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OVERVIEW

• QFT interferometry and the SMEFT 

• Global fit strategy 

• Observables 

• Fit results
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INTERFEROMETRY
Interference provides unique sensitivity to small effects 

(cf. gravity waves) 

Non-relativistic QM example: double-slit experiment 
(or how to discover a pinhole)
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QFT INTERFEROMETRY
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Figure 1. Example diagrams for tt̄H production. The inserted operators are: (a) Otϕ (b) OϕG

(c) OtG.

available in such a framework, including top-quark decay processes, flavor-changing neu-

tral production, top-pair production, single-top production, and tt̄ associated production

with a Z-boson and with a photon [40–47]. Several Higgs decay results have also become

available recently [48–51].

The goal of this work is to improve the predictions of such deviations in tt̄H production

in SMEFT by computing the NLO QCD corrections. Besides, we will also present SMEFT

results for processes that are top-loop induced in the SM, such as pp → H, pp → Hj and

Higgs pair production pp → HH. Selected Feynman diagrams at the leading order (LO)

are shown in figure 1 and 2 for the tt̄H and loop-induced processes, respectively. The rele-

vant effective operators in these processes, i.e. those modifying ttH, ttg, and ggH vertices,

are both physically interesting and practically important, because they connect the top-

quark sector with the Higgs-boson sector in the SMEFT at dimension-six. Studying these

processes and interactions will allow us to investigate how much we can learn about the

top quark from Higgs measurements, and vice versa. In particular, the chromo-magnetic

dipole operator OtG, which gives rise to a dipole interaction in the gtt vertex and intro-

duces ggtt, gttH, and ggttH vertices, is often left out in Higgs operator analyses (see, for

example, [52–60]), because it is often considered as part of top-quark measurements. Here

we will show that the current tt̄H and pp → H measurements already provide useful infor-

mation about the chromo-dipole moment, comparable to what we can learn from top-pair

production, and that future measurements will improve the limits. This observation implies

that Higgs measurements are becoming sensitive to this interaction and therefore it should

not be neglected. Furthermore, the extraction of the Higgs self-coupling from pp → HH

measurements relies on a precise knowledge of the top-Higgs interactions. Here we com-

pute for the first time the contribution from the chromo-dipole moment OtG to Higgs pair

production. As it will be shown in the following, this operator gives a large contribution

to this process, even taking into account the current constraints from tt̄ production on the

size of its coefficient.
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Interference provides unique sensitivity to small effects 
(e.g. non-SM interactions) 

QFT example: ttH production
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson
(down), normalised. Left: interference contributions from �i. Right: squared contributions �ii. SM
contributions and individual operator contributions are displayed. Lower panels give the K factors
and µR,F uncertainties.
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Figure 5. Transverse momentum distributions of the top quark (up) and the Higgs boson (down),
normalised. Left: interference contributions from σi. Right: squared contributions σii. SM contri-
butions and individual operator contributions are displayed. Lower panels give the K factors and
µR,F uncertainties.
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SCALE SEPARATION
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EFFECTIVE FIELD THEORY

For new processes at a large scale 𝚲, the new interactions can be 
approximated by a Lagrangian with effective operators containing only SM 

fields and expanded in inverse powers of 𝚲, i.e. an effective field theory 

Processes are described by transition amplitudes derived from the action 

A Lagrangian density with dimension m4 defines interactions 

The Standard Model effective field theory (SMEFT):  
The Lagrangian respects SM gauge symmetries, SU(3) x SU(2) x U(1) 

The fields are in the multiplets defined by the SM

6
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Separate dimension-6 operators into classes  

Define a nearly flavour-universal scenario 
with a handful of third generation operators

1610.07922,  
Sec. III.2.3

Chapter II.2. EFT Formalism 319

Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)

One operator violating lepton number conservation

76 operators conserving baryon number  
(one generation) 
2499 operators for three generations 
4 operators violating baryon number

30 operators violating B or L, and B-L

993 operators (one generation) 
44807 operators for three generations

At LO most top/EW/Higgs processes are sensitive to ~30 operators 
Similar to the number of parameters in a PDF fit

SMEFT OPERATORS



NEW PHYSICS
A given resonance can map to a large number of parameters at LO

M.Trott,  Jul 19th 2018 4

The operators are defined in a BASIS, fixed by SM field redefinitions.

Overcomplete set of 
ops depending on Bµ

Perform a field redefinition

0

0
then

The physics is not changed by this choice.

1706.08945 I. Brivio, MT

SMEFT requires a GLOBAL approach
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The operators are defined in a BASIS, fixed by SM field redefinitions.

Overcomplete set of 
ops depending on Bµ

Perform a field redefinition

0

0
then

The physics is not changed by this choice.

1706.08945 I. Brivio, MT

SMEFT requires a GLOBAL approach SMEFT requires a GLOBAL approach

M.Trott,  Jul 19th 2018 5

CHOOSE                 THEN

Non-redundant set of 
ops depending on Bµ

BUT terms that remain SHIFTED

0

0

b2 = CB

EWPD, diboson, Higgs data all modified globally

1706.08945 I. Brivio, MT
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Field redefinitions cancel redundant operators  
related through field equations

One source of parameter increase is through field redefinitions
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Fields Operators

N O5, O(1)
φl , O

(3)
φl

E Oeφ, OeB , O(1)
φl , O

(3)
φl

∆1 Oeφ, OeB , OeW , Oφe

∆3 Oeφ, Oφe

Σ O5, Oeφ, O(1)
φl , O

(3)
φl

Σ1 Oeφ, OeW , O(1)
φl , O

(3)
φl

U Ouφ, OuB , OuG, O(1)
φq , O

(3)
φq

D Odφ, OdB , OdG, O(1)
φq , O

(3)
φq

Q1 Odφ, Ouφ, OdB , OdW , OdG, OuB , OuW , OuG, Oφd, Oφu, Oφud

Q5 Odφ, Oφd

Q7 Ouφ, Oφu

T1 Odφ, Ouφ, OdW , O(1)
φq , O

(3)
φq

T2 Odφ, Ouφ, OuW , O(1)
φq , O

(3)
φq

Table 8. Operators generated by the heavy vector-like fermions in table 2.

Fields Operators

B Oll, O(1)
qq , O(1)

lq , Oee, Odd, Ouu, Oed, Oeu, O(1)
ud , Ole, Old, Olu, Oqe, O(1)

qu , O(1)
qd ,

OφD, Oφ!, Oeφ, Odφ, Ouφ, O(1)
φl , O

(1)
φq , Oφe, Oφd, Oφu

B1 Oφ4, O(1)
ud , O

(8)
ud , Oφ, OφD, Oφ!, Oeφ, Odφ, Ouφ, Oφud

W Oφ4, Oll, O(3)
qq , O(3)

lq , Oφ, OφD, Oφ!, Oeφ, Odφ, Ouφ, O(3)
φl , O

(3)
φq

W1 Oφ4, Oφ, OφD, Oφ!, Oeφ, Odφ, Ouφ

G O(1)
qq , O(3)

qq , Odd, Ouu, O(8)
ud , O

(8)
qu , O(8)

qd

G1 O(1)
ud , O

(8)
ud

H O(1)
qq , O(3)

qq

L1 Oφ4, Oye , Oyd , Oyu , Ole, O(1)
qu , O(8)

qu , O(1)
qd , O

(8)
qd , Oledq, O(1)

quqd, O
(1)
lequ,

Oφ, OφD, Oφ!, OφB , OφB̃ , OφW , OφW̃ , OφWB , OφWB̃ , Oeφ, Odφ, Ouφ,

OeB , OeW , OdB , OdW , OuB , OuW , O(1)
φl , O

(3)
φl , O

(1)
φq , O

(3)
φq , Oφe, Oφd, Oφu

L3 Ole

U2 O(1)
lq , O(3)

lq , Oed, Oledq

U5 Oeu

Q1 Olu, O(1)
qd , O

(8)
qd , Oduq

Q5 Oqe, O(1)
qu , O(8)

qu , Oledq, Oduq, Oqqu

X O(1)
lq , O(3)

lq

Y1 O(1)
qd , O

(8)
qd

Y5 O(1)
qu , O(8)

qu

Table 9. Operators generated by the heavy vector bosons presented in table 3.
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New heavy vector bosons
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Fields Operators

N O5, O(1)
φl , O

(3)
φl

E Oeφ, OeB , O(1)
φl , O

(3)
φl

∆1 Oeφ, OeB , OeW , Oφe

∆3 Oeφ, Oφe

Σ O5, Oeφ, O(1)
φl , O

(3)
φl

Σ1 Oeφ, OeW , O(1)
φl , O

(3)
φl

U Ouφ, OuB , OuG, O(1)
φq , O

(3)
φq

D Odφ, OdB , OdG, O(1)
φq , O

(3)
φq

Q1 Odφ, Ouφ, OdB , OdW , OdG, OuB , OuW , OuG, Oφd, Oφu, Oφud

Q5 Odφ, Oφd

Q7 Ouφ, Oφu

T1 Odφ, Ouφ, OdW , O(1)
φq , O

(3)
φq

T2 Odφ, Ouφ, OuW , O(1)
φq , O

(3)
φq

Table 8. Operators generated by the heavy vector-like fermions in table 2.

Fields Operators

B Oll, O(1)
qq , O(1)

lq , Oee, Odd, Ouu, Oed, Oeu, O(1)
ud , Ole, Old, Olu, Oqe, O(1)

qu , O(1)
qd ,

OφD, Oφ!, Oeφ, Odφ, Ouφ, O(1)
φl , O

(1)
φq , Oφe, Oφd, Oφu

B1 Oφ4, O(1)
ud , O

(8)
ud , Oφ, OφD, Oφ!, Oeφ, Odφ, Ouφ, Oφud

W Oφ4, Oll, O(3)
qq , O(3)

lq , Oφ, OφD, Oφ!, Oeφ, Odφ, Ouφ, O(3)
φl , O

(3)
φq

W1 Oφ4, Oφ, OφD, Oφ!, Oeφ, Odφ, Ouφ

G O(1)
qq , O(3)

qq , Odd, Ouu, O(8)
ud , O

(8)
qu , O(8)

qd

G1 O(1)
ud , O

(8)
ud

H O(1)
qq , O(3)

qq

L1 Oφ4, Oye , Oyd , Oyu , Ole, O(1)
qu , O(8)

qu , O(1)
qd , O

(8)
qd , Oledq, O(1)

quqd, O
(1)
lequ,

Oφ, OφD, Oφ!, OφB , OφB̃ , OφW , OφW̃ , OφWB , OφWB̃ , Oeφ, Odφ, Ouφ,

OeB , OeW , OdB , OdW , OuB , OuW , O(1)
φl , O

(3)
φl , O

(1)
φq , O

(3)
φq , Oφe, Oφd, Oφu

L3 Ole

U2 O(1)
lq , O(3)

lq , Oed, Oledq

U5 Oeu

Q1 Olu, O(1)
qd , O

(8)
qd , Oduq

Q5 Oqe, O(1)
qu , O(8)

qu , Oledq, Oduq, Oqqu

X O(1)
lq , O(3)

lq

Y1 O(1)
qd , O

(8)
qd

Y5 O(1)
qu , O(8)

qu

Table 9. Operators generated by the heavy vector bosons presented in table 3.
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New heavy  
vector-like  
fermions

JHEP 03 (2018) 109

M. Trott,  
ATLAS EFT 
workshop



MATCHING AND RUNNING

9

HESEP - July 2018          Fabio Maltoni

EFT picture: Matching and Running

20
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HESEP - July 2018          Fabio Maltoni

SMEFT@NLO

15

[FM, Vryonidou, Zhang, 16]

• EFT scale uncertainties are very 
much reduced at NLO. 

• RG are sometimes thought to be an 
approximation for full NLO, but it is 
often not the case.

• pp → ttH

3. Genuine NLO corrections (finite terms) are important

HESEP - July 2018          Fabio Maltoni

SMEFT@NLO

11

Scale corresponds to the change from mt to 2 TeV.

At  = 1 TeV: CtG = 1, Ctφ = 0;  

At  = 173 GeV: CtG = 0.98, Ctφ= 0.45

1. Operators run and mix under RGE The matching of the UV theory to the EFT  
parameters is performed at the scale 𝚲 

The measurements are performed at the scale v 

Running changes the values of the parameters 

It can also introduce a dependence  
on new parameters

NLO corrections will also introduce  
a dependence on new parameters

HESEP - July 2018          Fabio Maltoni

SMEFT@NLO

13

3. Genuine NLO corrections (finite terms) are important

[Gauld, Pecjak, Scott, 16]
[Gauld, Pecjak, Scott, 15]

 See also Z→ff at NLO:
[Hartmann, Shepherd, Trott, 16]

The cancellation of UV divergences from more than 20 dim-6 
operators in the full result gives a highly non-trivial check on 
the calculation. The logarithmic corrections could have been 
deduced from a Leading Log analysis:

However, calculation of the full NLO calculation illuminates 
term  which would be missed in an RG analysis

F. Maltoni, ATLAS EFT workshop



OPERATOR REDUCTION
“What’s the problem with fitting 2500 parameters?“  

- S. Forte (as recounted by I. Brivio) 

In a first fit organize operators using experimental sensitivity 
Can reduce to ~30 operators by: 
  (1) neglecting flavor structure (projected to SM structure through interference) 
  (2) factorizing CP-odd operators 
  (3) using resonances to enhance interference effects 

Operator sensitivity (~10 each): 

EWPD and dibosons 

LHC Higgs data  

LHC top data

SM Resonance enhancement example.

For measurements of LEPI near Z pole data and W mass at LO: 

QHWB , QHD, Q(1)
H `

, Q(3)
H `

, Q(1)
H q

, Q(3)
H q

, QHe, QHu, QHd, Q` `

Relevant four fermion operator at LO is introduced due to 
As used to extract        and all other four fermion ops neglected.

µ� ! e� + ⌫̄e + ⌫µ
GF

Some basis dependence in this, but O(10) ⌧ 76 �W,Z/MW,Z ⌧ 1as

11M.Trott, Durham, 6th September 2017M.Trott, Oct 27th  2017 33M.Trott,  Jul 19th 2018 15
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)
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tables.
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A global fit of top quark e↵ective theory to data

Andy Buckley, Christoph Englert, James Ferrando, David J. Miller, Liam Moore, Michael Russell, and Chris D. White
SUPA, School of Physics and Astronomy, University of Glasgow,

Glasgow, G12 8QQ, UK

In this paper we present a global fit of beyond the Standard Model (BSM) dimension six operators
relevant to the top quark sector to all currently available top production cross-section measurements,
namely parton-level top-pair and single top production at the LHC and the Tevatron. Higher order
QCD corrections are modelled using di↵erential and global K-factors, and we use novel fast-fitting
techniques developed in the context of Monte Carlo event generator tuning to perform the fit.
This allows us to provide new, fully correlated and model-independent bounds on new physics
e↵ects in the top sector from the most current direct hadron-collider measurements in light of the
involved theoretical and experimental systematics. As a by-product, our analysis constitutes a
proof-of-principle that fast fitting of theory to data is possible in the top quark sector, and paves
the way for a more detailed analysis including top quark decays, detector corrections and precision
observables.

I. INTRODUCTION

The Standard Model of particle physics has proven to
be an extremely successful description of Nature up to the
electroweak scale. Nonetheless there are many compelling
reasons to believe it is an intermediate step to a more
fundamental picture of physics at the TeV scale.

The top quark, as the heaviest Standard Model particle,
is expected to play a unique role in this new physics. Given
the unsatisfactory explanation of electroweak symmetry
breaking within the SM and the appearance of mt at the
electroweak scale, i.e. the closeness of the top Yukawa
coupling to unity, the top mass may arguably be seen as
a strong hint of physics beyond the SM.

Most BSM scenarios lend a special role to the top quark.
In supersymmetry the light Higgs mass is stabilised from
UV divergences by the contribution of SUSY top partners,
among others (see, e.g., Refs. [1, 2]). In compositeness
scenarios [3, 4], the quark masses and EWSB are gener-
ated through linear couplings of the SM fermions to new
strongly-interacting physics at the TeV scale. In theo-
ries of warped extra-dimensions, the top quark couples
preferentially to Kaluza-Klein states in the 5D bulk [5, 6],
o↵ering a unique window to the new physics.

Typically all these scenarios predict a modification of
Higgs phenomenology, which has been thoroughly stud-
ied after the Higgs discovery [7–11]. Such analyses are
currently limited by small statistics in the observed Higgs
discovery modes. Taking the special role of the top quark
in electroweak symmetry breaking at face value, the abun-
dant production of top quarks at the LHC provides a
complementary avenue to search for new non-resonant
physics beyond the SM, that will be relevant to our un-
derstanding of electroweak symmetry breaking.

Given the plethora of concrete scenarios and the ab-
sence of any telling signals of new physics in the current
data, parametrising BSM e↵ects in an e↵ective field the-
ory expansion [23] is well-motivated. In this approach,
all possible interactions are captured in an e↵ective La-

grangian Le↵:

Le↵ = LSM +
1

⇤
L1 +

1

⇤2
L2 + ... .

The higher-dimensional Lagrangian terms Li are sup-
pressed by powers of ⇤ - the energy scale associated with
the new physics. In the top-down approach, we have
integrated out all heavy degrees of freedom, capturing
their low energy phenomenology guided by SM gauge
and global symmetries, irrespective of their concrete UV
dynamics. Such an expansion is valid provided there is a
good separation of scales between the typical collider en-
ergy and ⇤. However, this approach is completely general:
the {Li} are constructed from SM operators, respecting
the SU(3) ⇥ SU(2) ⇥ U(1) gauge symmetry.
The leading contributions relevant to new physics in

the top sector enter at the dimension-six level O(1/⇤2)

Le↵ = LSM +
1

⇤2

X

i

CiOi + O(⇤�4) ,

where Ci are arbitrary ‘Wilson coe�cients’ and Oi are

4-fermion operators Non 4-fermion operators

O
1
qq (q̄�µq)(q̄�

µ
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O
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I
t)�̃W I
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µ
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A
t)�̃GA
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8
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A
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A
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8
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A
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µ⌫G

Aµ⌫

O�G̃ (�†
�)G̃A

µ⌫G
Aµ⌫

TABLE I: All dimension-six operators relevant to top quark
production, in the notation of Ref. [12]. Details of each are
included in the text. q denotes the left-handed quark doublet, u
and d denote the up-type and down-type right-handed singlets.
We do not include explicit flavor indices here, the relevant
flavor indices are included in the text. 13 operators are shown,
but OtW and OtG have both real and imaginary parts which
should be considered as independent operators; the latter
produce CP-violating e↵ects.
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A GLOBAL EFT FIT

The general expectation of multiple non-zero EFT coefficients and the sensitivity of 
measurements across sectors (Higgs, electroweak, top) motivates a global EFT fit 

There are several motivations for the experiments to perform a global EFT fit: 

A better understanding of important measurements and inputs will improve sensitivity 

The institutional framework can incorporate the most complete set of measurements 

Will incorporate the most complete set of systematic correlations 

Can compare constraints to more targeted fits for specific scenarios 

Provides a benchmark against which external fitters can validate

11



ELECTROWEAK PARAMETERS

12

JHEP 05 (2015) 024

Dimension-6 operators modify pole masses, vertex factors, and the vev

J
H
E
P
0
5
(
2
0
1
5
)
0
2
4

Parameter Input Value Ref.

m̂Z 91.1875± 0.0021 [19, 32, 33]

ĜF 1.1663787(6)× 10−5 [32, 33]

α̂ew 1/137.035999074(94) [32, 33]

Table 1. Current best estimates of the core input parameters used to make predictions in the
SMEFT.

muon decays ĜF and the measured Z mass (m̂Z). It is convenient to relate observables in

terms of the parameters g2, sin2 θ = g21/(g
2
1 + g22) and the electroweak vacuum expectation

value (vev) v. Defining at tree level the effective measured mixing angle

sin2 θ̂ =
1

2
−

1

2

√

1−
4πα̂ew√
2 ĜF m̂2

Z

, (2.1)

then the measured value of the SUL(2) gauge coupling can be inferred (at tree level) via

ĝ2 sin θ̂ = 2
√
π α̂1/2

ew . (2.2)

The effective measured vacuum expectation value (vev) in the SM can be defined as

v̂2 = 1/
√
2 ĜF . All of these input parameters are redefined going from the SM to the

SMEFT, and the resulting shifts are characterized in section 2.1. We will consistently

use the notation that the measured parameters, or inferred measured parameters (such as

sin2 θ̂, ĝ2), are denoted with a hat superscript. In relating predictions to these input pa-

rameters we will consistently only include corrections in the SMEFT that are suppressed

by v̄2T /Λ
2, neglecting v̄4T /Λ

4 contributions. For this reason SMEFT parameters multi-

plying insertions of higher dimensional operators can be traded for α̂ew, v̂2, m̂Z using the

SM relations.6

2.1 Input parameters

Calculating expressions, we use the canonically normalized SMEFT in the basis of ref. [15].

By canonically normalized, we mean that the kinetic terms of all propagating fields have

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in ref. [16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in ref. [16].

The SM Lagrangian parameters and theoretical predictions for observables in the SM will

have no superscript (no hat and no bar) and if we stop at the leading order of the SM

value we will add: (. . .)SM to specify it. In the following sections we will use the shorthand

notation s2
θ̂
= sin2 θ̂, c2

θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the

gauge couplings given by g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the

relation between the SMEFT Lagrangian parameters and the measured input parameters

in this section.
6As well as these core input parameters, we also note that the values of

{

mt,αs,mH ,mc,mb,mτ ,

V ij
CKM ,∆α(5)

had, · · ·
}

are also required in a truly global EWPD analysis of all data.
7See the appendix for a discussion of the notational conventions.
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4

2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −

4ĜF√
2

(ν̄µ γ
µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients,

and that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit

CH → 0. Many expressions that follow have explicit dependence on v̄T , which is related

to ĜF via eq. (2.5) as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is

trivial to re-introduce, and this shift can be considered to be implicitly flavour dependent.

2.1.2 MZ

The mass eigenstate of the Z boson is redefined as

M̄2
Z =

v̄2T
4

(
g1

2 + g2
2
)
+

1

8
v̄4TCHD

(
g1

2 + g2
2
)
+

1

2
v̄4T g1g2CHWB. (2.8)

The difference between the M̂Z input parameter and the SM expression for the Z mass

(in the SMEFT) defines δM2
Z as

δM2
Z ≡ M̂2

Z −
v̄2T
4

(
g1

2 + g2
2
)
= −

1

2
√
2

M̂2
Z

ĜF

CHD −
2 21/4

√
π
√
α̂ M̂Z

Ĝ3/2
F

CHWB. (2.9)

Note that this difference is defined in terms of the vev in the SMEFT — v̄T . The SM

relations between Lagrangian parameters and input parameters are used on the right hand

side of eq. (2.9), as the SMEFT corrections to these relations are higher order in v̄2T /Λ
2.
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2.1.3 sin2 θ

The kinetic mixing introduced by the operator with Wilson coefficient CHWB leads to a

redefinition of the usual sθ = sin θ mixing angle of the SM given by

s2
θ
=

g1
2

g2
2 + g1

2 +
g1g2

(
g2

2 − g1
2
)

(
g1

2 + g2
2
)2 v̄2TCHWB. (2.10)

Here s2
θ
is used to rotate to the mass eigenstate fields in the SMEFT. As a short hand

notation, we define

δs2θ ≡ sin2 θ̂−sin2 θ̄ = −
sθ̂ cθ̂

2
√
2 ĜF

(
1−2s2

θ̂

)
[
sθ̂ cθ̂

(
CHD+4C(3)

Hℓ−2Cll

)
+2CHWB

]
. (2.11)

2.2 Gauge couplings in the SMEFT: ḡ1, ḡ2

We relate the Lagrangian parameters ḡ2, ḡ1 to the input parameters at tree level via

ḡ21 + ḡ22 = 4
√
2 ĜF M̂2

Z

(

1−
√
2 δGF −

δM2
Z

M̂2
Z

)

, (2.12)

ḡ22 =
4π α̂

s2
θ̂

[

1 +
δs2θ
s2
θ̂

+
ĉθ
ŝθ

1
√
2 ĜF

CHWB

]

. (2.13)

2.3 MW in the SMEFT

The mass of the W boson is redefined in the SMEFT as

M̄2
W =

ḡ22 v̄
2
T

4
. (2.14)

Expressing M̄2
W in terms of the inputs parameters we get:

M̄2
W = M2

W

(

1 +
δs2
θ̂

s2
θ̂

+
cθ̂

sθ̂
√
2ĜF

CHWB +
√
2δGF

)

= M2
W − δM2

W , (2.15)

where δM2
W = −M2

W

(
δs2

θ̂

s2
θ̂

+
c
θ̂

s
θ̂

√
2ĜF

CHWB +
√
2δGF

)
.

3 Redefinition of vector boson couplings

3.1 Neutral currents

3.1.1 Redefinition of Z couplings

The effective axial and vector couplings of the SMEFT Z boson are defined as follows

LZ,eff = 221/4
√
ĜF M̂Z

(
JZℓ
µ Zµ + JZν

µ Zµ + JZu
µ Zµ + JZd

µ Zµ
)
, (3.1)

where (JZx
µ )pr = x̄p γµ

[
(ḡxV )

pr
eff − (ḡxA)

pr
eff γ5

]
xr for x = {u, d, ℓ, ν}. In general, these currents
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2 ĜF

(
1−2s2

θ̂

)
[
sθ̂ cθ̂

(
CHD+4C(3)

Hℓ−2Cll

)
+2CHWB

]
. (2.11)

2.2 Gauge couplings in the SMEFT: ḡ1, ḡ2
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where
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Hℓ
pr

)

− δs2θ, (3.3)

δ(gℓA)pr = −
δGF√
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2

3
δs2θ, (3.7)
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2 ĜF
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2 ĜF
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pr
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− CHd

pr

)
. (3.10)

3.1.2 Redefinition of A couplings

For the electromagnetic current we define:

LA,eff =
√
4πα̂

[
Qx J

A,x
µ

]
Aµ. (3.11)

for x = ℓ, u, d. The measured effective electromagnetic coupling α̂ is directly identified

with the modified coupling present in the SMEFT: ᾱ = ē2/4π, with ē given by

ē = ḡ2 sθ̄ =
√
4πα̂

[
1 +

cθ̂
sθ̂

1

2
√
2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define

LW,eff =

√
2π α̂

sθ̂

[(
JW±,ℓ
µ

)

pr
Wµ

± +
(
JW±,q
µ

)
pr
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±

]
, (3.13)
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where in the SM one has
(
JW+,ℓ
µ

)

pr
= ν̄p γ

µ
(
ḡW+,ℓ
V − ḡW+,ℓ

A γ5
)
ℓr, (3.14)

(
JW−,ℓ
µ

)

pr
= ν̄p γ

µ
(
ḡW−,ℓ
V − ḡW−,ℓ

A γ5
)
ℓr. (3.15)

In the SMEFT we note that in the flavour symmetric limit

δ
(
gW±,ℓ
V

)

rr
= δ

(
gW±,ℓ
A

)

rr
=

1

2
√
2ĜF

(
C(3)
Hℓ
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.16)

Note that although the corrections in the SMEFT shown preserve the left handed

structure of the current for the lepton couplings, we introduce a separate axial and vector

coupling for later convenience. For the quark charged currents one similarly finds

δ
(
gW±,q
V

)

rr
= δ

(
gW±,q
A

)

rr
=

1

2
√
2ĜF

(
C(3)
Hq
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.17)

There is also dependence on the operator QHud
rr

for the W quark current. When we assume

linear MFV, the Wilson coefficient of this operator is suppressed by

CHud
rr
∝
[
Yu Y

†
d

]

rr
, (3.18)

and in this case, this contribution is neglected for reasons of consistency. Light quark mass

suppressed corrections are neglected in the SM predictions of many of the observables

considered here, and also when higher dimensional operators are inserted.

4 Observables

Whenever possible, we express all observables in terms of shifts of the form

δGF , δM
2
Z , δM

2
W , δs2θ, δg

x
V,A, δg

W±,y
V.A . (4.1)

Here x = ℓ, u, d and y = ℓ, q. Added to these corrections for each observable are contribu-

tions due to explicit operator insertions that are not (easily) expressible in terms of these

common shifts. These net shift variables do not correspond to a basis for L(6), they are

simply a convenient shorthand notation for some terms in the effective Lagrangian.

4.1 Differential cross section for ℓ+ℓ− → ff̄

Observables that are not limited to the Z pole are an important source of information on

Wilson coefficients present in the SMEFT. Corrections to the 2→ 2 differential spectrum

predicts the total cross sections σℓ+ℓ−→f f̄ where f = {ℓ, u, c, b, d, s} (here the final and

initial state leptons are defined to not have the same flavour), as well as the differential

and angular observables for these processes. A general expression in the SMEFT valid

for on and off resonance scattering includes a contribution from Z and γ exchange as well

as the effect of ψ4 operators and the interference of all of these terms, see figure 1. Our

discussion of this general expression in the SMEFT will largely build on the discussion in

ref. [19] which itself borrows heavily from ref. [34].8

8For classic related results, that are outside of the systematic SMEFT analysis presented here,

see ref. [35].
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where

δ(gℓV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2ĜF

(

−sθ̂cθ̂CHWB − CHe
pr
− C(1)

Hℓ
pr

+ C(3)
Hℓ
pr

)

− δs2θ, (3.3)

δ(gℓA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − CHe
pr

+ C(1)
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pr
− C(3)

Hℓ
pr
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δGF√
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−
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−
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(
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−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
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pr
− C(3)
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, (3.6)

δ(guV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−
sθ̂ cθ̂
3

CHWB + C(1)
Hq
pr

+ C(3)
Hq
pr

+ CHu
pr

)

+
2

3
δs2θ, (3.7)
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(
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2 ĜF
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. (3.10)

3.1.2 Redefinition of A couplings

For the electromagnetic current we define:

LA,eff =
√
4πα̂

[
Qx J

A,x
µ

]
Aµ. (3.11)

for x = ℓ, u, d. The measured effective electromagnetic coupling α̂ is directly identified

with the modified coupling present in the SMEFT: ᾱ = ē2/4π, with ē given by

ē = ḡ2 sθ̄ =
√
4πα̂

[
1 +

cθ̂
sθ̂

1

2
√
2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define

LW,eff =

√
2π α̂

sθ̂

[(
JW±,ℓ
µ

)

pr
Wµ

± +
(
JW±,q
µ

)
pr
Wµ

±

]
, (3.13)
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2 ĜF

(

−sθ̂ cθ̂ CHWB − CHe
pr

+ C(1)
Hℓ
pr
− C(3)

Hℓ
pr

)

, (3.4)

δ(gνV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF
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2ĜF

(

−sθ̂cθ̂CHWB − CHe
pr
− C(1)

Hℓ
pr

+ C(3)
Hℓ
pr

)

− δs2θ, (3.3)

δ(gℓA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF
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2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
Hℓ
pr
− C(3)

Hℓ
pr

)

, (3.5)

δ(gνA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF
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Modified parameters give the effect of dimension-6 operators on electroweak observables
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Observable Experimental Value Ref. SM Theoretical Value Ref.

m̂Z [GeV] 91.1875± 0.0021 [19] – –

m̂W [GeV] 80.385± 0.015 [49] 80.365± 0.004 [50]

ΓZ [GeV] 2.4952± 0.0023 [19] 2.4942± 0.0005 [48]

R0
ℓ 20.767± 0.025 [19] 20.751± 0.005 [48]

R0
c 0.1721± 0.0030 [19] 0.17223± 0.00005 [48]

R0
b 0.21629± 0.00066 [19] 0.21580± 0.00015 [48]

σ0h [nb] 41.540± 0.037 [19] 41.488± 0.006 [48]

AℓFB 0.0171± 0.0010 [19] 0.01616± 0.00008 [32]

Ac
FB 0.0707± 0.0035 [19] 0.0735± 0.0002 [32]

Ab
FB 0.0992± 0.0016 [19] 0.1029± 0.0003 [32]

Table 2. Experimental and theoretical values of the observables used in the illustrative fits.

For example, a set of reasonable prior conditions to impose is that the power counting

expansion of the theory is under control, and that each individual observable falls within

Nσ of each measurement, so that

Cfit < 0.1, θ̂i − θi(Cmin
fit ) < N δθi (5.3)

with δθi the total combined error on an observable θi. The value of N chosen in these

conditions dictates the specific global minimum found in the χ2 minimization. In particular

the presence of the Ab
FB anomaly that deviates at the ∼ 2.5σ level from the SM predictions

indicates that N > 2.5 as a minimization condition is reasonable to not bias the global

minimum in favour of non-vanishing Cmin
fit . Choosing N = 2.8, and seeding a minimization

with Cmin
fit = 0, we find

Cmin
fit =

{
−3.0, 7.9, 12, 87,−14, 3.4,−11× 101, 9.2, 0.13,−1.4× 10−2

}
× 10−4. (5.4)

It is interesting to note that with this procedure the least constrained entries in Cmin
fit

corresponds to operators that lead to vertex corrections of the Z boson to fermions.

However, we stress the arbitrariness of the conditions imposed to obtain this minima

and that it does not hold any particular physical significance. For example, another rea-

sonable prior condition can be constructed based on noting that one can group the Ci into

subgroups that strongly mix under RG evolution (see refs. [16, 51–53] for the relevant RGE

results). Such Wilson coefficients will tend to flow together in value under RG evolution.

This can motivate grouping the operators into classes of the form

Cq =

{
C(1)
Hq
pr
, C(3)

Hq
pr
, CHu

pr
CHd

pr

}
, Cℓ =

{

C(1)
Hℓ
pr
, C(3)

Hℓ
pr
, CHe

pr

}

. (5.5)

Then imposing the conditions in eq. (5.3) gives a minimum with these grouped Wilson

coefficients O(10−3) and CHWB ∼ O(10−5). The individual minima, with two different
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4.2.4 Forward backward asymmetry

The forward backward asymmetry for 2-2 scattering is defined as

AFB =
σF − σB
σF + σB

. (4.49)

Here σF is defined by θ ∈ [0,π/2] and σB is defined by θ ∈ [π/2,π] with θ defined as in

section 4.1. In the SM, it can be shown that the forward backward asymmetry for leptons

is just

A0,f
FB =

3

4
AeAf , Ae = 2

gℓV g
ℓ
A

(gℓV )
2 + (gℓA)

2
, Af = 2

gfV g
f
A

(gfV )
2 + (gfA)

2
. (4.50)

As we move to the SMEFT, the Z couplings receive corrections bringing corrections to

A0,f
FB. A0,f

FB also receive corrections from ω redefinition in general, and from ψ4 operators.

All of these corrections can be derived from eq. (4.2), but we note the following simplified

expressions. In the SMEFT Āf can be written as

Āf =
2r̄f

1 + r̄2f
, (4.51)

where r̄f =
ḡfV
ḡfA

. The redefinition of the Z coupling then leads to a shift of Āf such that

Āf = (Af )SM
(
1 +

δAf

(Af )SM

)
where

δAf

(Af )SM
= δrf

(

1−
2(r2f )SM

1 + (r2f )SM

)

. (4.52)

Here δrf is defined by rf = (rf )SM (1 + δrf ) with δrf = δgfV /G
f
V − δg

f
A/G

f
A. We again use:

(. . .)SM for leading order SM predictions and Gf
A,V for leading order SM predictions for the

couplings. Then the corrections to A0,f
FB from the shifts in the effective couplings are

δA0,f
FB =

3

4
[δAℓ (Af )SM + (Aℓ)SM δAf ] . (4.53)

The corrections due to ψ4 operators δ(A0,f
FB)ψ4 and the redefinition of ω can be extracted

from:
3

4
(AℓAf )SM

(
δ (σF − σB)
(σF − σB)SM

−
δ (σF + σB)

(σF + σB)SM

)
, (4.54)

where the contributions δ (σF − σB), δ (σF + σB) that depend on ψ4 operators, are derived

directly from eq. (4.2). As the forward backward asymmetry measurements are direct cross

section measurements, the scaling of section 4.1.1 holds and these ψ4 corrections can be

neglected for near Z pole analyses. Far off the Z pole, these corrections cannot be neglected.

In particular, in interpreting reported AFB measurements reported with LEPII data, these

corrections are not suppressed compared to the effects of anomalous Z couplings.
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vertex corrections
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As such, neglected dimension eight operators would make directly fitting for ψ4 operators in

the near Z peak data suspect. Further perturbative corrections to the higher dimensional

operators are also comparable in size to corrections of this form. We also emphasize that

this correction is also further suppressed roughly by the fraction of off peak to Z peak data

included in the global EWPD data set. For these reasons, it is not advisable to fit for the

ψ4 operators in near Z pole data directly.

However, as all of these corrections are present in the SMEFT, this makes introducing

an extra theoretical error in fits and adding it in quadrature with the SM theoretical error

very well motivated. In section 5 we perform such a minimal EWPD fit.

4.2.3 Near Z pole observables

In the SMEFT, at tree level, one has

Γ̄
(
Z → ff̄

)
=

2
√
2 ĜF M̂3

Z Nc

3π

(
|ḡfV |

2 + |ḡfA|
2
)
, (4.40)

Γ̄ (Z → Had) = 2 Γ̄ (Z → uū) + 3 Γ̄
(
Z → dd̄

)
. (4.41)

With our chosen normalization of ḡxV = T3/2−Qx s̄2θ, ḡA = T3/2 where T3 = 1/2 for ui, νi
and T3 = −1/2 for di, ℓi and Qx = {−1, 2/3,−1/3} for x = {ℓ, u, d}. The modification of

the decay widths in the SMEFT compared to the situation in the SM introduces corrections

of the form:

δΓZ→ℓℓ̄ =

√
2 ĜF M̂3

Z
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So that: Γ̄
(
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= ΓZ→ff̄ + δΓZ→ff̄ for all f and the same kind of relation holds for
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and we can then write that R̄0
f = R0

f + δR0
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As such, neglected dimension eight operators would make directly fitting for ψ4 operators in

the near Z peak data suspect. Further perturbative corrections to the higher dimensional

operators are also comparable in size to corrections of this form. We also emphasize that

this correction is also further suppressed roughly by the fraction of off peak to Z peak data

included in the global EWPD data set. For these reasons, it is not advisable to fit for the

ψ4 operators in near Z pole data directly.

However, as all of these corrections are present in the SMEFT, this makes introducing

an extra theoretical error in fits and adding it in quadrature with the SM theoretical error

very well motivated. In section 5 we perform such a minimal EWPD fit.
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and T3 = −1/2 for di, ℓi and Qx = {−1, 2/3,−1/3} for x = {ℓ, u, d}. The modification of

the decay widths in the SMEFT compared to the situation in the SM introduces corrections

of the form:

δΓZ→ℓℓ̄ =

√
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Z pole. Subsequently, ratios of cross sections are used to obtain partial decay widths for

the Z. This approach is manifestly successful as a hypothesis test of the SM. There is no

statistically significant evidence that the SM breaks down in the EWPD program when

the SM is assumed.

When considering partial widths extracted from LEP data in the SM at the Z pole,

σe+e−→had has the theoretical expression

σ0h = 3π
ΓZ→eēΓZ→Had

|ω(M2
Z)|2

, (4.23)

with ΓZ→eē, ΓZ→Had the decay in the SM. With the choice ω(M2
Z) = M̄Z Γ̄Z , and the

partial width taking on SM values, this expression simplifies to the well known SM result.12

4.2.1 Partial widths in the SMEFT

If one assumes that the SM does break down in the multi-TeV region and considers the

general linear SMEFT, the analysis path followed at LEP receives a number of corrections.

These corrections include corrections of ψ4 operators interfering with the SM processes at

tree level, and modifying the extracted Z widths in the global data set.

The general correction to σ̂0h near the Z pole (s−M2
Z ≡ ∆) in the SMEFT is

δσ0h
σ0h
≃
δΓZ→ℓℓ̄

ΓZ→ℓℓ̄
+
δΓZ→Had

ΓZ→Had
−
δω(M2

Z)

ω(M2
Z)
−
δω⋆(M2

Z)

ω ⋆ (M2
Z)

, (4.24)

where terms like: δσ0h,ψ4 , δσh,γ−Z , and −2(σ0h)SMδω/ω are included into δσ0h. For the near

Z pole hadronic cross section σ(s) we have defined

δσ0h,ψ4 =
(
2δσe+e−→uū,ψ4 + 3δσe+e−→dd̄,ψ4

)
, (4.25)

where

δσe+e−→uū,ψ4 =
NcĜF M̂4

Z

6
√
2π

⎡

⎣

(
C(1),⋆
ℓq − C(3),⋆

ℓq

) (
Gℓ

V +Gℓ
A

)
(Gu

V +Gu
A)

∆+ iω(M2
Z)

, (4.26)

+

[
(C⋆

eu + C⋆
ℓu)G

ℓ
V + (C⋆

ℓu − C⋆
eu)G

ℓ
A

]
(Gu

V −Gu
A)

∆+ iω(M2
Z)

+ h.c.

]

,

δσe+e−→dd̄,ψ4 =
NcĜF M̂4

Z

6
√
2π

⎡

⎣

(
C(1),⋆
ℓq + C(3),⋆

ℓq

) (
Gℓ

V +Gℓ
A

) (
Gd

V +Gd
A

)

∆+ iω(M2
Z)

, (4.27)

+

[
(C⋆

ed + C⋆
ℓd)G

ℓ
V + (C⋆

ℓd − C⋆
ed)G

ℓ
A

] (
Gd

V −Gd
A

)

∆+ iω(M2
Z)

+ h.c.

]

.

Here Gf
A/V are the leading order predictions in the SM. Reintroducing flavour indicies is

trivial in this case, one finds eeuu in all terms in the up quark case for example. Less

12Note that the SM result itself is neglecting contributions from the pure photon pole contribution, that

are α2
ewΓ

2
Z/M

2
Z suppressed.
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ΓZ→eēΓZ→Had

|ω(M2
Z)|2

, (4.23)
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5 Numerics

In this section we perform some minimal EWPD fits. The results presented here are not in-

tended to be a global analysis of all possible data. Our purpose is to make clear a number of

challenges present in such fit efforts in the SMEFT that have not been discussed in the lit-

erature, including the neglect of the effects we have discussed in some detail in section 4.2.1.

We then suggest an approach to circumvent a number of these challenges in section 5.3.

The Wilson coefficients (naively) present in the set of observables we examine are

Cfit =
v̄2T
Λ2

{

C(1)
Hq
pr
, C(3)

Hq
pr
, CHu

pr
, CHd

pr
, C(1)

Hℓ
pr
, C(3)

Hℓ
pr
, CHe

pr
, Cll, CHD, CHWB

}

. (5.1)

In the U(3)5 limit, there are ten parameters in the set of nine measurements given in table 2.

Field redefinitions to remove an operator do not effect physical measurements, and cannot

lead to a more constrained field theory. We do not attempt to remove parameters by field

redefinitions to match the number of parameters and measurements,13 but simply construct

the χ2 directly.

We construct a χ2 for a EWPD fit in the following way. We define a matrix C as

the covariance matrix of the observables, the experimental values of which are obtained

from ref. [19]. ∆ θi as a vector of the difference in the observed and predicted value of an

observable, as a function of the unknown Wilson coefficients. The χ2 is then given by

χ2
EW = (∆θi)

T (C−1)i,j (∆θj). (5.2)

The minimum χ2
EW,min is determined, and the 65%, 90% and 99% best fit confidence level

regions (∆χ2
EW) are defined by the cumulative distribution function for a multi-parameter

fit. The confidence level regions are then given by χ2
EW = χ2

EW,min +∆χ2
EW.

For theoretical predictions in the SM, we use the results supplied by the updated 2013

PDG [32] and ref. [48]. We do not use as SM predictions the results of a fit to EWPD

observables. Minimized fit results of this form for the SM (with a number of SM parameters

floated as in [6]) is a valid procedure for hypothesis testing the SM. When considering a fit

in the SMEFT, using such fit values as the SM theoretical predictions is only valid if the

corrections due to unknown Wilson coefficients enter into the combined χ2 in a manner

that does not depend on the SM parameters fit to themselves. This is an unvalidated

assumption in the SMEFT, and as such we use the SM predictions supplied by [32, 48].

5.1 Prior dependence

We find that obtaining a global minimum, and hence a detailed fit space for the unknown

Wilson coefficients (Cfit) is numerically unstable and strongly depends on the seed imposed

in the search and the priors used.14 This is not surprising as the number of unknown Wilson

coefficients present in the SMEFT is large.

13Such a choice is meaningless in the SMEFT, which has an infinite number of parameters in general.
14A further very basic problem for consistency in the SMEFT is for any minima to be obtained, cross

terms of order v4/Λ4 need to be included in the χ2
EW.This is while terms from dimension eight operators

are neglected, that can appear. As we argue, including an extra theoretical error for these neglected terms

is more consistent than effectively treating the SMEFT as exactly LSM + L(6).
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Observable Experimental Value Ref. SM Theoretical Value Ref.

m̂Z [GeV] 91.1875± 0.0021 [19] – –

m̂W [GeV] 80.385± 0.015 [49] 80.365± 0.004 [50]

ΓZ [GeV] 2.4952± 0.0023 [19] 2.4942± 0.0005 [48]

R0
ℓ 20.767± 0.025 [19] 20.751± 0.005 [48]

R0
c 0.1721± 0.0030 [19] 0.17223± 0.00005 [48]

R0
b 0.21629± 0.00066 [19] 0.21580± 0.00015 [48]

σ0h [nb] 41.540± 0.037 [19] 41.488± 0.006 [48]

AℓFB 0.0171± 0.0010 [19] 0.01616± 0.00008 [32]

Ac
FB 0.0707± 0.0035 [19] 0.0735± 0.0002 [32]

Ab
FB 0.0992± 0.0016 [19] 0.1029± 0.0003 [32]

Table 2. Experimental and theoretical values of the observables used in the illustrative fits.

For example, a set of reasonable prior conditions to impose is that the power counting

expansion of the theory is under control, and that each individual observable falls within

Nσ of each measurement, so that

Cfit < 0.1, θ̂i − θi(Cmin
fit ) < N δθi (5.3)

with δθi the total combined error on an observable θi. The value of N chosen in these

conditions dictates the specific global minimum found in the χ2 minimization. In particular

the presence of the Ab
FB anomaly that deviates at the ∼ 2.5σ level from the SM predictions

indicates that N > 2.5 as a minimization condition is reasonable to not bias the global

minimum in favour of non-vanishing Cmin
fit . Choosing N = 2.8, and seeding a minimization

with Cmin
fit = 0, we find

Cmin
fit =

{
−3.0, 7.9, 12, 87,−14, 3.4,−11× 101, 9.2, 0.13,−1.4× 10−2

}
× 10−4. (5.4)

It is interesting to note that with this procedure the least constrained entries in Cmin
fit

corresponds to operators that lead to vertex corrections of the Z boson to fermions.

However, we stress the arbitrariness of the conditions imposed to obtain this minima

and that it does not hold any particular physical significance. For example, another rea-

sonable prior condition can be constructed based on noting that one can group the Ci into

subgroups that strongly mix under RG evolution (see refs. [16, 51–53] for the relevant RGE

results). Such Wilson coefficients will tend to flow together in value under RG evolution.

This can motivate grouping the operators into classes of the form

Cq =

{
C(1)
Hq
pr
, C(3)

Hq
pr
, CHu

pr
CHd

pr

}
, Cℓ =

{

C(1)
Hℓ
pr
, C(3)

Hℓ
pr
, CHe

pr

}

. (5.5)

Then imposing the conditions in eq. (5.3) gives a minimum with these grouped Wilson

coefficients O(10−3) and CHWB ∼ O(10−5). The individual minima, with two different
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Figure 9. The values v/
√
σk for each Wk for ∆SMEFT = {0%, 0.3%, 1%}.

effective scale in an experiment is µ ∼ m̂Z the Eigenvector W1 is highly constrained.16

This is not equivalent to just setting δ(Zµ ℓ̄ γµ ℓ) = 0.

To optimally incorporate the constrains from global fits that include more pre-LHC

data, or LHC data from Run1, this point still holds. The Eigenvectors and Eigenvalues of

the system are sensitive to the full set of measurements that are required to fully constrain

the Wilson coefficient space model independently.

4 Conclusions

We have developed the global constraints of the SMEFT considering data from many (pre-

LHC) experiments. We have also developed a theory error metric, and used this result in

the global fit. We believe our results demonstrate that SMEFT theory errors should not

be neglected in future fit efforts.

Our conclusions differ somewhat from recent claims in the literature. We find that the

per-mille/few percent constraint hierarchy concerning experimental precision at LEPI and

LEPII/LHC does not consistently translate into a hierarchy of constraints on individual

16The requirement that the scale be µ ∼ m̂Z is due to the fact that the Eigenvector is not preserved

under RG evolution.
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Figure 5. Color map of the correlation matrix between the Wilson coefficients when there is no
SMEFT error. The Wilson coefficients are ordered as in eq. (3.6).

This result can be compared to the one given in ref. [41], where two auxiliary condi-

tions were introduced to break the two dimensional degeneracy of the fit. These auxiliary

conditions were taken to be the two null space directions of the fit, and a constraint of

∼ v̄2T /Λ
2 was set on them by using a naive dimensional power counting. The constraints

on the Wilson coefficients of the four fermion operators barely change compared to ref. [41],

as expected. The one sigma region of Wilson coefficients involved in couplings and W±

mass shifts were relaxed by a little over a factor ∼ 10. This is understandable as the data

we have added is roughly 10% precise, which is less constrained by roughly a factor of ten

less than the two auxiliary conditions added in ref. [41]. The way the degeneracy is broken

also differs as the charged current data weakly lifts the flat directions in the SMEFFT,

and does not correspond exactly to the two null space vectors of the fit. The issues dis-

cussed in section 3.2.1 are still present when interpreting bounds on the Wilson coefficients

derived from LEP leptonic data. However, as the constraints are relatively weaker, this

issue is not dominant in interpreting the results. The highly correlated fit space of the

Wilson coefficients dominates the interpretation of the results. We illustrate this with a

colour map of the correlation matrix between the bounds obtained on the Wilson coeffi-

cients in figure 5, which shows a clear block structure. There are almost no correlations

between the Wilson coefficients of the 4 fermions operators (excepting Cll), and Wilson co-

efficients involved in vector boson couplings and mass redefinitions: CHe, CHu, CHd, C
(1)
Hl ,

C(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHWB and CHD. The latter are very correlated to each other, and are

strongly correlated to CW . This makes clear that a precise and consistent treatment of the

charged current data is critical in developing model independent constraints. Assumptions

about UV physics that break the correlations shown in the Wilson coefficient constraint

space significantly impact the degree of constraint. The different effects of marginalizing

or profiling away parameters also follow from the highly correlated fit space. If the UV

– 19 –
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Four-fermion operators suppressed by using resonant data 
Can be included in the fit with off-shell measurements 

(PEP, TRISTAN, PETRA) 
LEPII also gives access to WWV vertex

14
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|ℳSMEFT|2 = |ℳSM|2 + ℳSM*ℳd6 + ℳSMℳd6* + |ℳd6|2 + ℳSM*ℳd8 + ℳSMℳd8* + …

In a specific model the non-zero coefficients are known and the inclusion of  
|ℳd6|2 will generally provide a more accurate estimate of the observable 

In a generic global fit the non-zero terms are not known and one cannot  
in general constrain operators that first appear at |ℳd6|2 
ℳSM*ℳd8 + ℳSM*ℳd8 terms are at the same order of suppression: one would 
have to introduce assumptions and break the global nature of the fit 
 
A general requirement for the expansion is ℳSM* ℳd6 > |ℳd6|2  
The |ℳd6|2 term is then subleading and its inclusion is a choice 

Including only up to ℳSM* ℳd6 allows a consistent linearization

~c6Q2/Λ2 ~c62Q4/Λ4 ~c8Q4/Λ4

pp processes probe a range of scales so the EFT expansion can break down
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EFT tools facilitate experimental studies and global fits 

SMEFTsim is a complete flavour-general dimension-6 implementation 
NLO implementation soon available in Madgraph 

At LO one can separately generate the ℳSM* ℳd6 & |ℳd6|2 terms in Madgraph 

Derive linear equations for truth- or detector-level observables: 
Scan operators to see which ones provide a non-zero |ℳd6|2 cross-section  

Generate one point for each operator with a non-zero cross section

Table 3: The leading SM-EFT interference terms for each gg ! H, qq ! Hqq, and
ttH cross section region for stage 1 of reference [3] relative to the SM (�i/�

SM

i
), at

leading order in the SM EFT in the SILH basis. The equations are derived with the
Madgraph generator and include showering with Pythia for determining the kinematic
regions. For simplicity we only list Wilson coe�cients whose pre-factor is > 0.1% times
that of the leading pre-factor. Equations without this requirement will be available on
the WG2 twiki.

Cross-section region
P

i
Aici

gg ! H (0-jet)
56c

0
ggg ! H (1-jet, p

H

T
< 60 GeV)

gg ! H (1-jet, 60  p
H

T
< 120 GeV)

gg ! H (1-jet, 120  p
H

T
< 200 GeV) 56c

0
g + 18c3G + 11c2G

gg ! H (1-jet, p
H

T
� 200 GeV) 56c

0
g + 52c3G + 34c2G

gg ! H (� 2-jet, p
H

T
< 60 GeV) 56c

0
g

gg ! H (� 2-jet, 60  p
H

T
< 120 GeV) 56c

0
g + 8c3G + 7c2G

gg ! H (� 2-jet, 120  p
H

T
< 200 GeV) 56c

0
g + 23c3G + 18c2G

gg ! H (� 2-jet, p
H

T
� 200 GeV) 56c

0
g + 90c3G + 68c2G

gg ! H (� 2-jet VBF-like, p
j3
T

< 25 GeV) 56c
0
g

gg ! H (� 2-jet VBF-like, p
j3
T
� 25 GeV) 56c

0
g + 9c3G + 8c2G

qq ! Hqq (VBF-like, p
j3
T

< 25 GeV) �1.0cH� 1.0cT + 1.3cWW� 0.023cB� 4.3cHW
�0.29cHB + 0.092cHQ� 5.3cpHQ� 0.33cHu + 0.12cHd

qq ! Hqq (VBF-like, p
j3
T
� 25 GeV) �1.0cH� 1.1cT + 1.2cWW� 0.027cB� 5.8cHW

�0.41cHB + 0.13cHQ� 6.9cpHQ� 0.45cHu + 0.15cHd
qq ! Hqq (pj

T
� 200 GeV) �1.0cH� 0.95cT + 1.5cWW� 0.025cB� 3.6cHW

�0.24cHB + 0.084cHQ� 4.5cpHQ� 0.25cHu + 0.1cHd
qq ! Hqq (60  mjj < 120 GeV) �0.99cH� 1.2cT + 7.8cWW� 0.19cB� 31cHW

�2.4cHB + 0.9cHQ� 38cpHQ� 2.8cHu + 0.9cHd
qq ! Hqq (rest) �1.0cH� 1.0cT + 1.4cWW� 0.028cB� 6.2cHW

�0.42cHB + 0.14cHQ� 6.9cpHQ� 0.42cHu + 0.16cHd

gg/qq̄ ! ttH
�0.98cH + 2.9cu + 0.93cG + 310cuG
+27c3G� 13c2G

11

Table 12: The SM-EFT interference for the Higgs-boson partial widths relative to the
SM (�i/�SM

i
), at leading order in the SM EFT in the SILH basis.

Partial width
P

i
Aici

H ! bb̄ �1.0cH + 3.0cd
H !WW

⇤
! l⌫l⌫ 10cWW + 3.7cHW + 2.2cpHL

H ! ZZ
⇤
! 4l 55cWW + 13cB + 15cHW + 4.6cHB + 0.018c� + 2.0cHL + 2.0cpHL + 0.027cHe

H ! �� �5.8c
0
�

H ! ⌧⌧ �1.0cH + 3.0cl
H ! gg 56cG

H !all
0.0029cT + 0.17cu + 2.3cd + 0.11cl + 1.0cWW + 0.023cB + 0.37cHW
+0.0079cHB + 1.6cG + 0.0078cHQ + 0.17cpHQ + 0.0027cHu + 0.057cpHL

20
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cross section can be expressed in the form,

�EFT = �SM + �int + �BSM . (1)

We express the non-SM contributions as fractional corrections to the SM,

�int

�SM

=
X

i

Aici,

�BSM

�SM

=
X

ij

Bijcicj , (2)

where ci are the dimension-6 operator coe�cients and Ai and Bij are coe�cients derived
using the Madgraph calculation from the process diagrams. The ci coe�cients have
a 1/⇤2 dependence, where ⇤ is the suppression scale in the EFT. The leading term
in the inverse suppression scale is the interference term; here we keep also the SM-
independent term since it can be the leading term when the interference is small (e.g.
due to symmetries). In such cases the suppression-scale dependence is the same as
that of the interference terms with a dimension-8 vertex or two dimension-6 vertices; in
principle one should estimate the e↵ects of dimension-8 terms when the SM-independent
term is dominant. To perform a fit without SM-independent terms one could simply
set Bij = 0.

The partial widths are parametrized in the same way as the cross sections (� ! �),
with the ratios of partial widths expressed as

B4` =
�4`P
f
�f

⇡
�SM

4`P
f
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2

41 +
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A
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i

A
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X
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1
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3

5 . (3)

Here we neglect cross-terms of the form A
4`

A
f since they are subleading compared to

the individual A terms.
To determine the A and B coe�cients, the Madgraph options NPˆ2 == 1 and

NPˆ2 == 2 are used. The former option directly provides the interference term for
each EFT parameter; the latter provides the BSM terms for individual parameters and
combinations of parameters, from which the cross-terms Bij (i 6= j) can be derived.

Since the equations are calculated at leading order, we only list terms whose A or B

coe�cient is > 0.1% times that of the leading corresponding A or B coe�cient. These
terms could be relevant in a next-to-leading order calculation where corrections with
1/(16⇡)2 factors are included, or if the leading term is smaller than this factor for other
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Template cross sections:   
* Define kinematic & topological regions, fit for normalization factors 
* Allows optimal slicing of process using multiple variables 
* Extrapolation using SM distributions could affect operator dependence 
* Equations for operator dependence can be determined at truth level 

Unfolded cross sections: 
* Reduce model dependence with unfolding 
* Typically confined to one or two differential distributions for fit  
* Equations for operator dependence can be determined at truth level 

Data yields: 
* Can fully optimize sensitivity to operators 
* Ties optimization to a particular operator set 
* Equations for operator dependence must be determined at detector level
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Figure 8: The merged STXS stage-1 regions [8] defined for the measurements. All regions enclosed by red boxes
are merged, except for the sum and di�erence indicated by the “±” sign connecting two merged gg ! H regions
with one qq ! Hqq region. The bbH region is merged with the gg ! H bins.

exists between the gg ! H 0-jet and gg ! H 1-jet pH

T < 60 GeV regions due to migrations between367

experimental jet-bin categories. Finally, there is a substantial anti-correlation between the qq ! Hqq368

pj

T < 200 GeV region and the similar gg ! H 2-jet region because of the experimental di�culty in369

distinguishing between these processes.370

The results show good overall agreement with the SM predictions in a range of kinematic regions of Higgs371

boson production processes. The ten-dimensional compatibility between the measurement and the SM372

prediction corresponds to a p-value of pSM = 9%.373
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A set of ‘simplified’ template cross sections (STXS) defined by the LHC Higgs working group

1610.07922, Sec. III.2

ATLAS-CONF-2017-047

ATLAS combination includes 
binning in jet multiplicity and pTH 



FITS TO HIGGS DATA
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Figure 3: The (a) observed and (b) SM predicted best-fit values and 68% C.L. intervals for each of the six parameters.

Table 3: The fit values and 68% C.L. uncertainties from the fit for six EFT parameters using the Stage 1 STXS
binning to relate the data to the parameters. The observed and SM expected results are shown.

Operator Fit result (observed) Fit result (SM expected)
Og cG = �0.05+0.27

�0.28 ⇥ 10�4
cG = 0.00+0.38

�0.26 ⇥ 10�4

O� cA = 0.3+1.9
�1.8 ⇥ 10�4

cA = 0.0+2.8
�2.2 ⇥ 10�4

Ou cu = �0.50+0.45
�0.81 cu = 0.00+0.24

�0.28

OHW cHW = �0.052 ± 0.028 cHW = 0.000+0.041
�0.043

OHB cHB = 0.026 ± 0.077 cHB = 0.00+0.14
�0.16

OW , OB cWW � cB = 0.078 ± 0.049 cWW � cB = 0.000+0.057
�0.074

8

Parameter value
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Fit to ATLAS STXS measurements (ATLAS-CONF-2017-047)

cHB

 ]-2cHG [ 10
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cuH [ 10 ]

G. Zemaityte, HEFT & 
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Use relations between STXS and EFT parameters to 
derive constraints from ATLAS measurements
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HIGGS DIFFERENTIAL CROSS SECTIONS

20

Individual measurements constrain up two parameters simultaneously

Can use multiple distributions if statistical 
correlations are understood

1802.04146

PLB 753 (2016) 69



COMBINED HIGGS AND ELECTROWEAK FIT

Several implementations constraining parameters sensitive to Higgs and Electroweak data
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Figure 2: Results from global fits in the Warsaw basis (orange) including all operators

simultaneously (upper panel) and switching each operator on individually (lower panel).

Also shown are fits omitting the LHC Run 2 data (blue). We display the best-fit values and

95% CL ranges.

12

COMBINED HIGGS AND ELECTROWEAK FIT

Coe�cient Z-pole + mW WW at LEP2 Higgs Run1 Higgs Run2 LHC WW high-pT

C̄dH ⇥ ⇥ 42.4 57.6 ⇥

C̄eH ⇥ ⇥ 49.6 50.4 ⇥

C̄G ⇥ ⇥ 2.4 97.6 ⇥

C̄HB ⇥ ⇥ 18.6 81.4 ⇥

C̄H⇤ ⇥ ⇥ 19.3 80.7 0.01

C̄Hd 99.85 ⇥ 0.04 0.1 ⇥

C̄HD 99.92 0.06 ⇥ ⇥ ⇥

C̄He 99.99 0.01 ⇥ ⇥ ⇥

C̄HG ⇥ ⇥ 41.1 58.9 0.03

C̄
(1)

H`
99.97 0.03 ⇥ ⇥ ⇥

C̄
(3)

H`
99.56 0.41 ⇥ ⇥ 0.01

C̄
(1)

Hq
99.98 ⇥ ⇥ ⇥ ⇥

C̄
(3)

Hq
98.5 0.96 0.19 0.31 0.07

C̄Hu 99.3 ⇥ 0.2 0.42 0.04

C̄HW ⇥ ⇥ 18.3 81.7 ⇥

C̄HWB 57.7 0.02 8.2 34.1 ⇥

C̄`` 99.66 0.3 ⇥ 0.01 ⇥

C̄uG ⇥ ⇥ 8.9 91.1 ⇥

C̄uH ⇥ ⇥ 10.9 89.1 ⇥

C̄W ⇥ 96.2 ⇥ ⇥ 3.8

Table 5: Impact of di↵erent sets of measurements on the fit to individual Wilson coe�cients

in the Warsaw basis as measured by the Fisher information contained in a given dataset

for each coe�cient. A cross indicates no (current) sensitivity.

16

Several implementations constraining parameters sensitive to Higgs and Electroweak data

20 constrained parameters Run 2 data now dominating Higgs constraints

1803.03252
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APPLICATION TO RESONANCES

23

Name Spin SU(3) SU(2) U(1) Name Spin SU(3) SU(2) U(1)

S 0 1 1 0 �1
1

2
1 2 �

1

2

S1 0 1 1 1 �3
1

2
1 2 �

1

2

' 0 1 2 1

2
⌃ 1

2
1 3 0

⌅ 0 1 3 0 ⌃1
1

2
1 3 -1

⌅1 0 1 3 1 U
1

2
3 1 2

3

B 1 1 1 0 D
1

2
3 1 �

1

3

B1 1 1 1 1 Q1
1

2
3 2 1

6

W 1 1 3 0 Q5
1

2
3 2 �

5

6

W1 1 1 3 1 Q7
1

2
3 2 7

6

N
1

2
1 1 0 T1

1

2
3 3 �

1

3

E
1

2
1 1 -1 T2

1

2
3 3 2

3

Table 6: Single-field extensions of the SM constrained by our analysis.

the 1-� preferred range for the modulus of the coupling squared, assuming a mass of 1 TeV,

and for the mass assuming a coupling of unity. On the other hand, the models below the

double horizon line do not yield an improved fit compared to the SM. For each of these

models we give instead the 1-� upper limit on the modulus of the coupling squared, and the

1-� lower limit on the mass. The bound on, or preferred range for, the mass of a particle

is a better indicator than the pull of the model of how likely it is to be discovered at the

LHC or some other future collider.

The model named ' in Ref. [50] is equivalent to the Two-Higgs Doublet Model

(2HDM); see, e.g., [122] for the corresponding 2HDM notation. We give bounds on the

Type-I 2HDM in Table 7, which is characterized in part by having a universal modification

of the SM Yukawa couplings. We do not perform a comprehensive analysis of the 2HDM

as many such analyses already exist, both within [18, 123, 124] and outside [113, 125, 126]

the EFT framework. The product of couplings of interest in the Type-I 2HDM is Z6 cos �,

where
v
2
Z6

M2
'

⇡
1

2
tan (2 (� � ↵)) . (17)

The preferred mass range for M' in Table 7 assumes the product Z6 cos � = �1. If instead

we take Z6 cos � = +1, the preferred mass range becomes M'/TeV = (2.0, 1).

6.2 Multi-Parameter Models

We have also investigated a number of two-parameter scenarios, namely the models ⌅1, Q1,

B, and W defined in Table 6. For the latter two models we have assumed that all four-

19

Model Pull [�] � �
2

dof
[%] Coupling Mass / TeV

S1 1.1 0.1 |yS1 |
2 = (6.3± 5.9) · 10�3

MS1 = (9.1, 53)

', Type I 0.6 -0.4 Z6 · cos � = �0.41± 0.66 M' = (1.0, 1)

⌅ 1.2 0.4 |⌅|
2 = (4.1± 3.4) · 10�3

M⌅ = (12, 36)

N 1.5 0.9 |�N |
2 = (1.8± 1.2) · 10�2

MN = (5.8, 13)

E 0.2 -0.6 |�E|
2 = (2.0± 9.7) · 10�3

ME = (9.2, 1)

�3 0.7 -0.3 |��3 |
2 = (0.8± 1.1) · 10�2

M�3 = (7.3, 1)

⌃ 0.4 -0.5 |�⌃|
2 = (0.9± 2.0) · 10�2

M⌃ = (5.9, 1)

Q5 0.7 -0.3 |�Q5 |
2 = 0.07± 0.10 MQ5 = (2.4, 1)

T2 0.3 -0.5 |�T2 |
2 = (1.8± 5.1) · 10�2

MT2 = (3.8, 1)

W1 1.2 0.3
���ĝ�W1

���
2

= (3.3± 2.7) · 10�3
MW1 = (4.1, 13)

S - - |yS |
2
< 0.47 MS > 1.5

�1 - - |��1 |
2
< 5.7 · 10�3

M�1 > 13

⌃1 - - |�⌃1 |
2
< 7.3 · 10�3

M⌃1 > 12

U - - |�U |
2
< 3.1 · 10�2

MU > 5.7

D - - |�D|
2
< 1.5 · 10�2

MD > 8.2

Q7 - - |�Q7 |
2
< 7.2 · 10�2

MQ7 > 3.7

T1 - - |�T1 |
2
< 0.11 MT1 > 3.0

B1 - -
���ĝ�B1

���
2

< 2.4 · 10�3
MB1 > 20

Table 7: Single-parameter renormalizable extensions of the SM. The coupling bound as-

sumes a mass of 1 TeV, and the mass range assumes a coupling of one. The models above

the double line improve the pull with respect to the SM, but not necessarily the goodness-

of-fit. The goodness-of-fit is not improved in the models below the double line. All bounds

are at the 1�� level. Model ' is the 2HDM.

20

Apply EFT results to cases of individual 
high-mass resonances

Some types of resonances improve the 𝜒2  

Limits are set on the other resonances
1803.03252



TOP-QUARK MEASUREMENTS

24

LHC top WG has defined scenarios for  
four-fermion operators separating  

heavy and light quarks

2

Dataset
p
s (TeV) Measurements Ref.

Top pair production
ATLAS 7 + 8 Total inclusive � [13]

7 + 8 Di↵erential pT (t),Mtt̄, |y(tt̄)| [14]
CMS 7 Di↵erential pT (t),Mtt̄, y(t), |y(tt̄)| [15]
CDF 1.96 Di↵erential Mtt̄ [16]
D/0 1.96 Di↵erential Mtt̄, pT (t), |y(t)| [17]

Single top production
ATLAS t-channel 7 Total inclusive �

[18]
7 Di↵erential pT (t), |y(t)|

CMS t-channel 7 Total inclusive � [19]
8 Total inclusive � [20]

CDF s-channel 1.96 Total inclusive � [21]
D/0 s+ t-channel 1.96 Total inclusive � [22]

TABLE II: Datasets used in the fit, including
total cross-sections (�); transverse momenta
of single tops (pT (t)) and top pairs (pT (tt̄));
rapidities of single tops (y(t)) and top pairs
(y(tt̄)); and the invariant mass of top pairs
(Mtt̄).

dimension-six operators. These operators lead to no-
ticeable deviations from SM expectations in a double
expansion of the matrix element in SM and new physics
couplings

|Mtot|
2 = |MSM|

2 + 2< {MSMM
⇤

D6} + |MD6|
2, (1)

where strictly speaking one must neglect the third term
on the right-hand side if working to dimension-six only, as
this has dimension-eight, . Provided Ci/⇤2 is small, such
a truncation is typically valid and the squared dimension-
six terms become numerically irrelevant.

The complete set of 80 e↵ective operators at dimension-
six has been known for some time [24–26]. Only recently
was it shown that this basis contains several redundancies,
with the minimal set comprising 59 terms [12, 27, 28, 28].
Considerable attention has been devoted to constraining
these operators, for example, in the context of Higgs and
precision electroweak physics [7–11]. In addition, strong
bounds have also been placed on new top interactions
from precision constraints at LEP [29] and direct searches
for top quark physics at the LHC [30–35].
While Higgs physics has received a lot of attention

from an EFT perspective, the top quark sector has not
seen similar scrutiny, although top data from the combi-
nation of the Tevatron and the LHC Run I is far more
abundant. In the last few years, top quark physics has
entered something of a precision era: the top has been
measured in several production and decay channels, and
dedicated searches in complicated final states such as tt̄H
are underway [36, 37].
It is our aim to close this gap. The TopFitter ap-

proach constrains new physics in the top sector using
both di↵erential and inclusive observables, by means of
a computational tool which is fully flexible with respect
to the number of input measurements and scales well to
the relevant number of EFT operators. In the present
work we limit ourselves to a nine-dimensional fit based on
direct top measurements performed at the Tevatron and
the LHC, keeping track of all EFT operator-correlations,

and reserve a more complete investigation for the near
future [38].

II. RELEVANT OPERATORS

Throughout the analysis, and for ease of compari-
son with precision electroweak studies, the operator set
presented in Ref. [12] is used (see also the basis of
Refs. [39, 40]). Assuming minimal flavor violation, and in
the leading-order⇤ approximation of equation 2, of these
59 operators only 15 — shown in Table I — are relevant
for top production. Fitting a 15-dimensional function is
a considerable challenge; a brute force likelihood scan at
N points per dimension would require N15 evaluations,
which is prohibitive even for modest, low-resolution values
of N . This näıve dimensionality can be reduced, however,
by noting some features of the operator set.
Firstly, we note that the two operators containing the

dual field-strength tensor G̃µ⌫ = ✏µ⌫⇢�G⇢�, along with
the imaginary parts of OtG and OtW , are CP-odd and
can be discriminated from CP-even e↵ects in studies of
spin-correlations, polarisation e↵ects and genuinely CP-
sensitive observables [42] (for recent analyses focusing on
the tWb vertex, for instance, see Refs. [43–47]). Currently
there is no evidence for CP-violation in the top sector
beyond the minimal flavor violation assumption. We will
address these operators in forthcoming work but neglect
them in the following; the dimensionality of our fit is
reduced by four.
Secondly, we consider top-pair production. Here the

four-fermion operators, which are numerous when all
flavour combinations are considered, only contribute to

⇤By leading-order we mean O(⇤�2), but for some new physics
e↵ects, such as top flavour-changing neutral currents, the first non-
zero contributions enter at O(⇤�4) see e.g. [41] for details.

Tevatron and LHC top measurements have been fit to constrain 9 operators 4
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d
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FIG. 1: 95% confidence intervals for operators contributing
to top-pair and single top production, individually (with all
other operators set to zero) and marginalised (with all other
operators allowed to float to best-fit values). Note that the
marginalised bound on C̄2

d fall outside the region where the
dimension-six approximation is valid, so this operator is un-
constrained.

polynomial in the {Ci}, cf. eq. (1), and the ex-
tra polynomial order provides some tolerance to
beyond-fixed-order e↵ects.

• Finally, we construct a �2 function between the bin
parameterisations {fb({Ci})} and the data, accord-
ing to

�2({Ci}) =
X

O

X

b

(fb({Ci}) � Eb)2

�2
b

,

i.e. we sum over all observables O, and all bins in
that observable, b. Eb is the experimental reference
value at bin b and �b is the total uncertainty for bin
b, which we for now assume as an uncorrelated com-
bination of theoretical modelling and experimental

measurement uncertainties, �b =
q
�2
theory + �2

exp.

The �2 is then used to place constraints on the
operator Wilson coe�cients, as follows.

Constraints are obtained in two ways, for ease of com-
parison with existing literature. Firstly, single operator
coe�cients are allowed to vary, with all others set to
zero (the SM value). The �2 is then minimised using
PyMinuit [70], and used to set confidence limits on the
operator value. A second approach is to marginalise over
the remaining operators, namely to construct the confi-
dence limit for a given operator coe�cient whilst allowing
all other coe�cients to vary. Both cases are shown in
Figure 1, where the dimension-six contributions are nor-
malised to the Standard Model piece via C̄i = Civ2/⇤2.
All results are consistent with the SM within 95% limits.

As with all e↵ective operator constraints, these must
be interpreted as valid only in the region where O(⇤�4)
terms are not large. Clearly C̄2

d is outside this region. In
top pair production, for instance, the contribution from
dimension-6 operators relative to the SM piece is typically
O(g2sCiv2/⇤2) which must be < 1 in the linear approx-
imation , i.e C̄i . 1.5. All other operators respect this
bound. It should be noted that some of these operators,
namely those containing field strength tensors, can only
be generated at loop level in the ultraviolet completion,
which widens this region of validity since ⇤2 will be ac-
companied by a loop factor of 16⇡2. This argument is
invalid, however, if the underlying completion is strongly
coupled. It is possible to include such information in our
fitting approach, but in the interests of full generality no
such model-specific assumptions are made here.
One sees from Figure 1 that the weakest constraints

are on the coe�cients (of four-fermion operators) C̄i
u and

C̄i
d. These are constrained by the processes uū ! tt̄ and

dd̄ ! tt̄ respectively, which are suppressed relative to the
corresponding gluon initiated processes, mostly due to
the relative partonic luminosities.
One may also examine the correlation of constraints

between pairs of operators. An example is Figure 2(a),
which shows confidence limits in the (CtW , C3

�q) plane,
with all other operator coe�cients set to zero. One may
also marginalise over all remaining operators, as shown
in Figure 2(b). In both cases, we currently find excellent
agreement with the SM. More detailed results will be
presented in a forthcoming paper [38].

V. SUMMARY, CONCLUSIONS AND
OUTLOOK

Following the discovery of the Higgs boson, the search
for physics beyond the Standard Model will remain the
primary goal of the LHC experiment for the foreseeable fu-
ture. The top quark sector is a particularly well-motivated
window through which to look for the imprint of non-
resonant new physics. Modelling such e↵ects using e↵ec-
tive field theory (higher dimensional operators) is well
justified given the absence of new resonant physics from
the LHC Run I. The abundance of top quark production
at the LHC enables a multi-faceted analysis of top quark
phenomenology and allows us to confront higher dimen-
sional top sector operators with di↵erential measurements
at high statistics.
In this paper, we have characterised new physics cor-

rections using the well-established framework of e↵ective
field theory. We have presented results from a new com-
putational framework to fit all possible dimension-six
operator coe�cients to a comprehensive set of relevant
data. This is possible through our use of fast-fitting algo-
rithms, which have been developed (and well-tested) in
the context of Monte Carlo event generator tuning. Here
we expect these techniques to work even better, given the
explicit polynomial dependence of theory observables on

JHEP 04 (2016) 015

those limits [19]. Denoting the left-handed quark doublet and right-handed quark singlets of the
third generation as Q, t, and b,

q̄iqi, ūiui, d̄idi bilinears are allowed in the first two generations,
Q̄Q, t̄t, b̄b, t̄b, Q̄t, Q̄b bilinears are allowed in the third generation,

under the above assumptions. The coe�cients of the first-generation bilinears do not depend on
the i œ {1, 2} index which is thus implicitly summed over. Fierz transformations may be required
on four-fermion operators to bring such quark-antiquark pairs in the same Lorentz bilinear. Equiv-
alently, a U(2)q ◊U(2)u ◊U(2)d symmetry is assumed between the first two quark generations and
no restriction is imposed on the third-generation bilinears. This assumption simplifies four-fermion
operators but does not a�ect third-generation two-fermion ones. Compared to flavour diagonality,
i.e. [U(1)q+u+d]3, which would just force quarks and antiquarks to appear in same-flavour pairs,
U(2)q ◊ U(2)u ◊ U(2)d e�ectively imposes the following additional requirements:

1. the right-handed charged currents of the first generations (ūd, d̄u) are forbidden,

2. the chirality-flipping bilinears of the first generations (q̄u, q̄d) are forbidden,

3. the coe�cients of the bilinears of the first and second generations are forced to be identical.

The U(2)q ◊U(2)u ◊U(2)d flavour symmetry assumption is used by default in this note where not
otherwise specified. The following numbers of degrees of freedom are produced for the operators
of each category of field content:

four heavy quarks 11 + 2 CPV
two light and two heavy quarks 14

two heavy quarks and bosons 9 + 6 CPV
two heavy quarks and two leptons (8 + 3 CPV) ◊ 3 lepton flavours

where we counted separately CP-conserving and CP-violating (CPV) parameters. They are con-
structed explicitly in Appendix C and listed in Table 1 together with their definitions in terms of
Warsaw-basis operator coe�cients.

Finally, a more restrictive variant of this U(2)q ◊ U(2)u ◊ U(2)d scenario would retain only the
four-fermion operators and exclude the operators with two heavy quarks and bosons. This would
be justified when heavy bosons only couple to the SM fermions, so that the low-energy e�ects are
dominated by the tree-level exchanges of heavy mediators between fermionic currents.

4.2 Less restrictive U(2)q+u+d scenario

In order to allow for the light-quark bilinears listed in item 1 and item 2 above, one can limit the
flavour symmetry imposed to U(2)q+u+d only, the diagonal subgroup of U(2)q ◊ U(2)u ◊ U(2)d.
The additional 10 + 10 CPV degrees of freedom that then appear for operators containing two
light and two heavy quarks are discussed in Appendix D.

4.3 More restrictive top-philic scenario

A more restrictive top-philic scenario is not obtained by imposing a specific flavour symmetry but
rather by assuming that new physics couples dominantly to the left-handed doublet and right-
handed up-type quark singlet of the third generation as well as to bosons. All possible operators
with this field content are thus constructed. Purely bosonic operators which lead to flavour-
universal e�ects are discarded. A projection onto the Warsaw basis is subsequently performed,
notably by employing the equations of motion to trade operators with more derivatives for oper-
ators with more fields. In this process, the CKM matrix is again approximated by a unit matrix
and all Yukawa couplings but the top and bottom ones are neglected. Only a limited number of

6
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COMBINING TOP AND HIGGS/EW DATA
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Example of processes involving the top
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Several operators typically enter each process at LO (or at LO2) and 

NLO

✓

✓
✓
✓

✓
✓
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✓

✓
✓

✗

✗
✗

✓

✓
✓

✓

Top measurements have 
substantial overlap in 

operator dependence with 
Higgs and Electroweak 

measurements

Combined top/Higgs/EW fit 
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SMEFT @ ATLAS

26

A recent ATLAS workshop reviewed the 
theoretical issues associated with 

performing an SMEFT fit (July 19) and 
with combining measurements across 

analysis groups (July 20) 

The conveners will circulate a summary 
in the coming weeks and schedule a 

follow-up meeting in a couple months

https://indico.cern.ch/event/729117



SUMMARY

Interference provides a sensitive probe for new physics at a high scale 

A complete basis of operators is available for a rigorous search 

Fits to ~20 operators have demonstrated the methods & feasibility of global fits 

Now is the time for the experiments to enter the game
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GAUGE BOSON SELF-COUPLINGS

5 April 2016 C. Hays, Oxford University 30

Direct gauge-boson self-couplings
s-channel multiboson production

t-channel vector boson fusion 

Vector boson scattering 

Triple-gauge couplings: 
Dimension 6 operators

Quartic-gauge couplings: 
Dimension 8 operators

5 April 2016 C. Hays, Oxford University 30

Direct gauge-boson self-couplings
s-channel multiboson production

t-channel vector boson fusion 

Vector boson scattering 

Triple-gauge couplings: 
Dimension 6 operators

Quartic-gauge couplings: 
Dimension 8 operators

s-channel t-channel

Historical 
parameterization

only determined by self-couplings
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also affect Higgs production & decay

324 II.2.3. The Standard Model EFT and Next to Leading Order

+

p
ḡ2
1 + ḡ2

2

2
(h + vT )2 Zµ ūr �

µPLus
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C(1)

Hq � C(3)
Hq

⌘
U(u, L)

i

rs
,

+

p
ḡ2
1 + ḡ2

2

2
(h + vT )2 Zµ d̄r �

µPLds

h
U(d, L)†

⇣
C(1)

Hq + C(3)
Hq

⌘
U(d, L)

i

rs
,

+

p
ḡ2
1 + ḡ2

2

2
(h + vT )2 Zµ  ̄r �

µPR  s

h
U( , R)† CH U( , R)

i

rs
,

�
ḡ2
p

2
(h + vT )2 W

+
µ ⌫̄r �

µPL es

h
U(⌫, L)† C(3)

H` U(e, L)
i

rs

�
ḡ2
p

2
(h + vT )2 W

+
µ ūr �

µPL ds

h
U(u, L)† C(3)

Hq U(d, L)
i

rs
,

+
i ḡ2

2
(h + vT )2 W

+
µ ūr �

µPR ds

h
U(u, R)† CHud U(d, R)

i

rs
+ h.c (II.2.107)

where  = {u, d, e}.

II.2.3.b.iv.9 TGC parameters
The off-shell Triple gauge coupling parameters are given by

(�LTGC) /ḡV WW = iḡV
1

�
W

+
µ⌫W

�µ
� W

�
µ⌫W

+µ
�
V
⌫ + i̄V W

+
µ W

�
⌫ V

µ⌫ , (II.2.108)

+ i
�̄V

M̄2
W

V
µ⌫

W
+⇢
⌫ W

�
⇢µ

where V = {Z, A}. In the SM gAWW = e and gZWW = g2 c✓. In the SMEFT the canonically
normalized couplings are modified to ḡAWW = ē and ḡZWW = ḡ2 c̄✓ and the shifts compared to these
normalized couplings are

�ḡA
1 = ��̄A = �

v2
T

2

c✓̄
s✓̄

CHWB, �ḡZ
1 = ��Z =

v2
T

2

s✓̄
c✓̄

CHWB, (II.2.109)

and

��̄A = 6 s✓̄ CW
M̄2

W

ḡAWW
, ��̄Z = 6 c✓̄ CW

M̄2
W

ḡZWW
. (II.2.110)

An important check of gauge invariance in TGC shifts is that the relationships

̄Z = ḡZ
1 � (̄A � 1) t2✓̄, �̄Z = �̄A, (II.2.111)

are respected when the shifts in the Lagrangian parameters are expressed in terms of the SM parameters.
These shifts respect these relationships.

II.2.3.b.v Summary of mass eigenstate interactions and symmetries
L6 has 2499 parameters in general [631]. Clearly restricting to a Minimal Flavour Violating (MFV) sce-
nario [697–699], which imposes a U(3)5 flavour symmetry broken only by the SM Yukawas is desirable.
This reduces the number of parameters to 76. Assuming that CP violating effects can also be neglected,
the number of parameters is restricted to 53 for L6 [631]. This is a reasonable symmetry based limit to
assume.II.34 In this symmetric case [Y ]rs 2 R and

[Y ]rs = �rs

m̂r
 

vT

⇥
1 + cH,kin � v2

C H

⇤
, where C H [Y ]rs = Re


C⇤
 H
rs

�
. (II.2.112)

II.34Custodial symmetry is broken by gauge interactions in the SM and the mass splitting of fermion doublet fields. The number
of parameters removed due to this strongly broken symmetry being assumed are negligible compared to the effects of the CP

even and MFV assumptions.
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫
µ

GB⇢
⌫ GCµ

⇢

Q eG fABC eGA⌫
µ

GB⇢
⌫ GCµ

⇢

QW ✏IJKW I⌫
µ

W J⇢
⌫ WKµ

⇢

QfW ✏IJKfW I⌫
µ

W J⇢
⌫ WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA
µ⌫GAµ⌫

Q
H eG H†H eGA

µ⌫GAµ⌫

QHW H†H W I
µ⌫W Iµ⌫

Q
HfW H†H fW I

µ⌫W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I
µ⌫Bµ⌫

Q
HfWB

H†⌧ IH fW I
µ⌫Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I
µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA
µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I
µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA
µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I
µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j
p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j
p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏
IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏
IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†
⌧

IH W I

µ⌫
Bµ⌫

Q
HfWB

H†
⌧

IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�
µ⌫TAur) eH GA

µ⌫

QuW (q̄p�
µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�
µ⌫ur) eH Bµ⌫

QdG (q̄p�
µ⌫TAdr)H GA

µ⌫

QdW (q̄p�
µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�
µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I

�
µlr)

QHe (H†i
 !
D µH)(ēp�

µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�

µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧

I
�

µqr)

QHu (H†i
 !
D µH)(ūp�

µur)

QHd (H†i
 !
D µH)(d̄p�

µdr)

QHud + h.c. i( eH†DµH)(ūp�
µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�

µqt)

Q(3)
qq (q̄p�µ⌧

Iqr)(q̄s�
µ
⌧

Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�
µqt)

Q(3)
lq

(l̄p�µ⌧
I lr)(q̄s�

µ
⌧

Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�
µet)

Quu (ūp�µur)(ūs�
µut)

Qdd (d̄p�µdr)(d̄s�
µdt)

Qeu (ēp�µer)(ūs�
µut)

Qed (ēp�µer)(d̄s�
µdt)

Q(1)
ud

(ūp�µur)(d̄s�
µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�
µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�
µet)

Qlu (l̄p�µlr)(ūs�
µut)

Qld (l̄p�µlr)(d̄s�
µdt)

Qqe (q̄p�µqr)(ēs�
µet)

Q(1)
qu (q̄p�µqr)(ūs�

µut)

Q(8)
qu (q̄p�µTAqr)(ūs�

µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�
µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�
µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�

µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA
µ⌫

GAµ⌫

QH eG H†H eGA
µ⌫

GAµ⌫

QHW H†H W I
µ⌫

W Iµ⌫

QHfW H†H fW I
µ⌫

W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

QH eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I
µ⌫

Bµ⌫

QHfWB H†⌧ IH fW I
µ⌫

Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I
µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA
µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I
µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA
µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I
µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl (H†i

 !
D µH)(l̄p�µlr)

Q(3)
Hl (H†i

 !
D I

µH)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq (H†i

 !
D µH)(q̄p�µqr)

Q(3)
Hq (H†i

 !
D I

µH)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq (l̄p�µlr)(q̄s�µqt)

Q(3)
lq (l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud (ūp�µur)(d̄s�µdt)

Q(8)
ud (ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd (q̄p�µqr)(d̄s�µdt)

Q(8)
qd (q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄j

pur)✏jk(q̄k
s dt)

Q(8)
quqd (q̄j

pT
Aur)✏jk(q̄k

s TAdt)

Q(1)
lequ (l̄jper)✏jk(q̄k

s ut)

Q(3)
lequ (l̄jp�µ⌫er)✏jk(q̄k

s�
µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)

Chapter II.2. EFT Formalism 319

Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA
µ⌫

GAµ⌫

QH eG H†H eGA
µ⌫

GAµ⌫

QHW H†H W I
µ⌫

W Iµ⌫

QHfW H†H fW I
µ⌫

W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

QH eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I
µ⌫

Bµ⌫

QHfWB H†⌧ IH fW I
µ⌫

Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I
µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA
µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I
µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA
µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I
µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl (H†i

 !
D µH)(l̄p�µlr)

Q(3)
Hl (H†i

 !
D I

µH)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq (H†i

 !
D µH)(q̄p�µqr)

Q(3)
Hq (H†i

 !
D I

µH)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq (l̄p�µlr)(q̄s�µqt)

Q(3)
lq (l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud (ūp�µur)(d̄s�µdt)

Q(8)
ud (ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd (q̄p�µqr)(d̄s�µdt)

Q(8)
qd (q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄j

pur)✏jk(q̄k
s dt)

Q(8)
quqd (q̄j

pT
Aur)✏jk(q̄k

s TAdt)

Q(1)
lequ (l̄jper)✏jk(q̄k

s ut)

Q(3)
lequ (l̄jp�µ⌫er)✏jk(q̄k

s�
µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏
IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏
IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†
⌧

IH W I

µ⌫
Bµ⌫

Q
HfWB

H†
⌧

IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�
µ⌫TAur) eH GA

µ⌫

QuW (q̄p�
µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�
µ⌫ur) eH Bµ⌫

QdG (q̄p�
µ⌫TAdr)H GA

µ⌫

QdW (q̄p�
µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�
µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I

�
µlr)

QHe (H†i
 !
D µH)(ēp�

µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�

µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧

I
�

µqr)

QHu (H†i
 !
D µH)(ūp�

µur)

QHd (H†i
 !
D µH)(d̄p�

µdr)

QHud + h.c. i( eH†DµH)(ūp�
µdr)
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Q(1)
qq (q̄p�µqr)(q̄s�

µqt)
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⌧

Iqt)

Q(1)
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(l̄p�µlr)(q̄s�
µqt)

Q(3)
lq

(l̄p�µ⌧
I lr)(q̄s�
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⌧

Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�
µet)

Quu (ūp�µur)(ūs�
µut)

Qdd (d̄p�µdr)(d̄s�
µdt)

Qeu (ēp�µer)(ūs�
µut)

Qed (ēp�µer)(d̄s�
µdt)

Q(1)
ud

(ūp�µur)(d̄s�
µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�
µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�
µet)

Qlu (l̄p�µlr)(ūs�
µut)

Qld (l̄p�µlr)(d̄s�
µdt)

Qqe (q̄p�µqr)(ēs�
µet)

Q(1)
qu (q̄p�µqr)(ūs�

µut)

Q(8)
qu (q̄p�µTAqr)(ūs�

µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�
µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�
µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j
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ur)✏jk(q̄k

s
dt)

Q(8)
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(q̄j
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)



QFT INTERFEROMETRY
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Interference provides unique sensitivity to small effects 
(e.g. non-SM interactions) 

QFT example: VBF Higgs production 
(or how to discover a matter-antimatter asymmetry)

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven
phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting
momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observ-
able combines the information of the high-dimensional phase space in a single observable, which can be
shown to have the highest sensitivity for small values of the parameter of interest and neglects contribu-
tions proportional to d̃2 in the matrix element. The method was first suggested for the estimation of a
single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribu-
tion [18] using the so-called Optimal Observable of first order. The extension to several parameters and
also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Ob-
servable of second order was introduced in Refs. [19, 27, 28]. The technique has been applied in various
experimental analyses, e.g. Refs. [15, 29–39].

The analysis presented here uses only the first-order Optimal Observable OO (called Optimal Observable
below) for the measurement of d̃ via maximum-likelihood fit to the full distribution. It is defined as the
ratio of the interference term in the matrix element to the SM contribution:

OO =
2 Re(M⇤SMMCP-odd)

|MSM|2
. (12)

Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for
two non-zero d̃ values, which introduce an asymmetry into the distribution and yield a non-vanishing
mean value.

Optimal Observable
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Figure 1: Distribution of the Optimal Observable at parton-level for two arbitrary d̃ values. The SM sample was
generated using MadGraph5_aMC@NLO [40] (see Sect. 5) at leading order, and then reweighted to di↵erent d̃
values. Events are chosen such that there are at least two outgoing partons with pT > 25 GeV, |⌘| < 4.5, large
invariant mass (m(p1, p2) > 500 GeV) and large pseudorapidity gap (�⌘(p1, p2) > 2.8 ).

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are
extracted from HAWK [41–43]. The evaluation requires the four-momenta of the Higgs boson and the
two tagging jets. The momentum fraction x1 (x2) of the initial-state parton from the proton moving in
the positive (negative) z-direction can be derived by exploiting energy–momentum conservation from the
Higgs boson and tagging jet four-momenta as:

xreco
1/2 =

mH j j
p

s
e±yH j j (13)

6

ig2vg𝜇𝜈/√2

d(ig2vg𝜇𝜈/√2)



ELECTROWEAK OBSERVABLES
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Historically capture new physics affecting W & Z propagators using S, T, U parameters  
“Oblique” corrections: S, T (U) related to dimension-6 (8) operators
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Figure 1. Results of a χ2 analysis of ST parameters in EWPTs using the expansion formalism
of [106]. The dotted, dashed and solid contours denote the regions allowed at the 68%, 95%, and
99% CL, respectively, which may be compared with those of [109].

while those that affect the leptonic and hadronic Z-pole measurements directly through

modifications to the gauge boson-fermion couplings are

Ldim-6 ⊃
∑

fL

⎛

⎝ c̄fL
v2

OfL +
c̄(3)fL

v2
O(3)

fL

⎞

⎠+
∑

fR

c̄fR
v2

OfR .

The sum is over the left-handed lepton and quark doublets, fL ≡ LL, QL, and right-handed

lepton and quark singlets, fR ≡ eR, uR, dR, and we assume minimal flavour violation. The

Fermi constant GF defined by the muon lifetime, which we take as an input observable, is

modified by c̄(3)fL
as well as the four-fermion operator O(3)l

LL :

Ldim-6 ⊃
c̄(3)lLL

v2
O(3)l

LL .

We note that the coefficients are defined such that

c̄ ≡ c
M2

Λ2
, (2.6)

where M ≡ v,mW depending on the operator normalization, and c ∼ g2NP is a coefficient

proportional to a new physics coupling gNP defined at the scale M . These are related to

the coefficients at the new physics scale through RGE equations [110–117].

These operators form a redundant basis that is reducible through field redefinitions,

or equivalently the equations of motion, that have no effect on the S-matrix [44–49]. Fol-

lowing [88], we may eliminate the operators OLL ,O
(3)
LL

that affect the left-handed leptonic

Z couplings, and the operators O2W ,O2B,O2G corresponding to the Y,W and Z parame-

ters [101, 102] in the generalization of the universal oblique parameters.6 The coefficients

6The U, V and X parameters correspond to higher-dimensional operators.

– 7 –

JHEP 03 (2015) 157

Figure 1: Fits to the �S and �T parameters [115–120] using Z-pole, W mass, and LEP 2

WW scattering measurements (green), using LHC Run 1 and Run 2 Higgs results (orange),

and all the data (blue). The darker and lighter shaded regions are allowed at 1 and 2�,

respectively. We see that the Higgs measurements at the LHC have similar impacts to the

electroweak precision measurements, and are largely complementary, emphasizing the need

for a combined global fit.

5 Results

5.1 Oblique Parameters S and T

As an introduction to the results from our updated global fit, we first present its implications

in a simplified case where only the oblique parameters �S and �T introduced in [115–120]

are non-zero. In the Warsaw basis these parameters are given by

v
2

⇤2
CHWB =

g1g2

16⇡
�S,

v
2

⇤2
CHD = �

g1g2

2⇡ (g1 + g2)
�T , (14)

whereas in the SILH basis the relation (at leading order) is given by ↵�T = c̄T and

↵�S = 4s2
W
(c̄W + c̄B).

Figure 1 shows the preferred parameter space for �S and �T for three di↵erent

selections of the data sets included in the fit. The green ellipses are obtained using just the

Z-pole, W mass, and LEP 2 WW scattering measurements in the fit, whereas the orange

ellipses use only the LHC Run 1 and Run 2 Higgs results. Finally, the blue ellipses are

obtained using all the data described in Section 3. The regions shaded in darker and lighter

10

Chapter II.2. EFT Formalism 319

Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j

p
ur)✏jk(q̄k

s
dt)

Q(8)
quqd

(q̄j

p
TAur)✏jk(q̄k

s
TAdt)

Q(1)
lequ

(l̄j
p
er)✏jk(q̄k

s
ut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄k

s
�µ⌫ut)
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Table 100: The L6 operators built from Standard Model fields which conserve baryon number in the Warsaw
basis [614]. The flavour labels of the form p, r, s, t on the Q operators are suppressed on the left hand side of the
tables.

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)
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(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)
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At leading order in dimension 6:



STXS + DECAY

Aim to add decay distributions to STXS 
Studies needed for H→4l binning and distribution(s) 

Options include pseudo-observables, m12 vs m34, and decay angle 
Can be defined globally for all bins using the rest frame of the Higgs boson



FURTHER CONSTRAINTS

Some operators affecting electroweak processes still unconstrained in fit
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`
]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`

]ij
i

v2
¯̀
i�k�µ`jH†�k

 !
DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq

]ij
i

v2 q̄i�k�µqjH†�k
 !
DµH

[OHu]ij
i

v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
i

v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m
2

W

p
2mei

mej

v

¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g

0

m
2

W

p
2mei

mej

v

¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
gs

m
2

W

p
2mui

muj

v
q̄iH̃�µ⌫T aujGa

µ⌫

[OuW ]ij
g

m
2

W

p
2mui

muj

v
q̄i�kH̃�µ⌫ujW k

µ⌫

[OuB ]ij
g

0

m
2

W

p
2mui

muj

v
q̄iH̃�µ⌫ujBµ⌫

[OdG]ij
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m
2

W

p
2mdi

mdj

v
q̄iH�µ⌫T adjGa

µ⌫

[OdW ]ij
g

m
2

W

p
2mdi

mdj

v
q̄i�kH�µ⌫djW k

µ⌫

[OdB ]ij
g

0

m
2

W

p
2mdi

mdj

v
q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
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predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1
p

2v2
, ↵ =

g2g02

4⇡(g2 + g02)
, mZ =

p
g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥
@µ(H†H)

⇤2

OT
1

2v2

⇣
H† !DµH

⌘2

O6 �
�

v2 (H†H)3

Og

g
2

s

m
2

W

H†H Ga

µ⌫
Ga

µ⌫

O�
g

02

m
2

W

H†H Bµ⌫Bµ⌫

OW
ig

2m
2

W

⇣
H†�i

 !
DµH

⌘
D⌫W i

µ⌫

OB
ig

0

2m
2

W

⇣
H† !DµH

⌘
@⌫Bµ⌫

OHW
ig

m
2

W

�
DµH†�iD⌫H

�
W i

µ⌫

OHB
ig

0

m
2

W

�
DµH†D⌫H

�
Bµ⌫

O2W
1

m
2

W

DµW i

µ⌫
D⇢W i

⇢⌫

O2B
1

m
2

W

@µBµ⌫@⇢B⇢⌫

O2G
1

m
2

W

DµGa

µ⌫
D⇢Ga

⇢⌫

O3W
g
3

m
2

W

✏ijkW i

µ⌫
W j

⌫⇢
W k

⇢µ

O3G

g
3

s

m
2

W

fabcGa

µ⌫
Gb

⌫⇢
Gc

⇢µ

Bosonic CP-odd

eOg

g
2

s

m
2

W

H†H eGa

µ⌫
Ga

µ⌫

eO�
g

02

m
2

W

H†H eBµ⌫Bµ⌫

eOHW
ig

m
2

W

�
DµH†�iD⌫H

� fW i

µ⌫

eOHB
ig

m
2

W

�
DµH†D⌫H

� eBµ⌫

eO3W
g
3

m
2

W

✏ijkfW i

µ⌫
W j

⌫⇢
W k

⇢µ

eO3G

g
3

s

m
2

W

fabc eGa

µ⌫
Gb

⌫⇢
Gc

⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
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uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
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uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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GF =
1
p

2v2
, ↵ =

g2g02

4⇡(g2 + g02)
, mZ =

p
g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
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uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.
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The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
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uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`
]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.
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II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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