Searches for vector-like quarks at CMS

Rachitha Mendis Kansas State University (US) On behalf of the CMS Collaboration PHENO 2018 , University of Pittsburgh, PA, 7 – 9 May, 2018

Introduction : Vector-Like Quarks

• Candidates that could solve the hierarchy problem by stabilizing quantum corrections to the Higgs mass

$$m_h^2 = m_{bare}^2 + \delta m_h^2$$

- Appear in Many beyond the SM theories:
 - Little Higgs model, Composite Higgs models, Extra dimensions
- Properties
 - Spin ¹/₂, non chiral, colored charged particles
- Can appear as SU(2) singlets, doublets, or triplets
- Natural models tend to favor coupling to 3rd-gen SM quarks

Q Ele.Charge	Decays
T ^{2/3}	bW ⁺ , tH, tZ
B -1/3	tW-, bH, bZ
X ^{5/3}	tW ⁺
Y -4/3	bW-

Production : Vector-Like Quarks

Pair Production:

- Dominant in lower mass range
- Produced via strong interaction
- Cross section depends only on mass

Single Production:

- Produced via electro-weak interaction
- Cross section depends on mass and EW coupling

VLQ Searches at CMS

- Searches using full 2016 data in pp collisions at center-of-mass energy of 13 TeV with the CMS detector
- In this talk,

Pair Production		Paper	Int. Lumi
$X\overline{X}$ in di-lepton final state	B2G-16-019		35.9
$X\overline{X}$ in single lepton final state	B2G-17-008		35.9
$T\overline{T} / Y\overline{Y}$ in single lepton final state	B2G-17-003 arXiv:1710.01539	Phys. Lett. B 779 (2018) 82	35.6-35.8
$T\overline{T}$ / $B\overline{B}$ in single lepton, same-sign di-lepton and tri-lepton final states	B2G-17-011		35.9
Single Production		Paper	
$B \rightarrow bH$ in fully hadronic final state	B2G-17-009 arXiv:1802.01486	Submitted to JHEP	35.9
$T \rightarrow tZ$ in di-lepton final state	B2G-17-007 arXiv:1708.01062	Submitted to PLB	35.9

CMS-PAS-B2G - http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G/index.html B2GPublications - http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/index.html

VLQ: Pair Production

Pair: $X_{5/3} \rightarrow tW$, **Same Sign di-lepton**

CMS-PAS-B2G-16-019

Signal:

- $2 \text{ W} \rightarrow l + \nu$
- $2 \text{ W} \rightarrow q \overline{q}$
- 2 *b*-tagged jets

Backgrounds:

- 1. Same-sign prompt leptons from simulation
- 2. Opposite-sign prompt leptons data driven method
- 3. Same-sign non- prompt leptons data driven method

Pair: $X_{5/3} \rightarrow tW$, Single lepton

CMS-PAS-B2G-17-008

Pair: $T_{2/3}(B_{-1/3}) \rightarrow$ Leptonic final states

CMS-PAS-B2G-17-011

<u>Search Variables</u> <u>Single Lepton</u>

- 16 categories according to lepton flavor and number of H tagged, W tagged and b tagged jets
- For W categories min**M(l, b)**
- For H Categories S_T

<u>Same-sign di-leptons</u> - H_T^{lep}

Tri-leptons

- Four categories depending on lepton flavor
 - eee, eeµ, eµµ, µµµ
- Search Variable S_T

$$\mathbf{S}_{\mathbf{T}} \equiv \sum_{all \ jets+leptons+MET} \mathbf{P}_{\mathbf{T}}$$

Pair: $T_{2/3}(B_{-1/3}) \rightarrow$ Leptonic final states

CMS-PAS-B2G-17-011

10

VLQ: Single Production

Single: $T_{2/3} \rightarrow tZ$, Di-leptons

Submitted to PLB

- 10 categories depending on Z decay, Hadronic Top reconstruction and number of forward jets
- reconstructed T mass (t, Z) for fitting

Category	Z boson	t quark	N(forward jets)
1	two muons	fully merged	≥ 0
2	two electrons	fully merged	≥ 0
3	two muons	partially merged	0
4	two muons	partially merged	≥ 1
5	two electrons	partially merged	0
6	two electrons	partially merged	≥ 1
7	two muons	resolved	0
8	two muons	resolved	≥ 1
9	two electrons	resolved	0
10	two electrons	resolved	≥1

Signal:

- 2 opposite sign di-leptons from Z
- t decays hadronically

Backgrounds: All background

– from data

Summary

- Presented the status of VLQ searches in CMS using full 2016 data
- Setting stronger limits on both single and pair production

Vector-like Quark Single Production

Thank you!!!!!

Pair: $X_{5/3} \rightarrow tW$, Same Sign di-lepton

Event Selection:

- 1. Two tight same sign leptons
- 2. Quarkonia veto :
 - M_{ll} > 20 GeV
- **3**. Associate Z Boson veto :
 - veto events with $M_{ll'}$ within 15 GeV of Z mass
- 4. Primary Z Boson veto :
 - $M_{\rm ll} > 106.1 \, {\rm GeV}$ and $M_{\rm ll} < 76.1 \, {\rm GeV}$ (only for ee)
- 5. No. of constituents ≥ 5
 - No. of jets + No. of other leptons (leptons not from same sign pair)
- 6. $H_T^{lep} > 1200 \text{ GeV}$
 - $H_T^{lep} = \sup P_T (jets + tight leptons in event)$

Pair: $X_{5/3} \rightarrow tW$, Same Sign di-lepton

18

Event Selection:

- 1. One tight lepton with $p_T > 80$ GeV (no loose leptons with $p_T > 10$ GeV)
- *2.* $E_T^{\text{miss}} > 100 \text{ GeV}$ (reduce multijet background)
- 3. NAK4 \geq 4 (Leading Jet Transverse momentum > 450, 2nd leading Jet Transverse momentum > 150)
- 4. Nbjets ≥ 1
- 5. dR (lepton , closest jet) > 0.4 or lepton p_T perpendicular to jet axis > 40 GeV (reduce residual multijet contamination)
- 6. $dR(lepton, j_2) > 1.0$ (good discriminator for both signal and control regions)

CMS-PAS-B2G-17-008

Pair: $X_{5/3} \rightarrow tW$, Single lepton

min[M(l,b)] [GeV]

min[M(l,b)] [GeV]

min[M(I,b)] [GeV]

min[M(l,b)] [GeV]

Pair: $T_{2/3}(B_{-1/3}) \rightarrow$ Leptonic final states

Search Variables

- Single Lepton
- 16 categories according to lepton flavor and number of H tagged, W tagged and b tagged jets
- For W categories min**M(l, b)**
- For H Categories S_T
- Same-sign di-leptons H_T^{lep}

 $\mathbf{S}_{\mathbf{T}} \equiv \sum_{all \ jets+leptons+MET} \mathbf{P}_{\mathbf{T}}$

Signal:

- Single lepton
- sensitive to $T(B) \rightarrow bW, tH (tW, bH)$
- same sign di-leptons sensitive to $T(B) \rightarrow tH(tW)$
 - Tri-leptons sensitive to $T(B) \rightarrow tZ (bZ)$

Backgrounds:

- Single lepton All Backgrounds from simulation
- Same sign di-leptons
 - Same-sign prompt leptons from simulation
 - 2. Opposite-sign prompt leptons data driven method
 - 3. Same-sign non- prompt leptons data driven method
 - Tri leptons
 - 1. Prompt background
 - 2. Non-prompt background
- from simulation– data driven method

CMS-PAS-B2G-17-011

Pair: $T_{2/3}(B_{-1/3}) \rightarrow$ Leptonic final states **CMS-PAS-B2G-17-011** T Singlet Model B Doublet Model T Doublet Model **B** Singlet Model 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) [qd](<u>B</u>B) (B<u>B</u>)[pb] [dd](TT) [dd](TT) 95% CL upper limits **CMS** *Preliminary* **CMS** Preliminary 95% CL upper limits CMS Preliminary 95% CL upper limits **CMS** *Preliminary* 95% CL upper limits --- Observed - Observed Observed - Observed B(bW) = 2B(tH, tZ) = 0.5B(tH) = B(tZ) = 0.5*B*(tW) = 2*B*(bH,bZ) = 0.5 B(bH) = B(bZ) = 0.5······ Expected ······ Expected ······ Expected ······ Expected 1+2+3 lep 1+2+3 lep 1+2+3 lep 1+2+3 lep р b 68% expected 68% expected 68% expected 68% expected 95% expected 95% expected 95% expected 95% expected 10-1 10-1 pp → $T\overline{T}$ pp → TT pp → $B\overline{B}$ pp → $B\overline{B}$ **10**⁻¹ 10⁻¹ 10⁻² 10⁻² 10^{-2} 10⁻² 1200 1600 1800 1000 1200 1400 1600 1800 1200 800 1000 1400 800 800 1000 1200 1400 1600 1800 800 1000 1400 1600 1800 T mass [GeV] T mass [GeV] B mass [GeV] B mass [GeV] M_T >1200 GeV @ 95 % CL M_T >1280 GeV @ 95 % CL M_B >1170 GeV @ 95 % CL $M_B > 940 \text{ GeV} @ 95 \% \text{ CL}$ $\mathcal{B}(T \rightarrow tZ, tH) = 50 \%$ $\mathcal{B}(T \rightarrow bW) = 50 \%$ $\mathcal{B}(B \to tW) = 50\%$ $\mathcal{B}(B \rightarrow bZ, bH) = 50\%$ $\mathcal{B}(B \rightarrow bZ, bH) = 25\%$ $\mathcal{B}(T \rightarrow tZ, tH) = 25\%$

Single: $T_{2/3} \rightarrow tZ$, Di-leptons

•

20 15

10

600

Data/Bkg.

Submitted to PLB

Background uncertainty

Fb→ tZb (M=1TeV, LH)

1800 2000

 $m_{\rm tZ}$ [GeV]

1000 1200 1400 1600

Signal:

- 2 opposite sign di-leptons from Z
- t decays hadronically

Backgrounds: All background

– from data

- 10 categories depending on Z decay, Hadronic Top reconstruction ٠ and number of forward jets
 - reconstructed T mass (t, Z) for fitting (pdZ) Category Z boson t quark N(forward jets) 1 fully merged ≥ 0 two muons 2 two electrons fully merged ≥ 0 partially merged 3 two muons 0 bg partially merged two muons ≥ 1 partially merged 0 5 two electrons partially merged ≥ 1 6 two electrons dd)0 0 7 two muons resolved 8 ≥ 1 resolved two muons 9 0 two electrons resolved 10 > 1two electrons resolved Cat1 Cat₂ 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 10^{-2} смѕ 35**CMS** 40 T in 2µ + 1 t jet Events / ttV and tZq (V = Z or W)⁻ tV and tZq (V = Z or W) T in 2e + 1 t je 35 30 t and single-top /V (V = Z or W) tt and single-top VV (V = Z or W)

10

.5

600 800 1000 1200 1400

Data/Bkg.

Background uncertainty

→ tZb (M=1TeV, LH

m_{tz} [GeV]

