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Collider Physics at the LHC

No striking evidence of NP =⇒ NP in quantum effects, possible deviations from the SM

behaviour (Precision Physics)

Milano Bicocca, May 31, 2018 – p. 3/60



Collider Physics at the LHC
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Collider Physics at the LHC

Our Contribution
Calcul. Partonic hard scattering
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Theoretical Framework: pQCD
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Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions h1 + h2 → QQ̄+X

According to the FACTORIZATION THEOREM the process can be sketched as follows:

X

f(x1)

f(x2)

H.S.

h1{p}
Q

Q̄h2{p, p̄}

q, g

q̄, g

σh1,h2
=

∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2fh1,i(x1, µF )fh2,j(x2, µF ) σ̂ij (ŝ,mt, αs(µR), µF , µR)

s =
(
ph1

+ ph2

)2
, ŝ = x1x2s
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, ŝ = x1x2s

PDFs: Universal Part
Evolution with the factorization scale

predicted by the theory
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Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions h1 + h2 → QQ̄+X
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ph1
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, ŝ = x1x2s

Partonic Cross Section
Process dependent part

Calculation in Perturbation Theory

Milano Bicocca, May 31, 2018 – p. 5/60



Partonic Cross Section: PT Expansion

σ̂QQ̄ij ∝
∣
∣
∣MQQ̄

ij

∣
∣
∣

2
=

∣
∣
∣MQQ̄

ij,0 + αSMQQ̄
ij,1 + α2

S MQQ̄
ij,2 + · · ·

∣
∣
∣

2

MQQ̄
qq̄ = + +

+ + · · ·

MQQ̄
gḡ = + +

+ + + · · ·

→
δij (−i 6k+m)

k2+m2−iǫ

→
δab

k2 − iǫ

→
δµν δab

k2 − iǫ

→ igSt
a
ij γ

µ

→ −igSfcabpµ

→ igSfabc[δµν (pσ−qσ)

+δνσ(qµ − kµ)

+δµσ(kν − pν )]

→ −g
2
S [f

gac
f
gbd

(2δµνδστ

−δµσδντ − δµτ δνσ)

+ · · ·

p

k

p− k

∝ αS

π

∫

d4k
tr{tatb} tr{γµ(−i 6k +m)γν [i( 6p− 6k) +m]}

(k2 +m2)[(p− k)2 +m2]
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Differential Equations Method

One of the more successful techniques for the computation of multi-loop Feynman

diagrams in the last years is the Differential Equations Method

Decomposition of the Amplitude

in terms of Dim Reg Scalar Integrals

Automatic Generation
of IBPs, LI

and sym. relations

MIs

Automatic Generation
of the System of

1st order linear diff eqs

Solution of the system in (d-4)
(Numerical or) Analytical in a

suitable functional basis
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Integration-by-Parts Identities

One of the building blocks of the method is constituted by the REDUCTION PROCEDURE

∫

dDk1d
Dk2

∂

∂kµ1,2

[

(kµi , p
µ
i )

Sn1
1 · · ·Snq

q

Dm1
1 · · ·Dmt

t

]

= 0

F.V. Tkachov, Phys. Lett. B100 (1981) 65.

K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159.

Using IBP identities and LIs the scalar integrals in terms of which our observable is

expressed are “REDUCED” to a set of l.i. ones: the MASTER INTEGRALS

PUBLIC
PROGRAMS

AIR – Maple package

(C. Anastasiou, A. Lazopoulos, JHEP 0407 (2004) 046 )

FIRE – Mathematica package (A. V. Smirnov, JHEP 0810 (2008) 107)

REDUZE – REDUZE2 C++/GiNaC packages

(C. Studerus, Comput. Phys. Commun. 181 (2010) 1293;

A. von Manteuffel and C. Studerus, arXiv:1201.4330 [hep-ph].)

LiteRed – Mathematica package (R. N. Lee arXiv:1212.2685 [hep-ph])

Kira – C++/GiNaC (P. Maierhöfer, J. Usovitsch, P. Uwer,

arXiv:1705.05610)

Milano Bicocca, May 31, 2018 – p. 8/60



Differential Equations for the MIs

The Master Integrals are function of the Mandelstam invariants ( x = s/m2, t/m2, ...)

Fi =

∫

dDk1d
Dk2

Sn1
1 · · ·Snq

q

Dm1
1 · · ·Dmt

t

= Fi(x)

They obey systems of first-order linear differential equations in the invariants

dFi

dx
=

∑

j

hj(x,D) Fj +Ωi(x,D)

where i, j = 1, ...,NMIs and Ωi(x,D) involves subtopologies. Solution: BOTTOM =⇒ UP.

The choice of the masters is arbitrary, but crucial for the solution of the system!

We look for solutions in (D − 4) ∼ 0 (Laurent expansion)

The system can be solved analytically (but also numerically ...)

Analytical solutions need a suitable functional basis, that depends on the problem

V. Kotikov, Phys. Lett. B254 (1991) 158; B259 (1991) 314; B267 (1991) 123.

E. Remiddi, Nuovo Cim. 110A (1997) 1435.

E. Remiddi and T. Gehrmann, Nucl. Phys.B580 (2000) 485.
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Example

=

(
µ2

a

)2ǫ 0∑

i=−1

ǫiRi +O (ǫ)
(k1 · k2)

=

(
µ2

a

)2ǫ

S0 +O (ǫ)

a
2
R−1 = −

1

4

[

1

(1 − x)
−

1

(1 − x)2
+

1

(1 + x)
−

1

(1 + x)2

]

[ζ(3)+ζ(2)H(0, x) + 2H(0, 0, 0, x)

+2H(0, 1, 0, x) − 2H(0,−1, 0, x)]

a
2
R0 = −

1

4

[

1

(1 − x)
−

1

(1 − x)2
+

1

(1 + x)
−

1

(1 + x)2

][

37ζ2(2)

10
+ζ(3)(H(0, x) − 4H(−1, x) +H(1, x))

−2ζ(2)H(0, 0, x) − 4ζ(2)H(−1, 0, x) − 2ζ(2)H(0,−1, x) − 2ζ(2)H(0, 1, x) + 4ζ(2)H(1, 0, x)

+12H(0, 0, 0, 0, x) + 8H(−1, 0,−1, 0, x) − 8H(−1, 0, 0, 0, x) − 8H(−1, 0, 1, 0, x)

+20H(0,−1,−1, 0, x) − 16H(0,−1, 0, 0, x) − 12H(0,−1, 1, 0, x) − 24H(0, 0,−1, 0, x)

−16H(0, 0, 1, 0, x) − 12H(0, 1,−1, 0, x) + 8H(0, 1, 0, 0, x) + 4H(0, 1, 1, 0, x)

−8H(1, 0,−1, 0, x) + 8H(1, 0, 0, 0, x) + 8H(1, 0, 1, 0, x)
]

aS0 =
[ 1

(1 + x)
−

1

(1 − x)

]{ ζ2(2)

10
− ζ(3)H(0, x) + ζ(2)(2H(1, 0, x) + 3H(0,−1, x))

+
1

2
H(0, 0, 0, 0, x) +H(0,−1, 0, 0, x) +H(0, 0,−1, 0, x) +H(0, 1, 0, 0, x) + 2H(1, 0, 0, 0, x)

}
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UT or not UT
Since the choice of the Masters is arbitrary, let us analyze the following two expressions:

= =

= −
1

ǫ

{

1

4p2(p2 + 4a)
[ζ(3)+ζ(2)H(0, x)

+2H(0, 0, 0, x) + 2H(0, 1, 0, x) − 2H(0,−1, 0, x)]

}

−
1

4p2(p2 + 4a)

[

37ζ2(2)

10
+ζ(3)(H(0, x) − 4H(−1, x)

+H(1, x))−2ζ(2)H(0, 0, x)−4ζ(2)H(−1, 0, x)

−2ζ(2)H(0,−1, x)−2ζ(2)H(0, 1, x)+4ζ(2)H(1, 0, x)

+12H(0, 0, 0, 0, x) + 8H(−1, 0, −1, 0, x)

−8H(−1, 0, 0, 0, x) − 8H(−1, 0, 1, 0, x)

+20H(0,−1,−1, 0, x) − 16H(0,−1, 0, 0, x)

−12H(0,−1, 1, 0, x) − 24H(0, 0,−1, 0, x)

−16H(0, 0, 1, 0, x) − 12H(0, 1, −1, 0, x)

+8H(0, 1, 0, 0, x) + 4H(0, 1, 1, 0, x)

−8H(1,0,−1,0,x)+8H(1,0,0,0,x)+8H(1,0,1,0,x)

]

=
1

ǫa3

{

1

32(1−x)2
−

1

32(1−x)
+

1

16(x+1)2
−

1

16(x+1)

+
[ 1

32(1−x)3
−

3

64(1−x)2
+

1

128(1−x)
+

1

128(x+1)

]

ζ(2)

+
[ 1

32(1−x)4
−

1

16(1−x)3
+

3

128(1−x)2
+

1

128(1−x)

−
1

128(x+1)2
+

1

128(x+1)

]

ζ(3)+
[ 1

16(1−x)3
−

3

32(1−x)2

+
1

64(1−x)
+

1

64(x+1)

]

(H(0, 0, x)+H(1, 0, x)−H(−1, 0, x))

+
[ 1

16(1−x)3
−

3

32(1−x)2
+

1

32(1−x)
+

1

16(x+1)3

−
3

32(x+1)2
+

1

32(x+1)
+
( 1

32(1−x)4
−

1

16(1−x)3

+
3

128(1−x)2
+

1

128(1−x)
−

1

128(x+1)2
....

}

+ finite
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The Canonical Form

In 2013, J. M. Henn proposed to base on this property (UT) the search for the “good” basis of

Master Integrals and the solution of the system of differential equations.

The idea is based on

Analytic solution of the full system of diff eqs, not topology-by-topology. This is made

possible because of the extreme simplification of the system in terms of UT integrals.

A UT integral is an integral that, order-by-order in ǫ, is expressed ONLY in terms of

functions of the same weight.

The UT integrals obey a very special system of first order linear diff eqs. If f is a

vector of UT MIs, depending on the variables xi, in D = 4− 2ǫ dimensions, we have

df(ǫ, xi) = ǫ dA(xi) f(ǫ, xi)

=⇒ the dimensional parameter is totally factorized and the matrix of the system

depends only on the kinematics in d log form! This makes possible a strightforward

solution of the system, order-by-order in ǫ, in terms of Chen iterated integrals

This strategy concerns (for the moment) GHPL-like Master Integrals, for which we

can define the “weight” of the repeated integrations

J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, 251601
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How to Choose The Canonical Basis?

There is at the moment no GENERAL algorithm to choose the canonical basis. However, there

are many interesting partial results

Integrals with constant leading singularities (maximal cuts) are observed to satisfy

canonical differential equations
Cachazo ’08, Arkani-Hamed-Bourjaily-Cachazo-Trnka ’12

If the system has rational alphabet there are algorithms to choose the canonical basis,

implemented in public programs (Fuchsia, Azurite, Canonica, ..)

Lee ’14, Gitular-Magerya ’17, Georgoudis-Larsen-Zhang ’16, Meyer ’15,’17

If the system can be brought to a form in which the matrix A(x) is linear in ǫ

∂

∂xm
f(x, ǫ) = (A(x) + ǫB(x))f(x, ǫ)

therefore the term in ǫ0, A(x), can be removed arriving at a canonical form
Argeri et al. ’14

In some cases the non canonical parts of the system can be removed sistematically

re-defining the masters and solving block-diagonal linear differential equations

Gehrmann-von Manteuffel-Tancredi-Weihs ’14
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Functional Basis for the Solutions

If the system of differential equations can be cast in canonical form (triangularized in ǫ), then

when all possible square roots are removed (with changes of variables), the appropriate

functional basis for the analytic solutions is the one of Multiple Polylogarithms (MPLs)

G(a1, a2, ..., an, x) =

∫ x

0

1

t− a1
G(a2, ..., an, t)dt

Goncharov ’98, Remiddi-Vermaseren ’99,

Ablinger-Bluemlein-Schneider ’13, Duhr-Gangl-Rhodes ’12

MPLs (or GPLs) can be evaluated numerically with dedicated C++ fast and precise

numerical routines
Vollinga-Weinzierl ’05

In the case the alphabet cannot be fully linearized, we can find a solution in terms of

repeated integrals that involve square roots. In particular, we can find a solution at weight

2 in terms of logarithms and Li2 functions. The weight 3 will be an integration over known

functions, while the weight 4 would involve a two-fold integration. However, integrating by

parts we can make in such a way that we are left with a single one-fold integration to be

done numerically.
Henn-Caron Huot ’14
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Square Roots

If there are no square roots, or if all the square roots involved can be removed with a change of

variable, the solution of the system is strightforward and the analytic expressions can be written

in terms of GPLs. So, it is important to try to get rid of the square roots ...

The first approach is the one of the change of variable: it works if the number of square

roots to linearize is small. For instance in the case of Di-Photon production we were able

to linearize 4 square roots
√
u(u± 1),

√
v(v + 1),

√
uv(uv + u+ v) but not the fifth

√
u(u+ 8uv + 16(1 + u)v2.

Becchetti-B ’18

Very interesting: new ideas on how to write the system of differential equations,

“Simplified Differential Equations” approach, in which the Integral is parametrized in

terms of a parameter x that rescales for instance an external momentum, in terms of

which the differential equation is written. It turnes out that in this parameter, the diff eq is

in correct form to be integrated directly in terms of GPLs of the variable x. Problems with

masses? Papadopoulos ’15, Papadopoulos-Tommasini-Wever ’15,’16,’17

Actually, one could also integrate the symbol and jump directly on the final expression in

terms of GPLs of complicated asguments. This approach is at the moment not

accessible in the cases in which the alphabet is reach. It can be used to find a suitable

expression for the weight 2 to be integrated numerically up to weight 4.
Duhr-Gangl-Rhodes ’11
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Decoupling and Non-Decoupling Systems

In almost all the cases treated so far at NNLO and beyond (mainly massless corrections)

the idea is to reduce the systems order-by-order in ǫ at a triangular matrix form for the

homogeneous part

∂xh(x) =






a1,1 0 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 a4,3 a4,4




h(x) + non homogeneous terms

However, not all the systems follow this behaviour. In some (more and more numerous)

cases we are in the situation in which the simplification of the system cannot be better

than this

∂xh(x) =






a1,1 a1,2 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 a4,3 a4,4




h(x) + non homogeneous terms

In this case, although two of the masters can be solved using only first order

differential equations, the other two are coupled and their sub-system is equivalent

to a Second Order Differential Equation

Solution: two sol for the homogeneous and the particular with the variation of
constants
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Two-Point Functions

The first case of Master Integrals that cannot be expressed in terms of generalized

polylogarithms is the two-loop equal masses Sunrise
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Two-Point Functions

The first case of Master Integrals that cannot be expressed in terms of generalized

polylogarithms is the two-loop equal masses Sunrise

Reducing the corresponding topology we find two MIs that obey a coupled system of first

order linear differential equations in the dimensionless variable z = p2/m2

The second-order linear diff eq for the scalar diagram in d dimensions is:

d2

dz2
F +

(3(4− d)z2 + 10(6− d)z + 9d

2z(z + 1)(z + 9)

d

dz
F +

(d− 3)[(d− 4)z − d− 4]

2z(z + 1)(z + 9)
F = Ω(z, d)

Expanding in (d− 4) we find

F = − 3

8(d− 4)2
+

(z + 18)

32(d− 4)
+ F0 + ...

The solution of F0, F1, etc ... is more easily found from the 2-dimensional solution using

Tarasov’s dimensional relations
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Two-Point Functions

The solutions of the homogeneous equation in d = 2 are given in terms of complete

elliptic integral of the first kind

ψ1(z) =
K(m2(z))

[(z + 1)3(z + 9)]
1
4

ψ2(z) =
K(1−m2(z))

[(z + 1)3(z + 9)]
1
4

where

K(m2) =

∫ 1

0

dx
√

(1− x2)(1−m2x2)
m2 =

z2 + 6z − 3 +
√

(z + 1)3(z + 9)

2
√

(z + 1)3(z + 9)

Therefore, the particular solution is expressed via Euler’s variation of constants in terms

of integrals over the elliptic kernel represented by the homogeneous solutions

F (z) = c1ψ1(z) + c2ψ2(z)− ψ1(z)

∫ z dx

W
ψ2(x) Ω(x) + ψ2(z)

∫ z dx

W
ψ1(x) Ω(x)

S. Laporta and E. Remiddi, Nucl.Phys. B704 (2005) 349

L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 54 (2013) 052303

E. Remiddi and L. Tancredi, Nucl.Phys. B907 (2016) 400
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Two-Point Functions

Recently proposal of expressing the solution in terms of Elliptic Polylogarithms

ELin;m(x, y, q) =

∞∑

j=1

∞∑

k=1

xj

jn
yk

km
qjk

where q = Exp(iπψ2/ψ1) is the nome of the elliptic curve and it is always |q| < 1

In terms of ELi the sunrise in d = 2 dimensions is

S
(0)
1,1,1(t)=

3ψ1

iπ

[

1

2
Li2(e

2πi/3
)−

1

2
Li2(e

−2πi/3
)+ELi2,0(e

2πi/3
,−1,−q)−ELi2,0(e

−2πi/3
,−1,−q)

]

Numeric evaluation of the Elliptic Polylogarithms in all the real t axis

Dispersion relations (Remiddi and Tancredi) and E-Polylogarithms.

Another two-loop two-point function was studied: Kite Integral (homogeneous non elliptic,

sunrise in the non homogeneous part of the diff eq)

Three-loop “banana” graph! Homogeneous solutions as products of elliptic integrals
S. Bloch, P. Vanhove, J. Number Theor. 148 (2015) 328-364

S. Bloch, M. Kerr, P. Vanhove, Compos.Math. 151 (2015) no.12, 2329-2375

L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 57 (2016) 032304

C. Bogner, A. Schweitzer, S. Weinzierl, Nucl. Phys. B 922 (2017) 528

A. Primo and L. Tancredi, Nucl. Phys. B 921 (2017) 316

J. Ablinger et al. arXiv:1706.01299 [hep-th]

E. Remiddi and L. Tancredi, Nucl. Phys. B 925 (2017) 212-251
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Three-Point Functions

Also three-point functions exhibit an “elliptic behaviour”. The two-massive exchange has 3 MIs

F1 = F2 = F3 =
(p1 · k1)

With this choice, the third one decouples from the other two. Therefore, we can write a second order

differential equation for F1 (for instance)

d2F1

dx2
+

[
3

x
+

1

x+ 1
+

1

x− 8

]
dF1

dx
+

[
1

x2
+

9

8x
− 4

3(x+ 1)
+

5

24(x− 8)

]

F1 =Ω(x)

Since the d = 2 homogeneous equations for the Sunrise S(z) was

∂2

∂z2
S(z) +

[
1

z
+

1

z + 1
+

1

z + 9

]
∂

∂z
S(z) +

[
1

3z
− 1

4(z + 1)
− 1

12(z + 9)

]

S(z) = 0

it means that there is a simple relation between S(z) and F1(z): S(z) = −(z + 1)F1(−z − 1)

U. Aglietti, R. B., L. Grassi, E. Remiddi, Nucl.Phys. B789 (2008) 45.

Milano Bicocca, May 31, 2018 – p. 20/60



Semi-Numerical Evaluation

In the case of One dimensionless variable, one can adopt a Semi-Numerical evaluation of the

masters, based on the differential equation

We expand the diff eq and the solution in series of x around the singular points:

x = 0, 8,∞,−1. Every series depends on 2 arbitrary constants ⇒ we impose the matching

conditions expressing all of them in terms of 2 of them.

Imposing the initial conditions we fix the constants and we find the solution in series

representation. We construct a Fortran routine that gives F1(x) for every value of x with the

desired precision.
S. Pozzorini and E. Remiddi, Comput. Phys. Commun. 175 (2006) 381
U. Aglietti, R. B., L. Grassi, E. Remiddi, Nucl. Phys. B789 (2008) 45
R. N. Lee, A. V. Smirnov, V. A. Smirnov, JHEP 1803 (2018) 008

Unfortunately difficult to generalize to 3 scales (two variables) ...
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Three-Point Functions

Recently another elliptic three-point function was studied in detail

F1 = F2 =

d2

dx2
f(x) +

(
1

x
+

1

x− 16

)
d

dx
f(x)− 1

64

(
1

x
− 1

x− 16

)

f(x) = 0 , f(x) = x
3
2 F1

The homogeneous solutions for the two masters are expressed in terms of the complete

elliptic integrals of the first and second kind

K(f(x)) =

∫ 1

0

dx
√

(1− x2)(1− fx2)
E(f(x)) =

∫ 1

0

√
1− fx2√
1− x2

dx

The complete solution is found integrating in the different kinematic regions the non

homogeneous part (previously expressed in terms of GPLs) over the elliptic homogeneous

solutions. Excellent numerical performance
A. von Manteuffel and L. Tancredi, ’17
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Functional Basis in one dimension

The structure of the solution is then of the following form:

f(x) =

∫ x

{K(t),K(1− t)}{log2 (f(t),Li2(f(t))} dt

and for the second MI the kernel contains also E(f(t)).

Is it possible to find a structure behind these integral formulas

Integration-by-parts bring to a sort of GPLs algebra. However not strightforward

generalization: need for reduction of the relations to the “Master relations”. A class of

elliptic generalizations of the GHPLs is found for the integration of the Sunrise

E-Polylogarithms. The integration is done in the main variable (Mandelstam invariant).

Remiddi-Tancredi ’17

Elliptic Polylogs are another representation of the same functions. Very recently in a

series of papers the algebra was studied and tools that revealed to be useful for the

multiple polylogarithms (e.g the symbol) were extended to the Multiple Polylogarithms on

elliptic curves

Brown-Levin ’11, Broedel-Duhr-Dulat-Tancredi ’17 ’18

Public numerical routines are still missing.
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Phenomenological Applications

...... So far important results, but no Phenomenological results!

Recently, “elliptic” four-point functions were evaluated for two processes important for the

physics at the LHC:

H + jet production (H → 3 partons)

In coll. with V. Del Duca, H. Frellesvig, J. Henn,

F. Moriello, V. Smirnov

tt̄ production

In coll. with T. Gehrmann, A. Ferroglia, A. von

Manteuffel, M. Capozi, P. Caucal, M. Becchetti,

V. Casconi, S. Lavacca
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Higgs Production

Since the discovery in 2012, the study of the new boson absorbed a big part of the

community in the last years.

The new particle is very likely the Standard Model Higgs with a mass of

mH = 125.09± 0.21(stat)± 0.11(sys) GeV

Data sample of 2011-2012. Inclusive observables still dominated by statistics!
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Differential distributions

In order to study the differential distributions and extract info on the couplings a high

statistics is needed. Results for several differential distributions (and constraints on the

Higgs couplings to vector bosons and fermions) were published by ATLAS and CMS

using the 2011-12 data sets in the diphoton decay channel

Theoretical predictions for these observables include LO with finite mt and higher orders

with mt → ∞.
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Potential for BSM searches

In order to further constraint the nature of the boson discovered so far, one needs to
study the couplings of the boson to other particles. For instance the top Yukawa coupling

and the (effective) coupling to gluons (that can reveal the presence of heavy new

particles running in the loops).

The total rate does not distinguish between the two

The production of a Higgs with a tt̄ pair could give direct access to the top Yukawa

coupling

The differential high-p⊥ distribution of the Higgs, in H + j production, is sensitive to

the coupling to gluons

Azatov et al. ’15, Grojean et al. ’14

The couplings of the Higgs to the gluons can be studied using EFT with

higher-dimensional operators in which the Wilson coefficients can differ from the SM

ones. Small deviations from the SM gives different shapes in the distributions.

Harlander and Neumann ’13
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SM Predictions for H Production
The state of the art in gluon fusion is represented by the following calculations:

N3LO QCD corrections (mt → ∞) to the inclusive cross section in ggF : it further

increases moderately (+3%) the cross section and reduces the scale dependence with

respect to the NNLO of a factor of five. At
√
s = 13 TeV with mH = 125 GeV

σ = 48.58 pb+2.22 pb
−3.27 pb

(+4.56%)

(−6.72%)

Anastasiou-Duhr-Dulat-Furlan-Gehrmann-Herzog-Lazopoulos-Mistlberger ’13-’16

Fully exclusive production in ggF (HNNLO and FEHIPRO)

Anastasiou-Melnikov-Petriello ’04-’09, Catani-Grazzini ’07-’08

p⊥ distributions in H + j: dedicated NNLO calculations in the limit mt → ∞ (also using

correct mt dependence at LO)

Boughezal-Caola-Melnikov-Petriello-Schulze ’13-’15,

Chen-Cruz Martinez-Gehrmann-Glover-Jaquier ’15-’16
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HQ Mass Effects in Higgs Production

Relationship between massive and infinite top mass calculations. Inclusive quantities are

ok in mt → ∞ limit. However, p⊥ distributions are ok only at moderate p⊥ < 150 GeV.

Harlander-Neumann-Ozeren-Wiesemann ’12

For a precise description of the SM behavior at high pT is necessary to include the

heavy-quark mass effects. Already at pT ∼ 300 GeV the difference between the full mass

dependence and the mt → ∞ limit can be off of 30%.

Grazzini-Sargsyan ’15

Now NNNLO with mt → ∞ available =⇒ need for massive NNLO: three-loop 2 → 1,

two-loop 2 → 2 with the additional parton integrated over, one-loop 2 → 3 with two

additional partons integrated over, IR counter-terms at NNLO can be calculated with the

Q⊥ subtraction method

Need of the complete calculation with full mass dependence
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Analytic Calculation: H → 3 partons @ NLO

The NLO calculation of the decay of a Higgs in 3 partons (in the complete QCD theory) requires

the following ingredients:

Virtual Corrections

Two-loop (NLO) matrix elements for H → ggg and H → gqq̄

Bonciani-Del Duca-Frellesvig-Henn-Moriello-Smirnov ’16

Real Corrections

One-loop (LO) matrix elements with an additional parton

Del Duca-Kilgore-Oleari-Schmidt-Zeppenfeld ’01

NB. there are no tree-level matrix elements for this process, since the Higgs does

not couple to massless quarks

Subtraction Terms

Since this is a NLO calculation, there are already well known methods of

subtraction of final-state soft and collidear divergences. One can employ, for

instance, the Dipole subtraction method by Catani-Seymour, or the FKS subtraction

method by Frixione-Kunszt-Signer
Catani-Seymour 1996, Frixione-Kunszt-Signer 1996

Milano Bicocca, May 31, 2018 – p. 30/60



Structure of the Partonic Cross Section
Consider H + j. Expansion in αS (Perturbation Theory)

|M|2 =
∣
∣M0 + αS M1 + α2

SM2 + · · ·
∣
∣2

|M02→2 |2 =⇒ ∼ O(α3
Sαew)

|M12→2 |2 =⇒ ∼ O(α4
Sαew)

|M02→3 |2 =⇒ ∼ O(α4
Sαew)

|M22→2 |2 =⇒ ∼ O(α5
Sαew)

→
δij (−i 6k+m)

k2+m2−iǫ

→
δab

k2 − iǫ

→
δµν δab

k2 − iǫ

→ igStaij γµ

→ −igSfcabpµ

→ igSf
abc

[δµν (pσ−qσ)

+δνσ(qµ − kµ)

+δµσ(kν − pν)]

→ −g
2
S [f

gac
f
gbd

(2δµνδστ

−δµσδντ − δµτ δνσ)

+ · · ·

At the same order also qq̄ → Hg and crossed channels
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Structure of the Amplitude
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Structure of the Amplitude

We consider the process H(p4) → g(p1) + g(p2) + g(p3)

We define the Mandelstam invariants as

s = (p1 + p2)
2 t = (p1 + p3)

2 u = (p2 + p3)
2 p24 = s+ t+ u

where p21 = p22 = p23 = 0

The relevant physical regions are

H → ggg : s > 0, t > 0, u > 0

H + jet : s > p24 > 0, t < 0, u < 0

both with the internal heavy-quark mass m2 > 0.

The integrals are functions of three dimensionless invariants,

x1 =
s

m2
, x2 =

p24
m2

, x3 =
t

m2
.
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Structure of the Amplitude

We consider the process H(p4) → g(p1) + g(p2) + g(p3)

The amplitude can be written as folows (adjoint color indices understood)

A = Mµνρǫµ(p1)ǫν(p2)ǫρ(p3)

where in general

Mµνρ =

3∑

ijk=1

Aijkp
µ
i p
ν
j p
ρ
k +

3∑

i

Bi1p
µ
i g
νρ +

3∑

i

Bi2p
ν
i g
µρ +

3∑

i

Bi3p
ρ
i g
µν

Using gauge invariance and pµi ǫµ(pi) = 0 the amplitudes are reduced to four independent

(physical) ones

Mµνρ = A212(sg
µν − 2pµ2 p

ν
1)(up

ρ
1 − tpρ2)/(2t) +A332(ug

νρ − 2pν3p
ρ
2)(tp

µ
2 − spµ3 )/(2s)

+A311(tg
ρµ − 2pρ1p

µ
3 )(sp

ν
3 − upν1)/(2u) + A312

(

gµν(upρ1 − tpρ2)

+ gνρ(tpµ2 − spµ3 ) + gρµ(spν3 − upν1) + 2pµ3 p
ν
1p
ρ
2 − 2pµ2 p

ν
3p
ρ
1

)

/2

NB. The three amplitudes A212, A332, A311, can be obtained one from the other by

permutations of the momenta =⇒ there are only two independent structures
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Structure of the Amplitude

In order to calculate the contribution of a Feynman diagram to the amplitudes Ai we use

projectors:

Pµνρ
212 =





















tu(sgµν(upρ2 − tpρ1) − stgµρpν1 + pµ2 (sugνρ + dpν1 (tpρ1 − upρ2))) + s(stugµρ + (d − 4)upρ2(upµ2 − spµ3 )

+ tp
ρ
1((d − 4)sp

µ
3 − (d − 2)up

µ
2 ))p

ν
3 − st(sug

νρ
+ p

ν
1 ((d − 4)tp

ρ
1 − (d − 2)up

ρ
2))p

µ
3





















/((d − 3)s
3
t
2
u)

Pµνρ
332 =





















su(tgνρ(spµ3 − upµ2 ) − tugµνpρ2 + pν3 (stgµρ + dpρ2(upµ2 − spµ3 ))) + t(stugµν + (d − 4)spµ3 (spν3 − tpν1 )

+ upµ2 ((d − 4)tpν1 − (d − 2)spν3 ))pρ1 − tu(stgµρ + pρ2((d − 4)upµ2 − (d − 2)spµ3 ))pν1





















/((d − 3)t3u2s)

Pµνρ
311 =





















st(ugµρ(tpν1 − spν3 ) − sugνρpµ3 + pρ1(tugµν + dpµ3 (spν3 − tpν1 ))) + u(stugνρ + (d − 4)tpν1 (tpρ1 − upρ2)

+ spν3 ((d − 4)upρ2 − (d − 2)tpρ1))pµ2 − su(tugµν + pµ3 ((d − 4)spν3 − (d − 2)tpν1 ))pρ2





















/((d − 3)u3s2t)

Pµνρ
312 =





















tu(stgµρpν1 + sgµν (upρ2 − tpρ1) + pµ2 ((d − 2)pν1 (upρ2 − tpρ1) − sugνρ)) + s((d − 2)upρ2(spµ3 − upµ2 )

− stugµρ + tpρ1(dupµ2 − (d − 2)spµ3 ))pν3 + st(sugνρ + pν1 ((d − 2)tpρ1 − dupρ2))pµ3





















/((d − 3)s2t2u2)

such that

Pµνρi Mµνρ = Ai

In this way the amplitudes Ai are written in terms of MANY dimensionally regularized scalar

integrals (see later)
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Structure of the Amplitude

The color structure of the amplitudes at NLO is the following

ANLOi (x1, x2, x3) ∝ Nc A
NLO
i1 (x1, x2, x3) +ANLOi2 (x1, x2, x3) +

1

Nc
ANLOi3 (x1, x2, x3)

The planar diagrams contribute to all the three color factors, while the crossed diagrams

only to the leading

=⇒ calculation of planar diagrams gives two gauge independent color factors out

of three
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Planar Diagrams

The planar Feynman diagrams can be

described in terms of dim-reg scalar integrals

belonging to 8 topologies at 7 denominators

These topologies are reduced to a set of 125

Master Integrals using IBP’s

The MIs are calculated with the Diff Eqs

Method
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Elliptic Box Diagram

In the evaluation of NLO QCD corrections to H + j production there are elliptic four-point

functions

For instance, we have 4 coupled 6-denominator master integrals

h =

{

s
3
2 ǫ4 , ǫ4 , ǫ3 , ǫ4

(k2+p1)2}

for which the system becomes

∂xh(x) = C(x)h(x) + non homogeneous terms

where now the matrix C is not decoupled

C(x) =






a1,1 a1,2 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 0 a4,4




 .

We have to solve a Second Order linear Differential Equations (for instance for h1(x) !!!!
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The Differential equations

The second order linear differential equation is

∂2xh1(x) + P (x)∂xh1(x) +Q(x)h1(x) = r(x)

We rescale the three dimensionless variables with a non physical parameter (we

parametrize the path of integration)

x = {x1, x2, x3} → x(α) = {x1α, x2α, x3α}

and we find the differential equation w.r.t. α:

∂2αh1(α) + P (α, xi)∂αh1(α) +Q(α, xi)h1(α) = r(α, xi)

where the functions P (α, xi) and Q(α, xi) are

P (α) =
2x1

(
αx1 (x2 − x3) 2 − 4 (x2 (x1 − x3) + x3 (x1 + x3))

)

d1(α)

Q(α) =
x21 (x2 − x3) 2

4d1(α)

d1(α) = x21 α
2 (x2 − x3)

2 − 8x1 α (x2(x1 − x3) + x3(x1 + x3)) + 16(x1 + x3)
2
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Solution of the Second Order Diff Eq

Three singular points: the two roots of d1(α) = 0 and the point at infinity.

h1(α) = c1 y1(α) + c2 y2(α)− y1(α)

∫ α

0

dz
r(z)

w(z)
y2(z) + y2(α)

∫ α

0

dz
r(z)

w(z)
y1(z)

The homogeneous solutions are

y1(α) = K

(
1

2
− k(α)

2

)

y2(α) = K

(
1

2
+
k(α)

2

)

where K(z) is the complete elliptic integral of the first kind and the function k(z) is

k(z) =
(x2 − x3) 2 x1 z − 4 (x2(x1 − x3) + x3(x1 + x3))

8
√
x1 x3 x2 (x1 + x3 − x2)

Using the other first order differential equations we can solve the remaining MIs of the

topology (deriving h1 ...)
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Structure of the Functional Basis

The solution of the differential equation is found as a combination of repeated

integrations over the elliptic kernels

K(1)(α) = K

(
1

2
+
k(α)

2

)

, K(−1)(α) = K

(
1

2
− k(α)

2

)

,

E(1)(α) = E

(
1

2
+
k(α)

2

)

, E(−1)(α) = E

(
1

2
− k(α)

2

)

.

as

h ∼
∫ 1

0

F(α)
{
K(i)(α), Ei(α)

}
dα

where F(t) denotes a linear combination of pure weight-two and weight-three functions,

belonging to the subtopologies

However for the moment many points remain unsolved

Advantages of parametric integration: trivial, it allowed for the solution! Moreover,

single parametric numerical integration

Disadvantages: difficult analytic continuation; every component, depending on x1,

x2 and x3, is present in the integration (this can be avoided using the direct

calculation with maximal cut)
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tt̄ Cross Section @ NNLO in QCD

In 2013 the total cross section was calculated in perturbative QCD at the NNLO!

Outstanding calculation, at the edge of current techniques! Virtual part: numerical

solution of the differential equations for the MIs; Real Part variation of sector

decomposition. Numerical cancelation of remaining IR divergences

P. Bärnreuther, M. Czakon and A. Mitov, Phys. Rev. Lett. 109 (2012) 132001

M. Czakon and A. Mitov, JHEP 1212 (2012) 054, JHEP 1301 (2013) 080

M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110 (2013) 252004

Numerical implementation very demanding, but fitted for different values of mt in the
program Top++

M. Czakon and A. Mitov, Comput. Phys. Commun. 185 (2014) 2930

Resummation of soft gluons included up to NNLL

M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Phys. Lett. B 710 (2012) 612

Distributions were produced

M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116 (2016) 8, 082003 ; JHEP 1605 (2016) 034

NNLO QCD corrections were implemented by NLO EW corrections

M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, JHEP 1710 (2017) 186
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tt̄ Cross Section @ NNLO in QCD

Pure NNLO

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.009
+0.259(3.7%)
−0.374(5.3%)

+0.169(2.4%)
−0.121(1.7%)

LHC 7 TeV 167.0
+6.7(4.0%)
−10.7(6.4%)

+4.6(2.8%)
−4.7(2.8%)

LHC 8 TeV 239.1
+9.2(3.9%)
−14.8(6.2%)

+6.1(2.5%)
−6.2(2.6%)

LHC 14 TeV 933.0
+31.8(3.4%)
−51.0(5.5%)

+16.1(1.7%)
−17.6(1.9%)

 5

 6

 7

 8

 9

 10

 164  166  168  170  172  174  176  178  180  182

σ t
o

t 
[p

b
]

mtop [GeV]

PPbar → tt+X @ NNLO+NNLL

MSTW2008NNLO(68cl)

Theory (scales + pdf)
Theory (scales)

CDF and D0, L=8.8fb
-1

NNLO+NNLL

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.164
+0.110(1.5%)
−0.200(2.8%)

+0.169(2.4%)
−0.122(1.7%)

LHC 7 TeV 172.0
+4.4(2.6%)
−5.8(3.4%)

+4.7(2.7%)
−4.8(2.8%)

LHC 8 TeV 245.8
+6.2(2.5%)
−8.4(3.4%)

+6.2(2.5%)
−6.4(2.6%)

LHC 14 TeV 953.6
+22.7(2.4%)
−33.9(3.6%)

+16.2(1.7%)
−17.8(1.9%)  150

 200

 250

 300

 6.5  7  7.5  8  8.5

σ t
o

t 
[p

b
]

√s [TeV]

PP → tt+X @ NNLO+NNLL
mtop=173.3 GeV

MSTW2008NNLO(68cl)

Theory (scales + pdf)
Theory (scales)

CMS dilepton, 7TeV
ATLAS and CMS, 7TeV

ATLAS, 7TeV
CMS dilepton, 8TeV

P. Bärnreuther, M. Czakon and A. Mitov, Phys. Rev. Lett. 109 (2012) 132001

M. Czakon and A. Mitov, JHEP 1212 (2012) 054, JHEP 1301 (2013) 080

M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110 (2013) 252004
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tt̄ Cross Section @ NNLO in QCD
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Analytic Calculation: tt̄ @ NNLO
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Analytic Calculation: tt̄ @ NNLO

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

Virtual Corrections

two-loop matrix elements for qq̄ → tt̄ and gg → tt̄

Czakon ’08, R. B., Ferroglia, Gehrmann, Maitre, von

Manteuffel, Studerus ’08-’13, Ferroglia, Neubert, Pec-

jak, Yang ’09

interference of one-loop diagrams

Körner et al. ’05-’08; Anastasiou and Aybat ’08

Real Corrections

one-loop matrix elements for the hadronic production of tt̄ + 1 parton

tree-level matrix elements for the hadronic production of tt̄ + 2 partons

Dittmaier, Uwer and Weinzierl ’07-’08, Bevilacqua, Cza-

kon, Papadopoulos, Worek ’10, Melnikov, Schulze ’10

Subtraction Terms

In a complete NNLO computation of σtt̄ we need subtraction terms with up to 2

unresolved partons.

Different methods on the market at the NNLO
Gehrmann-De Ridder, Ritzmann ’09, Daleo et al. ’09, Boughezal

et al. ’10, Glover, Pires ’10, Del Duca, Somogyi, Trocsanyi ’13,

Catani Grazzini ’07, B. Catani Grazzini Sargsyan Torre ’15Double and single real in σtt̄
Czakon ’10, Anastasiou, Herzog, Lazopoulos ’10
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Two-Loop Corrections to qq̄ → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = NcCF

[

N2
cA+ B +

C

N2
c

+Nl

(

NcDl +
El

Nc

)

+Nh

(

NcDh +
Eh

Nc

)

+N2
l Fl +NlNhFlh +N2

hFh

]

218 two-loop diagrams contribute to the 10 different color coefficients

The whole A(2×0)
2 is known numerically

Czakon ’08.

The coefficients Di, Ei, Fi, and A are known analytically (agreement with num res)
R. B., Ferroglia, Gehrmann, Maitre, and Studerus ’08-’09

The coefficients B and C can be calculated analytically (with the same techniques)
... in progress

The poles of A(2×0)
2 (and therefore of B and C) are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09
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Two-Loop Corrections to qq̄ → tt̄

Di, Ei, Fi come from the corrections involving a closed (light or heavy) fermionic loop:

A the leading-color coefficient, comes from the planar diagrams:

The calculation is carried out analytically using:

Laporta Algorithm for the reduction of the dimensionally-regularized scalar integrals

(in terms of which we express the |M|2) to the Master Integrals (MIs)

Differential Equations Method for the analytic solution of the MIs
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Master Integrals for Nl and Nh

1 MI 1 MI 1 MI 2 MIs 1 MI 1 MI

1 MI 1 MI 2 MIs 1 MI 2 MIs 3 MIs

2 MIs 1 MI 1 MI 1 MI 2 MIs 2 MIs

18 irreducible two-loop topologies (26 MIs)

R. B., A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, JHEP 0807 (2008) 129.
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Master Integrals for the Leading Color Coeff

2 MIs 2 MIs 2 MIs 2 MIs 2 MIs

2 MIs 2 MIs 2 MIs 3 MIs

For the leading color coefficient there are 9 additional irreducible topologies (19 MIs)

R. B., A. Ferroglia, T. Gehrmann, and C. Studerus, JHEP 0908 (2009) 067.
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Example: Box for the Leading Color Coeff

=
1

m6

−1
∑

i=−4

Aiǫ
i
+ O(ǫ

0
)

A−4 =
x2

24(1 − x)4(1 + y)
,

A−3 =
x2

96(1 − x)4(1 + y)

[

−10G(−1; y) + 3G(0; x) − 6G(1; x)
]

,

A−2 =
x2

48(1 − x)4(1 + y)

[

−5ζ(2) − 6G(−1; y)G(0; x)+12G(−1; y)G(1; x)+8G(−1,−1; y)
]

,

A−1 =
x2

48(1 − x)4(1 + y)

[

−13ζ(3) + 38ζ(2)G(−1; y) + 9ζ(2)G(0; x) + 6ζ(2)G(1; x) − 24ζ(2)G (−1/y; x)

+24G(0; x)G(−1,−1; y) − 24G(1; x)G(−1,−1; y) − 12G (−1/y; x)G(−1,−1; y)

−12G(−y; x)G(−1,−1; y) − 6G(0; x)G(0,−1; y) + 6G (−1/y; x)G(0,−1; y) + 6G(−y; x)G(0,−1; y)

+12G(−1; y)G(1, 0; x) − 24G(−1; y)G(1, 1; x) − 6G(−1; y)G (−1/y, 0; x) + 12G(−1; y)G (−1/y, 1; x)

−6G(−1; y)G(−y, 0; x) + 12G(−1; y)G(−y, 1; x) + 16G(−1,−1,−1; y) − 12G(−1, 0,−1; y)

−12G(0,−1,−1; y) + 6G(0, 0,−1; y) + 6G(1, 0, 0; x) − 12G(1, 0, 1; x) − 12G(1, 1, 0; x) + 24G(1, 1, 1; x)

−6G (−1/y, 0, 0; x) + 12G (−1/y, 0, 1; x) + 6G (−1/y, 1, 0; x) − 12G (−1/y, 1, 1; x) + 6G(−y, 1, 0; x)

−12G(−y, 1, 1; x)
]

1- and 2-dim GHPLs

ρ =
4m2

t
ŝ

→ 1
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GHPLs
One- and two-dimensional Generalized Polylogarithms (GPLs) are defined as repeated

integrations over set of basic functions. In the case at hand

fw(x) =
1

x− w
, with w ∈

{

0, 1,−1,−y,− 1

y
,
1

2
± i

√
3

2

}

fw(y) =
1

y − w
, with w ∈

{

0, 1,−1,−x,− 1

x
, 1− 1

x
− x

}

The weight-one GHPLs are defined as

G(0; x) = lnx , G(w;x) =

∫ x

0

dtfw(t)

Higher weight GHPLs are defined by iterated integrations

G(0, 0, · · · , 0
︸ ︷︷ ︸

n

; x) =
1

n!
lnn x , G(w, · · · ;x) =

∫ x

0

dtfw(t)G(· · · ; t)

Shuffle algebra. Integration by parts identities

Goncharov ’98, Remiddi and Vermaseren ’99, Gehrmann and Remiddi ’01-’02, Vollinga

and Weinzierl ’04
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Two-Loop Corrections to gg → tt̄
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Two-Loop Corrections to gg → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = (N2

c − 1)

(

N3
cA+NcB +

1

Nc
C +

1

N3
c

D +N2
cNlEl +N2

cNhEh

+NlFl +NhFh +
Nl

N2
c

Gl +
Nh

N2
c

Gh +NcN
2
l Hl +NcN

2
hHh

+NcNlNhHlh +
N2
l

Nc
Il +

N2
h

Nc
Ih +

NlNh

Nc
Ilh

)

789 two-loop diagrams contribute to 16 different color coefficients

Numeric result for A(2×0)
2 known

P. Bärnreuther, M. Czakon and P. Fiedler, ’14

The poles of A(2×0)
2 are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09

The leading color A, and light-quark El–Il coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus ’11, ’13
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Two-Loop Corrections to gg → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = (N2

c − 1)

(

N3
cA+NcB +

1

Nc
C +

1

N3
c

D +N2
cNlEl +N2

cNhEh

+NlFl +NhFh +
Nl

N2
c

Gl +
Nh

N2
c

Gh +NcN
2
l Hl +NcN

2
hHh

+NcNlNhHlh +
N2
l

Nc
Il +

N2
h

Nc
Ih +

NlNh

Nc
Ilh

)

789 two-loop diagrams contribute to 16 different color coefficients

Numeric result for A(2×0)
2 recently published

P. Bärnreuther, M. Czakon and P. Fiedler, ’14

The poles of A(2×0)
2 are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09

The leading color A, and light-quark El–Il coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus ’11, ’13

For the leading-color coefficient

NO additional MI
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Two-Loop Corrections to gg → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = (N2

c − 1)

(

N3
cA+NcB +

1

Nc
C +

1

N3
c

D +N2
cNlEl +N2

cNhEh

+NlFl +NhFh +
Nl

N2
c

Gl +
Nh

N2
c

Gh +NcN
2
l Hl +NcN

2
hHh

+NcNlNhHlh +
N2
l

Nc
Il +

N2
h

Nc
Ih +

NlNh

Nc
Ilh

)

789 two-loop diagrams contribute to 16 different color coefficients

Numeric result for A(2×0)
2 recently published

P. Bärnreuther, M. Czakon and P. Fiedler, ’14

The poles of A(2×0)
2 are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09

The leading color A, and light-quark El–Il coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus ’11, ’13

- For the light-fermion contrib

9 additional MIs
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Additional Master Integrals for the Nl Coeff

2 MIs 2 MIs 2 MIs

3 MIs

For the Nl coefficients in the gg channel there are 4 additional irreducible topologies (9 MIs)

A. von Manteuffel and C. Studerus, JHEP 1310 (2013) 037
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Light Quark Coefficients in gg

Some considerations concerning the functional basis in which to express our analytic results are

in order:

The result can be written in terms of 289 GHPLs up to weight 4. They can be reduced to

221 using the algebra (3 MB of analytic formula)

Alphabet in the naive case:

G(...; y) ∈
{

−1, 0,− 1

x
,−x,− (1 + x2)

x
,− (1− x+ x2)

x

}

G(...;x) ∈
{
−1, 0, 1, [1 + o2], [1− o+ o2]

}

NOTE: in this basis, 200 s for the numerical evaluation of a single phase space point!

Hopeless! No way to use it in a Monte Carlo. What to do?

From complicated functions

of simple arguments x, y

To simpler functions

of complicated arguments

R. B., A. Ferroglia, T. Gehrmann, A. von Manteuffel, and C. Studerus, JHEP 1312 (2013) 038
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Optimized Functional Basis

It turns actually out that a good choice is to express the result in terms ONLY of

logarithms, polylogarithms Lin with n = 2, 3, 4, and a single type of multiple

polylogarithms, the Li2,2:

Lin(x) = −G(0, · · · , 0, 1
︸ ︷︷ ︸

n

;x) , Li2,2(x1, x2) = G

(

0,
1

x1
, 0,

1

x1x2
; 1

)

of arguments

±x, ±x2, − 1

y
, −y, − y

x
, −x(x+ y),

x+ y

y
, −x+ z(x, y)

x+ y
, · · ·

these arguments are such that the multiple polylogarithms are real valued in the

Minkowski region

We find again 225 multipole polylogarithms, out of which 57 Li2,2. Moreover the size of

the analytic expression is always about 3 MB. However, the numerical evaluation now

takes a fraction of a second!!

Part of this transformation was done using symbols and co-products (Duhr, Gangl, Rhodes ’12)

R. B., A. Ferroglia, T. Gehrmann, A. von Manteuffel, and C. Studerus, JHEP 1312 (2013) 038
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Heavy-Quark Loop Coefficients
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Heavy-Quark Loop Coefficients

The color structure of the heavy-quark loop coefficients is the following

A2×0
2 = (N2

c − 1)

(

N2
cNh Eh +Nh Fh +

Nh

N2
c

Gh

)

The planar diagrams contribute to all the three color factors, while the crossed diagrams

only to two of them

Therefore, calculation of planar diagrams gives one gauge independent color factors out

of three

In collaboration with P. Caucal and M. Capozi
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Planar Corrections

The planar Feynman diagrams can be described in terms of dim-reg scalar integrals

belonging to 7 topologies: 2 at 7 denominators and 5 at 6 denominators

The 7-denom topologies are reduced to a set of 55 Master Integrals using IBP’s

The MIs are calculated with the Diff Eqs Method
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Planar Master Integrals

Blue diagrams have homogeneous solutions expressed in terms of Elliptic Integrals

Green diagrams contain non-homogeneous elliptic terms
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tt̄ 5-Den Elliptic Box

The first unknown four-point function is the 5-denominator Elliptic Box

The reduction procedure gives three MIs

With the following choice we succeed to disentangle one of them:

The system of first order differential equations becomes, at each order in epsilon,

constituted by a single first order equation and two coupled equations (equivalent to a

second order diff eq)

We contruct the second order differential equation for one of the two masters (we choose

the second) in s and t. We find the two independent solutions of the homogeneous

equation

We compute the Wronskian and we determine the particular solution via Euler’s variation

of constants
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Second order hom differential equations

The equations in s and t of the master integral are (mt = 1):

d2

ds2
F + p(s, t)

d

ds
F + q(s, t)F = 0

d2

dt2
F + r(s, t)

d

dt
F + u(s, t)F = 0

p(s, t) = −
1

(s − 4)
−

2

s
−

1

(s − 4 t−1
t−9

)
−

1

(s +
(t−1)2

t
)

+
1

(s + 4 t+1
t+3

)

q(s, t) = −
1

4s2
−

(t − 9)5

(256(t − 3)3(4 − 9s − 4t + st))
−

(3 + t)5

(64(−4 + 3s + 4t + st)(−3 − 2t + t2)2)

+
(5 − 10t + 2t2)

(4s(t − 1)2)
+

(−25 − 77t − 27t2 + t3)

(128(−4 + s)(1 + t)2)

−
((t − 9)2(−1971 + 1944t − 534t2 + 48t3 + t4))

(256(4 + s(t − 9) − 4t)(t − 3)3(t − 1))
+

(9t2 + 6t3 + 2t4 − 6t5 + t6)

((t − 3)2(t − 1)2(1 + t)2(1 − 2t + st + t2))

−
((3 + t)2(135 + 192t − 10t2 − 72t3 + 11t4))

(64(t − 3)2(t − 1)(1 + t)2(−4 + 4t + s(3 + t)))

and similar coefficients for the equation in t ...

Many singular points ... difficult direct solution! The parametrization trick does not help.
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Cuts and Solutions of the Homogeneous Eq

Another possible approach to the solution of the Homogeneous Diff Eq is the direct

calculation of the maximal cut:

Simultaneously replace propagators with their δ-functions

1

(p2 +m2)
→ δ(p2 +m2)

If the propagator is squared, we cut it in the IBP sense (reduction to integrals with

single prop and scalar prods)

The observation is based on the fact that if the masters under consideration obey a
system

∂xMi(ǫ, x) = Aij(ǫ, x)Mj(ǫ, x) + Ωi(ǫ, x)

then
∂xCut(Mi(ǫ, x)) = Aij(ǫ, x)Cut(Mj(ǫ, x))

because Cut(Ωi(ǫ, x) = 0 =⇒ the MaxCut is solution of the Hom Eq

Integrate directly finite MaxCut can help to solve the system of Diff Eqs

R. N. Lee and V. A. Smirnov, JHEP 12 (2012) 104.

A. Primo and L. Tancredi, Nucl. Phys. B916 (2017) 94.

H. Frellesvig and C. G. Papadopoulos, JHEP 04 (2017) 083.

M. Harley, F. Moriello, R. M. Schabinger, JHEP 1706 (2017) 049
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Maximal Cut

We move to “PLAN B” which consists on the calculation of the d = 4 maximal cut (Primo and

Tancredi), which is solution of the differential equation.

Cut(s, t) =

K









16(t−1)(s+t−1)

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2

4(t−1)2

(

2

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−1

)

+s

(

t2+8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
t−6t−8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−3

)









2s

√

√

√

√
4(t−1)2

(

2

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−1

)

+s

(

t2+8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
t−6t−8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−3

)

s

The two solutions of the homogeneous equation are then

ψ1 =
1

R(s, t)
K(ω) ψ2 =

1

R(s, t)
K(1− ω)
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Solution

Since the subtopologies entering the non-homogeneous part of the Diff Eq are

expressed in terms of the variables x and y such that

s = −m2 (1− x)2

x
t = −m2y

we move to x and y

Knowing the two solutions of the homogeneous equation, the particular solution can be

found with the Euler variation of constants method

F = c1ψ1(x, y) + c2ψ2(x, y)

−ψ1(x, y)

∫ x dξ

W
ψ2(ξ, y) Ω(ξ, y) + ψ2(x, y)

∫ x dξ

W
ψ1(ξ, y) Ω(ξ, y)

The Wronskian W of the solutions is

W (x, y) =
π

32

x2[y − 3− 2x(3y − 1) + x2(y − 3)]

(x− 1)3(x+ 1)(x+ y + x2y + xy2)[y + 9 + 2x(y − 7) + x2(y + 3)]

Imposing the regularity at s = 0 we find c1 = c2 = 0
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Solution

The non-homogeneous terms Ω(x, y) contain polylogarithmic functions and elliptic

integrals

At ǫ = 0 we have:
Ω(x, y) = P (x, y)/Q(x, y) ; log x ; K(f(y))

so, K(f(y)) that comes from the sunrise does not enter the integration in dξ!

The iterated integrations that we have at this order in ǫ are of the kind

F2 ∼
∫ x

1

dξ

{
P (ξ, y)

Q(ξ, y)
; log ξ

}
1

R(ξ, y)
K(ω(ξ, y))

At O(ǫ) (which is required in the amplitude) we also have Li2(f(ξ, y)) and log2 at the

place of the log

Note: we have a single integration in x (and y behaves as a parameter).

Numerical evaluation extremely fast (for the moment with Mathematica). We are in

agreement with FIESTA4 ( 5 digits).

This representation is also suitable for analytic continuation in the Minkowski physical

region.
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The decoupled Masters

In principle, once the solution of the coupled masters is found, the problem is completely solved

We solve the second order linear diff eq for one of the coupled MIs (homogeneous

solutions and particular solution as repeated integrations over the elliptic kernel)

The solution of the other coupled MI comes just performing derivatives

The ǫ-decoupled MIs of the same set can be calculated solving a first order linear diff eq

However, this implies an additional integration over the solution of the coupled MIs

=⇒ even more complicated functional structure!

Since the set of Masters can be chosen freely, we can find different basis in which we

decouple one master and solve a second order diff eq for one of the coupled.

We found two basis constituted by (F1, F2, F3) and (F1, F2, F4), with F2, F3 and F4

constituting a basis of integrals finite in 4 dimensions. Having solved F2, we can get the

solutions of F3 and F4 just by derivatives

We calculated numerically also the finite parts of F3 and F4 in the Euclidean region and found

agreement with FIESTA4 ( 5 digits)
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Conclusions

Analytic computations received a big boost in the last years. In particular the reduction to

the MIs and the method of differential equations for their calculation seams to be very

powerful (many calculations more and more complicated)

The paradigm at the moment seams to be the following

The masters that can be expressed in terms of multiple polylogarithms satisfy a

system of diff eqs in canonical form

Increasing the complexity of the calculations, we start to find cases in which the

system does not decouple in ǫ. In these cases, higher-order differential equations

(for the moment second-order) have to be solved. The basis of functions involved

points in the direction of generalized hypergeometric functions (and particular

subcases)

We discussed the calculation of the planar corrections to H → ggg and gg → tt̄, that

involve a closed heavy-quark loop, in perturbative QCD. We found the first “pheno”

applications of masters involving elliptic integrals.

The study of the structure of the new functions just started ....
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