

		The second	
$\sigma_{FFT} = \sigma_{SM} + \sigma_{int} + \sigma_{PSM}$	$\frac{\sigma_{int}}{\sigma_{int}} = \sum A_i c_i$	Partial width	$\sum_i A_i c_i$
OEFI = OSM + Oint + OBSM	$\sigma_{SM} \qquad \sum_{i} i i$	$H \rightarrow b \bar{b}$	-1.0 cH + 3.0 cd
		$H \to WW^* \to l\nu l\nu$	10cWW + 3.7 cHW + 2.2 cpHL
<u> </u>		$H \to Z Z^* \to 4 l$	$55 \texttt{cWW} + 13 \texttt{cB} + 15 \texttt{cHW} + 4.6 \texttt{cHB} + 0.018 c_{\gamma} + 2.0 \texttt{cHL} + 2.0 \texttt{cpHL} + 0.027 \texttt{cHe}$
Cross-section region	$\sum_i A_i c_i$	$H \rightarrow \gamma \gamma$	-5.84
$aa/a\bar{a} \rightarrow ttH$	-0.98 cH + 2.9 cu + 0.93 cG + 310 cuG	$H \rightarrow \tau \tau$	-1.0cH + 3.0cl
33/11 001	+27c3G - 13c2G	$H \rightarrow gg$	56cG
		H vall	0.0029 cT + 0.17 cu + 2.3 cd + 0.11 cl + 1.0 cWW + 0.023 cB + 0.37 cHW
LHCHXSWG-IN	11-2017-001	II →an	+0.0079 cHB + 1.6 cG + 0.0078 cHQ + 0.17 cpHQ + 0.0027 cHu + 0.057 cpHL

LHC OBSERVABLES

Template cross sections:

- * Define kinematic & topological regions, fit for normalization factors
- * Allows optimal slicing of process using multiple variables
- * Extrapolation using SM distributions could affect operator dependence
- * Equations for operator dependence can be determined at truth level

Unfolded cross sections:

- * Reduce model dependence with unfolding
- * Typically confined to one or two differential distributions for fit
- * Equations for operator dependence can be determined at truth level

Data yields:

- * Can fully optimize sensitivity to operators
- * Ties optimization to a particular operator set
- * Equations for operator dependence must be determined at detector level

HIGGS TEMPLATE CROSS SECTIONS

A set of 'simplified' template cross sections (STXS) defined by the LHC Higgs working group

FITS TO HIGGS DATA

Constraints derived using public STXS results in two EFT bases

G. Zemaityte, HEFT & LHCXSWG-INT-2017-001

Constraints derived using all STXS bins within ATLAS ATLAS-PUB-2017-018

HIGGS DIFFERENTIAL CROSS SECTIONS

Individual measurements constrain up two parameters simultaneously

COMBINED HIGGS AND ELECTROWEAK FIT

Several implementations constraining parameters sensitive to Higgs and Electroweak data

Reduced parameter correlations

COMBINED HIGGS AND ELECTROWEAK FIT

Several implementations constraining parameters sensitive to Higgs and Electroweak data

Coefficient	Z -pole + m_W	WW at LEP2	Higgs Run1	Higgs Run2	LHC WW high- p_T
\bar{C}_{dH}	×	×	42.4	57.6	×
\bar{C}_{eH}	×	×	49.6	50.4	×
\bar{C}_G	×	×	2.4	97.6	×
\bar{C}_{HB}	×	×	18.6	81.4	×
$\bar{C}_{H\square}$	×	×	19.3	80.7	0.01
\bar{C}_{Hd}	99.85	×	0.04	0.1	×
\bar{C}_{HD}	99.92	0.06	×	×	×
\bar{C}_{He}	99.99	0.01	×	×	×
\bar{C}_{HG}	×	×	41.1	58.9	0.03
$\bar{C}^{(1)}_{H\ell}$	99.97	0.03	×	×	×
$\bar{C}^{(3)}_{H\ell}$	99.56	0.41	×	×	0.01
$\bar{C}^{(1)}_{Hq}$	99.98	×	×	×	×
$\bar{C}_{Hq}^{(3)}$	98.5	0.96	0.19	0.31	0.07
\bar{C}_{Hu}	99.3	×	0.2	0.42	0.04
\bar{C}_{HW}	×	×	18.3	81.7	×
\bar{C}_{HWB}	57.7	0.02	8.2	34.1	×
$\bar{C}_{\ell\ell}$	99.66	0.3	×	0.01	×
\bar{C}_{uG}	×	×	8.9	91.1	×
\bar{C}_{uH}	×	×	10.9	89.1	×
\bar{C}_W	×	96.2	×	×	3.8

Table 5: Impact of different sets of measurements on the fit to individual Wilson coefficients in the Warsaw basis as measured by the Fisher information contained in a given dataset for each coefficient. A cross indicates no (current) sensitivity.

20 constrained parameters

Run 2 data now dominating Higgs constraints

1803.03252

APPLICATION TO RESONANCES

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
\mathcal{S}_1	0	1	1	- 1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
φ	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
Ξ	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ_1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
B	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
\mathcal{B}_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
\mathcal{W}	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
\mathcal{W}_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$

Apply EFT results to cases of individual high-mass resonances

Some types of resonances improve the χ^2

Limits are set on the other resonances

Model	Pull $[\sigma]$	$\Delta \frac{\chi^2}{\text{dof}} [\%]$	Coupling	Mass / TeV
S_1	1.1	0.1	$ y_{\mathcal{S}_1} ^2 = (6.3 \pm 5.9) \cdot 10^{-3}$	$M_{S_1} = (9.1, 53)$
φ , Type I	0.6	-0.4	$Z_6 \cdot \cos\beta = -0.41 \pm 0.66$	$M_{\varphi} = (1.0, \infty)$
Ξ	1.2	0.4	$ \kappa_{\Xi} ^2 = (4.1 \pm 3.4) \cdot 10^{-3}$	$M_{\Xi} = (12, 36)$
N	1.5	0.9	$ \lambda_N ^2 = (1.8 \pm 1.2) \cdot 10^{-2}$	$M_N = (5.8, 13)$
E	0.2	-0.6	$ \lambda_E ^2 = (2.0 \pm 9.7) \cdot 10^{-3}$	$M_E = (9.2, \infty)$
Δ_3	0.7	-0.3	$ \lambda_{\Delta_3} ^2 = (0.8 \pm 1.1) \cdot 10^{-2}$	$M_{\Delta_3} = (7.3, \infty)$
Σ	0.4	-0.5	$ \lambda_{\Sigma} ^2 = (0.9 \pm 2.0) \cdot 10^{-2}$	$M_{\Sigma} = (5.9, \infty)$
Q_5	0.7	-0.3	$ \lambda_{Q_5} ^2 = 0.07 \pm 0.10$	$M_{Q_5} = (2.4, \infty)$
T_2	0.3	-0.5	$ \lambda_{T_2} ^2 = (1.8 \pm 5.1) \cdot 10^{-2}$	$M_{T_2} = (3.8, \infty)$
\mathcal{W}_1	1.2	0.3	$\left \hat{g}_{\mathcal{W}_1}^{\phi} \right ^2 = (3.3 \pm 2.7) \cdot 10^{-3}$	$M_{W_1} = (4.1, 13)$
S	-	-	$\left y_{\mathcal{S}}\right ^2 < 0.47$	$M_S > 1.5$
Δ_1	2	n	$ \lambda_{\Delta_1} ^2 < 5.7 \cdot 10^{-3}$	$M_{\Delta_1} > 13$
Σ_1	-	-	$ \lambda_{\Sigma_1} ^2 < 7.3 \cdot 10^{-3}$	$M_{\Sigma_1} > 12$
U	-	-	$ \lambda_U ^2 < 3.1 \cdot 10^{-2}$	$M_U > 5.7$
D	1	-	$ \lambda_D ^2 < 1.5 \cdot 10^{-2}$	$M_D > 8.2$
Q_7	-	-	$ \lambda_{Q_7} ^2 < 7.2 \cdot 10^{-2}$	$M_{Q_7} > 3.7$
T_1	-	-	$ \lambda_{T_1} ^2 < 0.11$	$M_{T_1} > 3.0$
\mathcal{B}_1	-	-	$\left \hat{g}_{\mathcal{B}_{1}}^{\phi}\right ^{2} < 2.4 \cdot 10^{-3}$	$M_{\mathcal{B}_1} > 20$

1803.03252

TOP-QUARK MEASUREMENTS

Tevatron and LHC top measurements have been fit to constrain 9 operators

Dataset	\sqrt{s} (TeV)	Measurements	Ref.					
Top pair production								
ATLAS	7 + 8	Total inclusive σ	[13]					
	7 + 8	Differential $p_T(t), M_{t\bar{t}}, y(t\bar{t}) $	[14]					
CMS	7	Differential $p_T(t), M_{t\bar{t}}, y(t), y(t\bar{t}) $	[15]					
CDF	1.96	Differential $M_{t\bar{t}}$	[16]					
DØ	1.96	Differential $M_{t\bar{t}}, p_T(t), y(t) $	[17]					
Single top production								
ATLAS <i>t</i> -channel	7	Total inclusive σ	[19]					
	7	Differential $p_T(t), y(t) $	[10]					
CMS <i>t</i> -channel	7	Total inclusive σ	[19]					
	8	Total inclusive σ	[20]					
CDF s-channel	1.96	Total inclusive σ	[21]					
$D\emptyset \ s + t$ -channel	1.96	Total inclusive σ	[22]					

JHEP 04 (2016) 015

LHC top WG has defined scenarios for four-fermion operators separating heavy and light quarks

 $\begin{array}{rll} \mbox{four heavy quarks} & 11+2\ {\rm CPV} \\ \mbox{two light and two heavy quarks} & 14 \\ \mbox{two heavy quarks and bosons} & 9+6\ {\rm CPV} \\ \mbox{two heavy quarks and two leptons} & (8+3\ {\rm CPV})\times 3\ {\rm lepton\ flavours} \end{array}$

1802.07237

COMBINING TOP AND HIGGS/EW DATA Several operators typically enter each process at LO (or at LO²) and

Top measurements have substantial overlap in operator dependence with Higgs and Electroweak measurements

Combined top/Higgs/EW fit not yet attempted

0000

Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t\varphi}$	O_{bW}	$O_{arphi tb}$	$O_{ m 4f}$	O_G	$O_{arphi G}$
$t \rightarrow bW \rightarrow bl^+ \nu$	Ν		L	L				L^2	L^2	$1L^2$		
pp ightarrow tj	Ν		\mathbf{L}	\mathbf{L}				L^2	L^2	1L		
$pp \rightarrow tW$	\mathbf{L}		\mathbf{L}	\mathbf{L}				L^2	L^2	1N	N	
$pp \rightarrow t\bar{t}$	\mathbf{L}									2L-4N	L	
$pp ightarrow t ar{t} j$	\mathbf{L}									2L-4N	L	
$pp ightarrow t \bar{t} \gamma$	\mathbf{L}	\mathbf{L}	\mathbf{L}							2L-4N		
$pp ightarrow t\bar{t}Z$	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}				2L-4N	L	
$pp ightarrow t \bar{t} W$	\mathbf{L}								\mathbf{L}	1L-2L		
$pp ightarrow t\gamma j$	Ν	\mathbf{L}	\mathbf{L}	\mathbf{L}				L^2	L^2	1L		
$pp \rightarrow tZj$	Ν	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}		L^2	L^2	1L		
$pp \rightarrow t\bar{t}t\bar{t}$	L									2L-4L	L	
$pp \rightarrow t\bar{t}H$	L						\mathbf{L}			2L-4L	L	\mathbf{L}
$pp \rightarrow tHj$	Ν		\mathbf{L}	\mathbf{L}			\mathbf{L}	L^2	L^2	1L		Ν
$gg \rightarrow H$	\mathbf{L}						\mathbf{L}				N	\mathbf{L}
$gg \rightarrow Hj$	\mathbf{L}						\mathbf{L}				L	\mathbf{L}
$gg \rightarrow HH$	\mathbf{L}						\mathbf{L}				N	\mathbf{L}
$gg \rightarrow HZ$	L			\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}				N	\mathbf{L}

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

F. Maltoni, ATLAS EFT workshop

SMEFT @ ATLAS

ATLAS Workshop on Effective Field Theory Interpretations

19-20 July 2018 CERN Europe/Zurich timezone

Overview Timetable Contribution List My Conference My Contributions Registration Participant List Videoconference Rooms Live page of the ATLAS EFT Workshop

Q

26

Search.

The interpretation of our measurements in terms of effective field theory operators came more and more important in recent years. In this workshop, we want to collect all ideas on EFT-sensitive measurements after full Run-2. In particular, we would like to developed and agree on a common presentation of our results and their systematics, so that they can be used in a common EFT fit. Moreover, the option of a global ATLAS EFT fitting initiative will be discussed. The results of this workshop will be summarized in an internal documentation for future reference.

A recent ATLAS workshop reviewed the theoretical issues associated with performing an SMEFT fit (July 19) and with combining measurements across analysis groups (July 20)

The conveners will circulate a summary in the coming weeks and schedule a follow-up meeting in a couple months

https://indico.cern.ch/event/729117

Starts 19 Jul 2018, 17:00 CERN 40-S2-C01 - Salle Curie Ends 20 Jul 2018, 13:40 Europe/Zurich Bogdan Malaescu There are no materials yet. Chris Hays Johannes Erdmann Matthias Schott Michael Duehrssen-Debling Nuno Castro Yusheng Wu Registration **140** You are registered for this event.

See details >

SUMMARY

Interference provides a sensitive probe for new physics at a high scale

A complete basis of operators is available for a rigorous search

Fits to ~20 operators have demonstrated the methods & feasibility of global fits

Now is the time for the experiments to enter the game

GAUGE BOSON SELF-COUPLINGS

HIGGS PRODUCTION AND DECAY $Q_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$

QFT INTERFEROMETRY

Interference provides unique sensitivity to small effects (e.g. non-SM interactions)

QFT example: VBF Higgs production (or how to discover a matter-antimatter asymmetry)

ELECTROWEAK OBSERVABLES

Historically capture new physics affecting W & Z propagators using S, T, U parameters "Oblique" corrections: S, T (U) related to dimension-6 (8) operators

$$\mathcal{L}_{\rm VV} = -W^{+\mu}\pi_{+-}\left(p^2\right)W^{-}_{\mu} - \frac{1}{2}W^{3\mu}\pi_{33}\left(p^2\right)W^{3}_{\mu} - W^{3\mu}\pi_{3B}\left(p^2\right)B_{\mu} - \frac{1}{2}B^{\mu}\pi_{BB}\left(p^2\right)B_{\mu}$$

$$\hat{S} \equiv \frac{g}{g'} \frac{\pi'_{3B}(0)}{\pi'_{+-}(0)} \qquad \qquad \hat{T} \equiv \frac{\pi_{+-}(0) - \pi_{33}(0)}{\pi_{+-}(0)}$$

At leading order in dimension 6:

$$\frac{v^2}{\Lambda^2} C_{HWB} = \frac{g_1 g_2}{16\pi} \Delta S, \quad \frac{v^2}{\Lambda^2} C_{HD} = -\frac{g_1 g_2}{2\pi (g_1 + g_2)} \Delta T$$

 $Q_{HWB} \mid H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu} \qquad \qquad Q_{HD} \mid \left(H^{\dagger} D_{\mu} H\right)^{*} \left(H^{\dagger} D_{\mu} H\right)$

STXS + DECAY

Aim to add decay distributions to STXS Studies needed for H→4l binning and distribution(s) *Options include pseudo-observables, m*₁₂ *vs m*₃₄, *and decay angle* Can be defined globally for all bins using the rest frame of the Higgs boson

FURTHER CONSTRAINTS

Some operators affecting electroweak processes still unconstrained in fit

Vertex	Bosonic CP-even	Bosonic CP-odd	Yukawa and Dipole			
$\begin{bmatrix} O_{Hud} \end{bmatrix}_{ij} \begin{vmatrix} \frac{i}{v^2} \bar{u}_i \gamma_{\mu} d_j \tilde{H}^{\dagger} D_{\mu} H & O_6 \\ O_H & O_H \\ O_{2W} & O_{2R} \end{vmatrix}$	$\begin{vmatrix} -\frac{\lambda}{v^2} (H^{\dagger}H)^3 \\ \frac{1}{2v^2} \left[\partial_{\mu} (H^{\dagger}H) \right]^2 \\ \frac{1}{m_W^2} D_{\mu} W^i_{\mu\nu} D_{\rho} W^i_{\rho\nu} \\ \frac{1}{m_W^2} \partial_{\mu} B_{\mu\nu} \partial_{\rho} B_{\rho\nu} \end{matrix}$	$ \begin{array}{c c} \widetilde{O}_{g} & \frac{g_{s}^{2}}{m_{W}^{2}} H^{\dagger} H \widetilde{G}_{\mu\nu}^{a} G_{\mu\nu}^{a} \\ \widetilde{O}_{\gamma} & \frac{g'^{2}}{m_{W}^{2}} H^{\dagger} H \widetilde{B}_{\mu\nu} B_{\mu\nu} \\ \widetilde{O}_{HW} & \frac{ig}{m_{W}^{2}} \left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H \right) \widetilde{W}_{\mu\nu}^{i} \\ \widetilde{O}_{HB} & \frac{ig}{m^{2}} \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \widetilde{B}_{\mu\nu} \end{array} $	$[O_e]_{ij}$ $[O_u]_{ij}$ $[O_d]_{ij}$ $[O_{eW}]_{ij}$	$\frac{\frac{\sqrt{2m_{e_i}m_{e_j}}}{v^3}H^{\dagger}H\bar{\ell}_iHe_j}{\frac{\sqrt{2m_{u_i}m_{u_j}}}{v^3}H^{\dagger}H\bar{q}_i\tilde{H}u_j}$ $\frac{\frac{\sqrt{2m_{d_i}m_{d_j}}}{v^3}H^{\dagger}H\bar{q}_iHd_j}{\frac{\sqrt{2m_{d_i}m_{d_j}}}{m_W^2}\bar{\ell}_i\sigma^kH\sigma_{\mu\nu}e_jW^k_{\mu\nu}}$		
Higgs self-couplings		$\widetilde{O}_{3W} \left \begin{array}{c} \frac{g^3}{m_W^2} \epsilon^{ijk} \widetilde{W}^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu} \\ \end{array} \right $	$[O_{eB}]_{ij}$ $[O_{uG}]_{ij}$ $[O_{uW}]_{ij}$ $[O_{uB}]_{ij}$	$\frac{\overline{m_W^2}}{\overline{m_W^2}} \frac{v}{v} \epsilon_i H \sigma_{\mu\nu} e_j B_{\mu\nu}$ $\frac{g_s}{\overline{m_W^2}} \frac{\sqrt{2m_{u_i}m_{u_j}}}{v} \bar{q}_i \tilde{H} \sigma_{\mu\nu} T^a u_j G^a_{\mu\nu}$ $\frac{g}{\overline{m_W^2}} \frac{\sqrt{2m_{u_i}m_{u_j}}}{v} \bar{q}_i \sigma^k \tilde{H} \sigma_{\mu\nu} u_j W^k_{\mu\nu}$ $\frac{g'}{\overline{m_W^2}} \frac{\sqrt{2m_{u_i}m_{u_j}}}{v} \bar{q}_i \tilde{H} \sigma_{\mu\nu} u_j B_{\mu\nu}$		
CP-odd Higgs interactions			$[O_{dG}]_{ij}$ $[O_{dW}]_{ij}$ $[O_{dB}]_{ij}$	$\frac{\frac{g_s}{m_W^2}}{\frac{g_w}{m_W^2}} \frac{\sqrt{2m_{d_i}m_{d_j}}}{v} \bar{q}_i H \sigma_{\mu\nu} T^a d_j G^a_{\mu\nu}}$ $\frac{\frac{g}{m_W^2}}{\frac{g_w}{m_W^2}} \frac{\sqrt{2m_{d_i}m_{d_j}}}{v} \bar{q}_i \sigma^k H \sigma_{\mu\nu} d_j W^k_{\mu\nu}}$ $\frac{\frac{g'}{m_W^2}}{\frac{g'}{m_W^2}} \frac{\sqrt{2m_{d_i}m_{d_j}}}{v} \bar{q}_i H \sigma_{\mu\nu} d_j B_{\mu\nu}$		
CP-odd triple-gauge couplings Anomalous magnetic moments						

1610.07922, Sec. III.2.1