Pragmatic evaluation of multi-loop multi-scale integrals

Sophia Borowka

CERN

European Research Council Established by the European Commission

Based on:

1804.06824 SB, T. Gehrmann, D. Hulme,

Comput.Phys.Commun. 225 (2018) 1-9 C. Bogner, SB, T. Hahn, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, V. Papara

Comput.Phys.Commun. 222 (2018) 313-326 SB, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke

Joint Pheno Seminar, University Milano-Bicocca, Jun 7th 2018

Outline

0) Introduction

- 1) Database for loop integrals Loopedia
- 2) Analytical vs. numerical evaluation
- 3) Evaluate integrals
 - a) fully numerically (PYSECDEC)
 - **b)** using precise analytical approximations (TAYINT)
- 4) Summary & Outlook

- we need accurate predictions at NLO and beyond
- we want differential predictions
- we want to take exact heavy quark mass dependences (and H, W, Z) into account
- phenomenological predictions involve complicated multi-loop multi-scale integrals

Higgs-boson pair production in gluon fusion

The leading order is loop induced Glover, van der Bij '88

Higgs-boson pair production in gluon fusion

The leading order is loop induced Glover, van der Bij '88

Next-to-leading order (NLO) type diagrams

Higher order correction to box-type LO diagram also needed:

one-loop pentagon integrals

Higher order correction to box-type LO diagram also needed:

one-loop pentagon integrals

Techniques for multi-loop multi-scale integrals

- Diverse approaches on the market to compute these
 - Feynman parametrization, Mellin-Barnes representation, differential equations, difference equations, dispersion integrals, integrals in coordinate space, gluing, experimental mathematics, combination of several methods

Techniques for multi-loop multi-scale integrals

- Diverse approaches on the market to compute these
 - Feynman parametrization, Mellin-Barnes representation, differential equations, difference equations, dispersion integrals, integrals in coordinate space, gluing, experimental mathematics, combination of several methods
- contribution lookup table: loop encyclopedia C. Bogner, SB, T. Hahn, G. Heinrich, S.P. Jones, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, V. Papara '17

Loopedia

Loopedia start page

Loopedia

Ex.: Edge list [(1,2),(2,3),(2,3),(3,4)] or 12232334 - Nickel index e11|e|

Enter your graph by its edge list (adjacency list) or Nickel index or browse:

	Loops = ~ any ~	Legs = ~	any ~ Scales	= • any •
Fulltext must contain:			must not contain:	
		Search	Reset	

If you wish to add a new integral to the database, start by searching for its graph first.

The Loopedia Team is C. Bogner, S. Borowka, T. Hahn, G. Heinrich, S. Jones, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, V. Papara. Software version of 06 Nov 2017 16:01 UTC. In case of technical difficulties with this site please contact <u>Thomas Hahn or Viktor Papara</u>. This Web site uses the <u>GraphState library [arXiv:1409.8227]</u> for all graph-theoretical operations and the neato component of <u>Graphviz</u> for drawing graphs.

Loopedia is free and open to everyone. To acknowledge and support the work put into keeping Loopedia up to date, please cite arXiv:1709.01266.

Loopedia Graph Browser

012|034|34|0|0| 00011001001011 00010001001n1r e12[e3]34[5]e5[e] e12|e3|45|45|e|e| e12|e3|e4|45|5|e| Prev Next Show 4 ~ rows per page Home

Results for loops = 2, legs = 4, all scales - Row 6»

イロト 不得 とくき とくき とうき

Loopedia Record Display

Particle The massive source parts, Channel Durate the source of the participation of the par

added 19 Sen 2017 06 24 UTC

Analytical vs. numerical evaluation

Analytical:

+ fast evaluation of result

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible

э

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible
 - adding more scales is a challenge

4 E b

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible
 - adding more scales is a challenge
 - automation difficult

3 K K 3 K -

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible
 - adding more scales is a challenge
 - automation difficult

Numerical:

+ highly automatable

3 K K 3 K -

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible
 - adding more scales is a challenge
 - automation difficult

Numerical:

- + highly automatable
- + scales are not a problem

F 4 3 5 F

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible
 - adding more scales is a challenge
 - automation difficult

Numerical:

- + highly automatable
- + scales are not a problem
 - precision vs. speed

F 4 3 F 1

Analytical:

- + fast evaluation of result
- + dependence on kinematic variables visible
 - adding more scales is a challenge
 - automation difficult

Numerical:

- + highly automatable
- + scales are not a problem
 - precision vs. speed
 - intuitive understanding of result harder

Evaluate integrals fully numerically with pySecDec

Image: A matrix and a matrix

Feynman loop integrals

Scalar multi-loop integral in Feynman parametrization

$$G = \frac{(-1)^{N_{\nu}}}{\prod_{j=1}^{N} \Gamma(\nu_j)} \Gamma(N_{\nu} - LD/2) \int_{0}^{\infty} \prod_{j=1}^{N} dx_j \ x_j^{\nu_j - 1} \delta(1 - \sum_{l=1}^{N} x_l) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}(\vec{x})}{\mathcal{F}^{N_{\nu} - LD/2}(\vec{x}, s_{ij})}$$

with $N_{\nu} = \sum_{j=1}^{N} \nu_j$ in *D* dimensions with *L* loops, *N* propagators to power ν_j

- Feynman integrals can have numerators of rank R
- U and F can be constructed via topological cuts or by specifying the individual propagators in momentum space

$$\mathcal{F} = -s_{12} x_1 x_3 - s_{23} x_2 x_4 - p_1^2 x_1 x_2 - p_2^2 x_2 x_3 - p_3^2 x_3 x_4 - p_4^2 x_4 x_1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

The method of sector decomposition

 Idea and method of sector decomposition pioneered by Hepp '66, Denner & Roth '96, Binoth & Heinrich '00

The method of sector decomposition

 Idea and method of sector decomposition pioneered by Hepp '66, Denner & Roth '96, Binoth & Heinrich '00

iterative sector decomposition is highly automatable

Numerical evaluation using sector decomposition

Public codes:

- sector_decomposition (uses GiNaC) Bogner & Weinzierl '07 supplemented with CSectors Gluza, Kajda, Riemann, Yundin '10 for construction of integrand in terms of Feynman parameters
- FIESTA* (uses Mathematica, C) A.V. Smirnov, V.A. Smirnov, Tentyukov '08 '09, A.V. Smirnov '13, A.V. Smirnov '15
- (PY)SECDEC* (uses Python, C++, FORM)
 Carter & Heinrich '10; SB, Carter, Heinrich '12; SB & Heinrich '13;
 SB, Heinrich, Jones, Kerner, Schlenk, Zirke '15; SB, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '17

*Multi-scale integrals not limited to the Euclidean region SB, J. Carter & G. Heinrich '12; A.V. Smirnov '13

pySecDec use cases

- compute single
 - multi-loop multi-scale integrals
 - general parametric functions

< A >

pySecDec use cases

- compute single
 - multi-loop multi-scale integrals
 - general parametric functions
- generate library of integrals

pySecDec use cases

- compute single
 - multi-loop multi-scale integrals
 - general parametric functions
- generate library of integrals
- use algebra package for symbolic manipulations on integrals

Operational sequence of the program pySecDec

numerical integration: CUBA library Hahn '04, CQUAD GSL library

э

イロト イポト イヨト イヨト

pySecDec toolbox

Primary objective:

facilitate generation of integral libraries

э

イロト イポト イヨト イヨト

pySecDec toolbox

Primary objective:

facilitate generation of integral libraries

Improved structure:

 dependences on open-source libraries only NUMPY www.numpy.org, SYMPY www.sympy.org, FORM Vermaseren et al. '00 '13, NAUTY McKay, Piperno '13

Image: A matrix and a matrix

ヨト イヨト

pySecDec toolbox

Primary objective:

facilitate generation of integral libraries

Improved structure:

 dependences on open-source libraries only NUMPY www.numpy.org, SYMPY www.sympy.org, FORM Vermaseren et al. '00 '13, NAUTY McKay, Piperno '13

Download pySecDec:

S. B

https://github.com/mppmu/secdec/releases

C Features Busines	ss Explore Marketplace Pricing This repository Search Sign In .: Sign up	
Code () Issues ()	O Watch 8 ★ star 5 ¥ Fink 1 □ Pull requests 0 in Insights Image: Star 1 Image: Star 1 1	
Releases Tags		
Latest release)	pySecDec 1.3.1 20 Phy released this on Apr 24 - 12 commits to master since this release	I
owka (CERN)	pragmatic multi-loop evaluation	

Install pySecDec

Install:

tar xzvf pySecDec-1.2.2.tar.gz cd pySecDec-1.2.2 make

Prerequisites:

- python 2.7 or 3
- python libraries numpy & sympy
- ► C++ compiler

Optional prerequisites:

- geometric decomposition strategies: NORMALIZ Bruns, Ichim, Roemer, Soeger '12
- NEATO http://www.graphviz.org

► All other dependences are shipped for easier installation

Comparison of pySecDec to SecDec 3 & Fiesta

	PYSECDEC time(s)	SECDEC 3 time(s)	FIESTA time(s)
	(algebraic, num.)	(algebraic, num.)	(algeb., num.)
triangle 2L	(40.5, 9.6)	(56.9, 28.5)	(211.4, 10.8)
triangle 3L	(110.1, 0.5)	(131.6, 1.5)	(48.9, 2.5)
box2L6 (Eucl.)	(8.2, 0.2)	(4.2, 0.1)	(4.9, 0.04)
box2L6 (Phys.)	(21.5, 1.8)	(26.9, 4.5)	(115.3, 4.4)
box2L7 (invprop)	(345.7, 2.8)	(150.4, 6.3)	(21.5, 8.8)

4-core Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

소 曰 돈 (4 國)는 (4 国)는 (4 国)는 (4

- relative accuracy goal set to 10⁻²
- algebraic part usually takes longer, but is only done once in (PY)SECDEC

checks of analytically calculated integrals

э

イロト イポト イヨト イヨト

- checks of analytically calculated integrals
- prediction of master integrals SB, Heinrich '13; SB '14

э

< ロ > (同 > (回 > (回 >))

- checks of analytically calculated integrals
- prediction of master integrals SB, Heinrich '13; SB '14
- ► fast evaluation of 34 massive 2L-bubble topologies (4 scales) for $\mathcal{O}(\alpha_s \alpha_t)$ MSSM Higgs-mass contributions SB, Hahn, Heinemeyer, Heinrich, Hollik '14

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- checks of analytically calculated integrals
- prediction of master integrals SB, Heinrich '13; SB '14
- fast evaluation of 34 massive 2L-bubble topologies (4 scales) for O(α_sα_t) MSSM Higgs-mass contributions
 SB, Hahn, Heinemeyer, Heinrich, Hollik '14
- as a library for 327 integrals needed in Higgs-pair production at NLO with full top-quark mass dependence SB, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, U. Schubert, T. Zirke '16

- checks of analytically calculated integrals
- prediction of master integrals SB, Heinrich '13; SB '14
- ► fast evaluation of 34 massive 2L-bubble topologies (4 scales) for $\mathcal{O}(\alpha_s \alpha_t)$ MSSM Higgs-mass contributions SB, Hahn, Heinemeyer, Heinrich, Hollik '14
- as a library for 327 integrals needed in Higgs-pair production at NLO with full top-quark mass dependence SB, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, U. Schubert, T. Zirke '16
- ► as a library for 513 massive 2L bubble integrals for $O(\alpha_s \alpha_x)$ MSSM Higgs-mass contributions SB, Passehr, Weiglein, 1801.xxxx

- checks of analytically calculated integrals
- prediction of master integrals SB, Heinrich '13; SB '14
- ► fast evaluation of 34 massive 2L-bubble topologies (4 scales) for $\mathcal{O}(\alpha_s \alpha_t)$ MSSM Higgs-mass contributions SB, Hahn, Heinemeyer, Heinrich, Hollik '14
- as a library for 327 integrals needed in Higgs-pair production at NLO with full top-quark mass dependence SB, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, U. Schubert, T. Zirke '16
- ► as a library for 513 massive 2L bubble integrals for $O(\alpha_s \alpha_x)$ MSSM Higgs-mass contributions SB, Passehr, Weiglein, 1801.xxxx

pySecDec is ready for many more applications!

TayInt - evaluate integrals using precise analytical approximations

Quasi-finite Basis Panzer '14; von Manteuffel, Panzer, Schabinger '14

(Scalar) Multi-loop Feynman integral in Feynman parametrization:

$$G = \frac{(-1)^{N_{\nu}}}{\prod_{j=1}^{N} \Gamma(\nu_j)} \Gamma(N_{\nu} - LD/2) \int_{0}^{\infty} \prod_{j=1}^{N} dx_j \ x_j^{\nu_j - 1} \delta(1 - \sum_{l=1}^{N} x_l) \frac{\mathcal{U}(\vec{x})^{N_{\nu} - (L+1)D/2}}{\mathcal{F}(\vec{x}, s_{ij})^{N_{\nu} - LD/2}}$$

with $N_{\nu} = \sum_{j=1}^{N} \nu_j$ in *D* dimensions with *L* loops, *N* propagators to power ν_j

- Appearance of UV and IR divergences depend on N_{ν} , L and D
- Add dots on propagators and/or shift the dimension until the integral is finite
- facilitates numerical integration due to lack of subtraction terms
- implemented in Reduze 2 von Manteuffel, Panzer, Schabinger '14

TayInt uses part of SecDec 3

 use part of SecDec 3 to generate iterated sub-sectors for finite integrals

Conformal mapping

conformal mapping

$$t_0 = rac{-1-y_0}{y_0}$$
 ,

- below threshold: only preparatory step before Taylor expansion
- above threshold: continuation to complex plane needed

Analytic continuation and partitioning

 analytic continuation of integrand

$$ilde{G}^{\mathsf{F}}_{l}(t_{j})
ightarrow ilde{G}^{\mathsf{F}}_{l}(t_{j}') = ilde{G}^{\mathsf{F}}_{l}\left(rac{1}{2} + rac{1}{2}\,e^{\mathrm{i} heta_{j}}
ight)$$

partition the integral

$$\prod_{j} \int_{0}^{\pm \pi} \mathrm{d}\theta_{j} G_{l}^{\mathsf{F}}(\theta_{j})$$
$$= \prod_{j} \sum_{k=1}^{n} \int_{I_{k,j}}^{h_{k,j}} \mathrm{d}\theta_{j} G_{l}^{\mathsf{F}}(\theta_{j}) \quad (1$$

with $h_{n,j} = \pm \pi$ and $l_{1,j} = 0$,

Choice of integration contour

sample over A values for θ_j, γ sets of kinematic values for all contour configurations o(j) = ±π

$$\bar{m}_{l}(\Theta_{o(1),\ldots,o(J)}^{A}) = \frac{1}{A} \sum_{a=1}^{A} \frac{1}{\gamma} \sum_{i=1}^{\gamma} \operatorname{Abs} \left[\frac{1}{J} \sum_{j=1}^{J} \left(\frac{\partial}{\partial \theta_{j}} \tilde{G}_{l}^{\mathsf{F}} \left(\theta_{j}, \mathcal{K}_{i} \right) \right) \right] \Big|_{\left\{ \theta_{j} \right\} \to \Theta_{o(1),\ldots,o(J)}^{s}}$$

- decide which integration variable to integrate out exactly
- decide which contour to choose

イロト 不得 とくき とくき とうき

Choice of integration contour

 choose contour with TAYINT but not exact integration

 choose exact integration variable with TAYINT but not contour

choose exact integration variable and contour with TAYINT

Summary of TayInt steps

U1: reduce the Feynman Integral to a quasi finite basis				
U2: perform a sector decomposition on the finite				
integrals in the basis				
below threshold	above threshold			
BT1: $t_j \rightarrow y_j$	OT1:	$t_j ightarrow heta_j$, generate ${\cal K}$ samples		
BT2: Taylor expand the	OT2:	find contour configuration		
integrand and		$\Theta_{o(1),,o(J)}$		
integrate				
	OT3:	perform one fold integrations		
	OT4:	find optimum resultant		
		surface $\Theta_{o(1),,o(J-1)}$		
	OT5:	determine partition \mathcal{P}_j		
	OT6:	Taylor expand and integrate		

イロト 不得 とくほ とくほ とうほう

 6th order Taylor expansion, using a 4-fold and 8-fold partitioning

S. Borowka (CERN)

Results for 3-scale integral I10 $O(\epsilon^1)$

- higher orders in ϵ do not pose a problem
- ▶ 6th order Taylor expansion, 4-fold partitioning

Results for 3-scale integral I10 $O(\epsilon^2)$

 oscillatory behaviour around zero of two subsector integrands lead to larger TAYINT error

4th order Taylor expansion, 8-fold partitioning

Results for 4-scale integral I39 $O(\epsilon^1)$

- ▶ higher orders in e do not pose a problem, but no exact integration possible
- 4th order Taylor expansion, 6-fold partitioning

Results for 4-scale integral I39 $O(\epsilon^2)$

4th order Taylor expansion, 8-fold partitioning

Summary & Outlook

Summary

- Loopedia is a community-driven database for loop integral results
- PYSECDEC can be used for direct numerical integration of multi-loop multi-scale Feynman integrals
- TAYINT is a new method of accurate analytical approximations of multi-loop multi-scale Feynman integrals
- TAYINT shown to work for 4-scale integrals with 5 propagators

Outlook

- Increase automation of algorithm, optimize generated file size
- application to more integrals entering phenomenological predictions

Backup

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Input for pySecDec

- no input files needed, direct python interface
- many usage examples provided, e.g.

```
#! /usr/bin/env python
from pySecDec.loop_integral import loop package
import pySecDec as psd
li = psd.loop integral.LoopIntegralFromGraph(
internal lines = [['m',[3,4]],['m',[4,5]],['m',[3,5]],[0,[1,2]],[0,[4,1]],[0,[2,5]]],
external lines = [['p1'.1],['p2'.2],['p3'.3]].
replacement rules = [
                          ('p1*p1', 0),
                          ('p2*p2', 0),
                          ('p3*p3', 's').
                          ('p4*p4', 0),
                          ('p1*p2', 's/2').
                         ('p2*p3', '-s/2'),
('p1*p3', '-s/2'),
                          ('m**2', 'msa')
                      1
Mandelstam symbols = ['s']
mass symbols = ['msg']
    S. Borowka (CERN)
                                  pragmatic multi-loop evaluation
                                                                                           39
```

pySecDec as a library: example snippet

```
#include "vvvv bubble/vvvv bubble.hpp"
#include "yyyy box6Dim/yyyy box6Dim.hpp"
/*
 * pySecDec Master Integrals
// one loop bubble
yyyy bubble::nested_series_t<secdecutil::UncorrelatedDeviation<yyyy_bubble::integrand_return_t>> bubble(yyyy_bubble::real_t_uORt)
    using namespace yyyy_bubble;
    const std::vector<real t> real parameters{uORt};
    const std::vector<complex t> complex parameters{};
    // optimize contour
    const std::vector<nested series t<vvvv bubble::integrand t>> integrands = vvvv bubble::make integrands(real parameters, complex parameters)
       // The number of samples for the contour optimization, the minimal and maximal deformation parameters, and the decrease factor can be
       // optionally set here as additional arguments.
       ):
    // add integrands of sectors (together flag)
    const vvvv bubble::nested series t<vvvv bubble::integrand t> summed integrands = std::accumulate(++integrands.begin(), integrands.end(), *int
    // define the integrator
    auto integrator = secdecutil::cuba::Vegas<std::complex<double>>():
    integrator.flags = 2; // verbose output
    integrator.epsrel = 1e-5:
    integrator.epsabs = 1e-7;
    integrator.maxeval = 1e7;
    // integrate
    return secdecutil::deep apply(summed integrands, integrator.integrate) * yyyy bubble::prefactor(real parameters, complex parameters);
   numerical amplitude using pySecDec Master Integrals
secdecutil::Series<secdecutil::UncorrelatedDeviation<std::complex<double>>> yyyy numerical(double s, double
    return -8.*( 1. + (t*t + u*u)/s * box6Dim(t.u) + (t-u)/s*( bubble(u)-bubble(t) ) );
```

A bit of extra motivation to use pySecDec

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

SB, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, U. Schubert, T. Zirke '16

Some of most complicated diagrams entering calculation:

• two-loop integrals, with numerators (4 independent mass scales: \hat{s} , \hat{t} , m_t^2 , m_b^2 or 3 ratios), e.g.

Exact result vs approximations at 100 TeV

- ▶ NLO HEFT good approximation for $m_{hh} < 2m_t$
- ► scale uncertainties of HEFT and FT_{approx} do not enclose central value of full result in m_{hh} tail → HEFT breaks down
- fast evaluation using interpolated grid Heinrich, Jones, Kerner, Luisoni, Vryonidou '17; Jones, Kuttimalai '17

S. Borowka (CERN)

pragmatic multi-loop evaluation