From Higgs physics to dark matter searches: the quest for precision at the LHC

INFN-UNIMI-UNIMIB Pheno Seminar Milan University, 24. May 2018

Jonas M. Lindert

From a pheno perspective finding the Higgs was "easy"...

- Higgs at 125 GeV allowed for very clean discovery in $\gamma\gamma$ & 41 channels
- Bump hunting: little to no theoretical input needed.

...finding new physics might be very tough.

- Dark Matter particles produced at the LHC leave the detectors unobserved: signature missing transverse energy
- •large irreducible SM backgrounds
- → good control on theory necessary!

Is the S(125 GeV) really the SM Higgs? • CP properties? Is there a CP-odd admixture? • couplings with vector-bosons/fermions as in SM? •what is the Higgs width? Is there a significant invisible decay? •only one Higgs doublet? •what is the Higgs potential? self-coupling?

the hunt to pin down the SM has just started.

precision is key!

... understanding the Higgs and its properties is tough!

$|\mathcal{M}|^2 - \sigma$

Hard (perturba $d\sigma = d\sigma_{LO} + c$ $+ \alpha_c^2 d\sigma_{NN}$

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{2} \partial_\nu g^a_\mu \partial_\nu g^a_\mu - g_e f^{abc} \partial_\mu g^a_\nu g^b_\mu g^c_\nu - \frac{1}{4} g^a_\mu f^{abc} f^{abc} g^b_\mu g^c_\nu g^d_\mu g^c_\nu - \partial_\nu W^-_\mu \partial_\nu W^-_\mu \\ M^2 W^+_\mu W^-_\mu - \frac{1}{2} \partial_\nu Z^a_\nu \partial_\nu Z^a_\mu - \frac{1}{2\omega^a_\nu} M^2 Z^a_\mu Z^a_\mu - \frac{1}{2} \partial_\mu A_\nu \partial_\nu A_\nu - igc_e (\partial_\nu Z^a_\mu) W^+_\mu W^-_\nu \end{split}$$
$$\begin{split} W_{\nu}^{+}W_{\mu}^{-} &= Z_{\nu}^{0}(W_{\mu}^{+}\partial_{x}W_{\nu}^{-} - W_{\mu}^{-}\partial_{y}W_{\nu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{v}W_{\mu}^{-} - W_{\nu}^{-}\partial_{x}W_{\mu}^{+})) = \\ &igs_{x}(\partial_{y}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{v}W_{\mu}^{-} - W_{\nu}^{-}\partial_{v}W_{\nu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{v}W_{\mu}^{-} - W_{\nu}^{-}\partial_{v}W_{\mu}^{+})) = \\ & -W_{\nu}^{-}\partial_{v}W_{\mu}^{+})) = \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + g^{2}c_{u}^{2}(Z_{\nu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - \\ & Z_{\nu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{1}(A_{\mu}W_{\mu}^{+}A_{x}W_{\nu}^{-} - A_{\nu}A_{x}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{u}c_{u}(A_{\nu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \\ & W_{\nu}^{+}W_{\nu}^{-}) - 2A_{\mu}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\nu}H\partial_{\nu}H - 2M^{2}\alpha_{k}B^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\nu}\phi^{0}\partial_{\mu}\phi^{0} - \\ \end{split}$$
 $\beta_{n}\left(\frac{2M^{2}}{p^{2}}+\frac{2M}{2}H+\frac{1}{2}(H^{2}+\phi^{0}\phi^{0}+2\phi^{+}\phi^{-})\right)+\frac{2M^{2}}{p^{2}}\alpha_{h}$ $\begin{array}{c} g \alpha_h M \left(H^3 + H \phi^{\phi} \phi^0 + 2 H \phi^+ \phi^- \right) - \\ \frac{1}{2} g^2 \alpha_h \left(H^4 + (\phi^0)^4 + 4 (\phi^+ \phi^-)^2 + 4 (\phi^2)^2 \phi^+ \phi^- + 4 H^2 \phi^+ \phi^- + 2 (\phi^0)^2 H^2 \right) - \\ g M W^+_\mu W^-_\mu H - \frac{1}{2} g \frac{M}{c_\mu^*} Z^{-2}_\mu Z^\mu_\mu H - \end{array}$ $\frac{1}{2} ig \left(\mathcal{W}^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - \mathcal{W}^-_\mu (\phi^0 \partial_\mu \phi^{+-} - \phi^+ \partial_\mu \phi^0) \right) + \\ \frac{1}{2} g \left(\mathcal{W}^+_\mu (H \partial_\mu \phi^- - \phi^- \partial_\mu H) + \mathcal{W}^-_\mu (H \partial_\mu \phi^+ - \phi^+ \partial_\mu H) \right) + \frac{1}{2} g \frac{1}{c_0} (Z^0_\mu (H \partial_\mu \phi^0 - \phi^0 \partial_\mu H) +$ $M\left(\tfrac{1}{\sim}Z_{\mu}^{2}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{2}{\sim}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}$ $\begin{array}{l} W^-_{\mu}\phi^+) - ig\frac{1-2e^2}{2e_{\mu}}Z^0_{\mu}(\phi^+\partial_{\nu}\phi^- - \phi^-\partial_{\mu}\phi^+) + igs_{\nu}A_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \\ \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}(H^3 + (\phi^0)^2 + 2\phi^+\phi^-) - \frac{1}{8}g^2\frac{1}{4}Z^0_{\mu}Z^0_{\mu}(H^2 + (\phi^0)^3 + 2(2s^2_{\mu} - 1)^2\phi^+\phi^-) - \end{array}$ $\frac{1}{2}g^2\frac{g^2}{m}Z_{\mu}^0\phi^1(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{g^2}{m}Z_{\nu}^0H(W_{\mu}^+\phi^--W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\nu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^-\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^-) +$
$$\begin{split} &\frac{1}{2g} \sigma_{w}^{-} \mathcal{L}_{\mu}^{-} \mathcal{L}_{\mu}^{-} (\mathcal{W}_{\mu} \oplus + \mathcal{W}_{\mu} \oplus) - \frac{1}{2} g \mathcal{L}_{\omega}^{-} \mathcal{L}_{\mu}^{-} \mathcal{H}(\mathcal{W}_{\mu} \oplus - \mathcal{W}_{\mu} \oplus) + \frac{1}{2} g^{2} s_{w} \mathcal{A}_{\mu} \mathcal{L}_{\mu}^{-} (\mathcal{W}_{\mu} \oplus - \mathcal{W}_{\mu} \oplus) + \frac{1}{2} g^{2} s_{w} \mathcal{A}_{\mu} \mathcal{L}_{\mu}^{-} (\mathcal{W}_{\mu} \oplus - \mathcal{W}_{\mu} \oplus) - g^{2} s_{w}^{-} (2c_{w}^{+} - 1) \mathcal{L}_{\mu}^{+} \mathcal{A}_{\mu} \oplus + \phi^{-} - g^{2} s_{w}^{-} \mathcal{A}_{\mu} \mathcal{A}_{\mu} (\phi^{+} + \frac{1}{2} i g_{*} \lambda_{\mu} \partial_{\mu} (g_{i}^{+} \gamma^{\mu} \sigma_{j}^{*}) g_{\mu}^{+} - \partial_{\mu}^{+} (\gamma \partial + m_{w}^{2}) \sigma^{2} - \partial^{2} (\gamma \partial + m_{w}^{2}) \sigma^{2} - \partial^{2} (\gamma \partial + m_{w}^{2}) \sigma^{2} - \partial_{\mu}^{-} (\gamma \partial + m_{w}^{2}) \sigma^{2} - \partial_$$
 $\frac{h_0}{2\sqrt{2}}W_{,\epsilon}^{-}\left(\left(\bar{e}^{\kappa}U^{i}e_{\kappa\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^2\right) + \left(\bar{d}_j^{\epsilon}C_{\kappa\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)u_j^2\right)\right) +$ $\tfrac{4p}{2M_0 v^2} \phi^+ \left(-m_e^\kappa (\mathbb{P}^\lambda U^{iep}{}_{\lambda\kappa}(1-\gamma^5)e^\kappa) + m_e^\lambda (\mathbb{P}^\lambda U^{iep}{}_{\lambda\kappa}(1+\gamma^1)e^\kappa \right) + \\$ $\frac{i\epsilon}{2M\sqrt{2}}\phi^{-}\left(m_{*}^{\lambda}(\bar{e}^{\lambda}U^{d_{2}})_{\lambda\epsilon}^{\dagger}(1+\gamma^{\delta})v^{\alpha}\right) - m_{e}^{\alpha}(\bar{e}^{\lambda}U^{d_{2}})_{\lambda\epsilon}^{\dagger}(1-\gamma^{\delta})v^{\alpha}\right) - \frac{\epsilon}{2}\frac{m_{e}^{2}}{M}H(\bar{v}^{\lambda}v^{\lambda}) = \tfrac{i}{2} \tfrac{m_{\pi}^2}{2} H(e^{\lambda} e^{\lambda}) + \tfrac{i g}{2} \tfrac{m_{\pi}^2}{M} \phi^0(\bar{\nu}^{\lambda} \gamma^5 \nu^{\lambda}) - \tfrac{i g}{2} \tfrac{m_{\pi}^2}{M} \phi^0(e^{\lambda} \gamma^5 e^{\lambda}) - \tfrac{1}{4} \bar{\nu}_{\lambda} M_{\lambda n}^R (1 - \gamma_5) \hat{\nu}_{\lambda} \frac{1}{4} \overline{\rho_{\star}} \frac{M_{\lambda s}^{R}}{M_{\lambda s}^{R}} \frac{(1 - \gamma_{5}) \hat{\sigma}_{s}}{2M \sqrt{2}} \phi^{+} \left(-m_{d}^{s} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 + \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j}^{\lambda} C_{\lambda s} (1 - \gamma^{5}) d_{j}^{s}) + m_{u}^{\lambda} (\bar{v}_{j$ $\frac{i\epsilon}{iM\sqrt{2}}\phi^{-}\left(m_{ij}^{b}(\bar{d}_{j}^{b}C_{1,e}^{\dagger}(1+\gamma^{b})n_{j}^{a})-m_{e}^{a}(\bar{d}_{j}^{b}C_{1,e}^{\dagger}(1-\gamma^{b})n_{j}^{a}\right)-\frac{2}{2}\frac{m_{e}^{b}}{M}H(\bar{u}_{j}^{b}u_{j}^{b}) \tfrac{\pi}{2} \tfrac{m_j^k}{M} H(\bar{d}_j^k d_j^k) + \tfrac{i\pi}{2} \tfrac{m_k^2}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \tfrac{i\pi}{2} \tfrac{m_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k d_j^k) + \bar{G}^a \partial^2 G^a + g_e f^{abc} \partial_a \bar{G}^a G^b g_p^c + \\ \\ - \frac{\pi}{2} \tfrac{m_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k d_j^k) - \tfrac{i\pi}{2} \tfrac{m_k^2}{M} \phi^0(\bar{d}_j^k \gamma^k d_j^k) + \bar{G}^a \partial^2 G^a + g_e f^{abc} \partial_a \bar{G}^a G^b g_p^c + \\ - \frac{\pi}{2} \tfrac{m_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \tfrac{i\pi}{2} \tfrac{m_k^2}{M} \phi^0(\bar{d}_j^k \gamma^k u_j^k) + \bar{G}^a \partial^2 G^a + g_e f^{abc} \partial_a \bar{G}^a G^b g_p^c + \\ - \frac{\pi}{2} \tfrac{m_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \frac{i\pi}{2} \tfrac{m_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k u_j^k) + \bar{G}^a \partial^2 G^a + g_e f^{abc} \partial_a \bar{G}^a G^b g_p^c + \\ - \frac{\pi}{2} \tfrac{m_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \\ - \frac{\pi}$ $X^{+}(\partial^{2} - M^{2})X^{+} + X^{-}(\partial^{2} - M^{2})X^{-} + X^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + Y \delta^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}X^{0}X^{-} - M^{2})X^{0}X^{-} + X^{0}(\partial^{2} - M^{2})X^{0}X^{-} + X^{0}(\partial^{2} - M^{2})X^{0}X^{-} + X^{0}(\partial^{2} - M^{2})X^{0}X^{0} + X^{0}(\partial^{2} - M^{2})X^{0} + X^{0}(\partial^{2} - M^{2})X$ $\begin{array}{l} \partial_{\mu}\bar{X}^{+}X^{c}) + igs_{w}W^{+}_{\mu}(\partial_{x}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}\bar{Y}) + igc_{w}W^{-}_{u}(\partial_{\nu}\bar{X}^{-}X^{c} - \partial_{\mu}\bar{X}^{0}\bar{Y}) + igs_{w}W^{-}_{\mu}(\partial_{\nu}\bar{X}^{-}X^{c} - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}Z^{b}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{4\epsilon}\bar{X}^{0}X^{0}H\right) + \frac{1-2\epsilon_{*}^{*}}{2\epsilon_{*}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + \frac{1-2\epsilon_{*}}{2\epsilon_{*}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{+}\right) + \frac{1-2\epsilon_{*}}{2\epsilon_{*}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{+}\right) + \frac{1-2\epsilon_{*}}{2\epsilon_{*}}igM\left(\bar{X}^{+}X^{0}\phi^{+}\right) + \frac{1-2\epsilon_{*}}igM\left(\bar{X}^{+}X^{0}\phi^{+}\right) + \frac$ $\frac{1}{2m}$ igM $(\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}) + igM_{S_{m}}(\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}) + igM_{S_{m}}(\hat{X}^{0}X^{-}\phi^{-}) + igM_{S_{m}}$

 $\frac{1}{2}igM\left(\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0\right).$

- Hard (perturbative) scattering process:
- $d\sigma = d\sigma_{\rm LO} + \alpha_{S} \, d\sigma_{\rm NLO} + \alpha_{\rm EW} \, d\sigma_{\rm NLO \, EW}$
 - $+\alpha_{S}^{2} d\sigma_{\rm NNLO} + \alpha_{\rm EW}^{2} d\sigma_{\rm NNLO\,EW} + \alpha_{S} \alpha_{\rm EW} d\sigma_{\rm NNLO\,QCDxEW}$

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{2} \partial_{\nu} g^{s}_{\mu} \partial_{\nu} g^{s}_{\mu} - g_{s} f^{sbc} \partial_{\nu} g^{c}_{\nu} g^{b}_{\nu} g^{c}_{\nu} - \frac{1}{4} g^{s}_{\mu} f^{sbc} f^{sdc} g^{b}_{\mu} g^{c}_{\nu} g^{d}_{\mu} g^{c}_{\nu} - \partial_{\nu} W^{+}_{\mu} \partial_{\nu} W^{+}_{\mu} \\ M^{2} W^{+}_{\mu} W^{-}_{\mu} - \frac{1}{2} \partial_{\nu} Z^{0}_{\mu} \partial_{\nu} Z^{d}_{\mu} - \frac{1}{2 \omega^{c}_{\nu}} M^{2} Z^{0}_{\mu} Z^{0}_{\mu} - \frac{1}{2} \partial_{\nu} A_{\nu} \partial_{\nu} A_{\nu} - i g c_{e} (\partial_{\nu} Z^{d}_{\mu} W^{+}_{\nu} U^{+}_{\nu}) \end{split}$$
$$\begin{split} W_{\nu}^{+}W_{\mu}^{-}) &= Z_{\nu}^{0}(W_{\mu}^{+}\partial_{x}W_{\nu}^{-} - W_{\mu}^{-}\partial_{y}W_{\nu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{v}W_{\mu}^{-} - W_{\nu}^{-}\partial_{x}W_{\mu}^{+})) = \\ igs_{x}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})) \\ &= U_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + g^{2}c_{x}^{*}(Z_{\nu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\nu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{*}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\nu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-})) \\ &= W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\nu}Z_{\nu}^{*}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\nu}H\partial_{\nu}H - 2M^{2}a_{\mu}H^{2} - \partial_{\nu}\phi^{+}\partial_{\nu}\phi^{-} - \frac{1}{2}\partial_{\nu}\phi^{0}\partial_{\nu}\phi^{0} - \\ \end{aligned}$$
 $\beta_{n}\left(\frac{2M^{2}}{p^{2}}+\frac{2M}{2}H+\frac{1}{2}(H^{2}+\phi^{0}\phi^{0}+2\phi^{+}\phi^{-})\right)+\frac{2M^{2}}{p^{2}}\alpha_{h}$ $g \alpha_h M \left(H^3 + H \phi^0 \phi^0 + 2 H \phi^+ \phi^- \right) \frac{1}{2} g^2 \alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+ \phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2 \right)$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c}Z^3_{\mu}Z^0_{\mu}H \begin{array}{l} \frac{1}{2}ig\left(W^+_\mu(\phi^0\partial_\mu\phi^--\phi^-\partial_\mu\phi^0)-W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)\right)+\\ \frac{1}{2}g\left(W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H)+W^-_\mu(H\partial_\mu\phi^+-\phi^+\partial_\mu H)\right)+\frac{1}{2}g\frac{1}{c_0}(Z^0_\mu(H\partial_\mu\phi^0-\phi^0\partial_\mu H)+ \end{array}$ $M\left(\tfrac{1}{\sim}Z_{\mu}^{2}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{2}{\sim}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\nu}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{\mu}(W_{\mu}$
$$\begin{split} & W_{\mu}^{-}\phi^{+}) - ig \frac{1-2e_{\nu}^{-}}{2e_{\nu}} Z_{\mu}^{0}(\phi^{+}\partial_{\nu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + ig s_{\nu}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - \\ & \frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-} (H^{3} + (\phi^{0})^{2} + 2\phi^{+}\phi^{-}) - \frac{1}{2}g^{2} \frac{1}{2} Z_{\mu}^{0}Z_{\mu}^{0}(H^{2} + (\phi^{0})^{3} + 2(2s_{\mu}^{2} - 1)^{2}\phi^{+}\phi^{-}) - \\ \end{split}$$
 $\frac{1}{2}g^2\frac{a_{\mu}^2}{c_{\mu}}Z^0_{\mu}\phi^1(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) = \frac{1}{2}ig^2\frac{a_{\mu}^2}{c_{\mu}}Z^0_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) + \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) + \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) + \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^- + W^-_{\mu}\phi^-) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^- + W^-_{\mu}\phi^-) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^- + W^-_{\mu}\phi^-) = \frac{1}{2}ig^2s_{\mu\nu}A_{\mu}\phi^ W^{-}_{\rho}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{im}{e_{w}}(2e^{2}_{w} - 1)Z^{0}_{\rho}A_{\mu}\phi^{+}\phi^{-} -$
$$\begin{split} g^2 s_w^2 A_\mu A_i \phi^+ \phi^- + \frac{1}{2} i g_e \lambda_{ii}^\mu (\bar{g}_i^\sigma \gamma^\mu q_j^\rho) g_e^a - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{u}_i^1 (\gamma \partial + m_e^\lambda) u_i^\lambda - d_j^2 (\gamma \partial + m_d^\lambda) d_j^\lambda + i g s_w A_\mu \left(- (\bar{e}^\lambda \gamma^\mu e^\lambda) + \frac{2}{3} (\bar{u}_i^\lambda \gamma^\mu u_j^\lambda) - \frac{1}{5} (d_j^\lambda \gamma^\mu d_j^\lambda) \right) + \\ \frac{i g}{4 \bar{u}_w} \mathcal{R}_\mu^b \{ (\bar{e}^\lambda \gamma^\mu (1 + \gamma^\lambda) v^\lambda) + (\bar{e}^\lambda \gamma^\mu (4 s_w^\lambda - 1 - \gamma^\lambda) e^\lambda) + (d_j^\lambda \gamma^\mu (\frac{1}{3} s_w^\lambda - 1 - \gamma^\lambda) d_j^\lambda) + \\ (\bar{u}_j^\lambda \gamma^\mu (1 - \frac{2}{3} d_w^\lambda + \gamma^\lambda) u_j^\lambda) \} + \frac{i g}{2 \bar{u}_w^2} \mathcal{W}_\mu^\mu \left((\bar{e}^\lambda \gamma^\mu (1 + \gamma^\lambda) \bar{b}^{\mu\nu}_{s,w} e^\nu) + (\bar{e}^\lambda_j \gamma^\mu (1 + \gamma^\lambda) C_{\lambda w} d_j^\nu) \right) + \end{split}$$
 $\tfrac{k_0}{2\sqrt{2}} W^+_{\sigma} \left(\left(\tilde{\varepsilon}^{s} U^{lep\dagger}{}_{s\lambda} \gamma^{s} (1+\gamma^5) \nu^{\lambda} \right) + \left(\tilde{\delta}^{s}_j C^{\dagger}_{s\lambda} \gamma^{s} (1+\gamma^5) u^{\lambda}_j \right) \right) +$ $\frac{w}{2M_{\rm P}^2}\phi^+\left(-m_e^{\kappa}(\mathbb{P}^\lambda U^{\rm iep}{}_{\lambda\kappa}(1-\gamma^5)e^\kappa)+m_e^{\lambda}(\mathbb{P}^\lambda U^{\rm iep}{}_{\lambda\kappa}(1+\gamma^1)e^\kappa\right)+\right.$ $\frac{i\epsilon}{2M\sqrt{2}}\phi^{-}\left(m_{*}^{\lambda}(\bar{e}^{\lambda}U^{l_{2}})_{\lambda\epsilon}^{\dagger}(1+\gamma^{\delta})v^{\lambda}\right) - m_{*}^{\lambda}(\bar{e}^{\lambda}U^{l_{2}})_{\lambda\epsilon}^{\dagger}(1-\gamma^{\delta})v^{\lambda}\right) - \frac{\epsilon}{2}\frac{w_{k}^{\lambda}}{M}H(\bar{v}^{\lambda}v^{\lambda}) \frac{i g}{2} \frac{m_0^2}{M} H(e^\lambda e^\lambda) + \frac{i g}{2} \frac{m_0^2}{M} \phi^0(e^\lambda \gamma^5 p^\lambda) - \frac{i g}{2} \frac{m_0^2}{M} \phi^0(e^\lambda \gamma^5 e^\lambda) - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\nu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{\mu}_{\alpha} - \frac{1}{4} p_\lambda M_{\lambda \alpha}^R (1 - \gamma_b) \dot{$ $\frac{1}{4}\overline{\rho_{\star}}\frac{M_{\lambda s}^{R}(1-\gamma_{5})b_{s}}{M_{\lambda s}^{2}(1-\gamma_{5})b_{s}} + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2})d_{j}^{k}) + m_{u}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1+\gamma^{5})d_{j}^{k}) + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2})d_{j}^{k}) + m_{u}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2})d_{j}^{k})\right) + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2})d_{j}^{k})\right) + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2})d_{j}^{k})\right) + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2}))d_{j}^{k}\right) + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{2}(\bar{u}_{j}^{\lambda}C_{\lambda s}(1-\gamma^{2}))d_$ $\frac{i\epsilon}{iM\sqrt{2}}\phi^{-}\left(m_{ij}^{b}(\bar{d}_{j}^{b}C_{1,e}^{\dagger}(1+\gamma^{b})n_{j}^{a})-m_{e}^{a}(\bar{d}_{j}^{b}C_{1,e}^{\dagger}(1-\gamma^{b})n_{j}^{a}\right)-\frac{2}{2}\frac{m_{e}^{b}}{M}H(\bar{u}_{j}^{b}u_{j}^{b}) \tfrac{\pi}{2} \tfrac{w_j^k}{M} H(\bar{d}_j^k d_j^k) + \tfrac{i\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \tfrac{i\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k d_j^k) + \bar{G}^a \partial^2 G^a + g_c f^{abc} \partial_a \bar{G}^a G^b g_b^c + \\ \\ + \frac{\pi}{2} \tfrac{w_j^k}{M} H(\bar{d}_j^k d_j^k) + \tfrac{i\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \tfrac{i\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k d_j^k) + \bar{G}^a \partial^2 G^a + g_c f^{abc} \partial_a \bar{G}^a G^b g_b^c + \\ + \frac{\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \tfrac{i\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k u_j^k) + \bar{G}^a \partial^2 G^a + g_c f^{abc} \partial_a \bar{G}^a G^b g_b^c + \\ + \frac{\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \frac{\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k u_j^k) + \bar{G}^a \partial^2 G^a + g_c f^{abc} \partial_a \bar{G}^a G^b g_b^c + \\ + \frac{\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \frac{\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{d}_j^k \gamma^k u_j^k) + \\ + \frac{\pi}{2} \tfrac{w_j^k}{M} \phi^0(\bar{u}_j^k \gamma^k u_j^k) - \\ + \frac{\pi}{2} \tfrac{w_j^k}{M$ $X^+(\partial^2-M^2)X^++X^-(\partial^2-M^2)X^-+X^0(\partial^2-\frac{M^2}{c^2})X^0+Y\partial^2Y+igc_wW^+_p(\partial_pX^0X^--M^2)X^0+X^0(\partial_pX^0X^-)=0$ $\begin{array}{l} \partial_{\mu}\bar{X}^{+}X^{c}) + igs_{w}W_{\mu}^{+}(\partial_{w}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}\bar{Y}) + igc_{w}W_{\mu}^{-}(\partial_{\nu}\bar{X}^{-}X^{c} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\nu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\nu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\nu}(\partial_{\nu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\nu}(\partial_{\nu}\bar{X}^{+}X^{-} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\nu}(\partial_{\nu}\bar{X}^{+}X^{-}) + igs_{w}A_{\nu}(\partial_{\nu}\bar{X}^{+}X^{-})$

Hard (perturba $d\sigma = d\sigma_{\rm LO} + c + \alpha_S^2 d\sigma_{\rm NN}$

$$d\sigma_{\rm NLO} = \frac{1}{2s}$$

 $\begin{array}{l} \partial_{\mu}\hat{X}^{-}X^{-}) - \frac{1}{2}g\hat{M}\left(\hat{X}^{+}X^{+}H + \hat{X}^{-}X^{-}H + \frac{1}{2c}\hat{X}^{0}X^{0}H\right) + \frac{1-2c_{\nu}}{2c_{\nu}}igM\left(\hat{X}^{+}X^{0}\psi^{+} - \hat{X}^{-}X^{0}\psi^{-}\right) + \\ \\ \frac{1}{2c_{\nu}}igM\left(\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}\right) + igMs_{\nu}\left(\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}\right) + \\ \\ \frac{1}{2}igM\left(\hat{X}^{+}X^{+}\phi^{0} - \hat{X}^{-}X^{-}\phi^{0}\right) \,. \end{array}$

- Hard (perturbative) scattering process:
- $d\sigma = d\sigma_{\rm LO} + \alpha_{S} \, d\sigma_{\rm NLO} + \alpha_{\rm EW} \, d\sigma_{\rm NLO \, EW}$
 - $+\alpha_{S}^{2} d\sigma_{\rm NNLO} + \alpha_{\rm EW}^{2} d\sigma_{\rm NNLO\,EW} + \alpha_{S} \alpha_{\rm EW} d\sigma_{\rm NNLO\,QCDxEW}$

Hard (perturbative) scattering process: $d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO} + \alpha_{EW} d\sigma_{NLOEW}$

$$\mathrm{d}\sigma_{\mathrm{NLO}} = \frac{1}{2s}$$

$$\begin{split} & W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\nu}^{+}) + Z_{\nu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ & igs_{\nu}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}) - \\ \end{split}$$
 $\begin{array}{l} W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+}) - \frac{1}{2}g^{2}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + g^{2}c_{\nu}^{2}(Z_{\nu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\nu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{2}(A_{\nu}W_{\nu}^{+}A_{\nu}W_{\nu}^{-} - A_{\nu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\nu}Z_{\nu}^{+}W_{\nu}^{-})$ $\beta_{k} \left(\frac{2M^{2}}{r^{2}} + \frac{2M}{5}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{0}\phi^{-}) \right) + \frac{2M^{4}}{r^{2}}\alpha_{h}$ $g \alpha_h M \left(H^3 + H \phi^0 \phi^0 + 2 H \phi^+ \phi^- \right) =$ $\frac{1}{2}g^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right)$ $gMW^+_{\mu}W^-_{\mu}H = \frac{1}{2}g\frac{M}{d!}Z^0_{\mu}Z^0_{\mu}H$ $\frac{1}{2} ig \left(W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - W^-_\mu (\phi^0 \partial_\mu \phi^+ - \phi^+ \partial_\mu \phi^0) \right) + \\ \frac{1}{2} g \left(W^+_\mu (H \partial_\mu \phi^- - \phi^- \partial_\mu H) + W^-_\mu (H \partial_\mu \phi^+ - \phi^+ \partial_\mu H) \right) + \frac{1}{2} g \frac{1}{c_0} (Z^0_\mu (H \partial_\mu \phi^0 - \phi^0 \partial_\mu H) +$ $M\left(\frac{1}{2}Z_{\mu}^{2}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{S_{\mu}}{2}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+ige_{x}MA_{\mu}(W_{\mu}^{+}\phi^{-})+ige_{x}MA_{\mu$ $W^-_\mu\phi^+) - ig \tfrac{1-2c_\mu}{2c_\mu} Z^0_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + ig s_\mu A_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) {}^{1}_{4}g^{2}W^{+}_{\mu}W^{-}_{\mu}(H^{2} + (\phi^{0})^{2} + 2\phi^{+}\phi^{-}) - {}^{1}_{8}g^{2}{}^{-1}_{-2}Z^{0}_{\mu}Z^{3}_{\mu}(H^{2} + (\phi^{0})^{2} + 2(2s^{2}_{w} - 1)^{2}\phi^{+}\phi^{-}) \frac{1}{2}g^2\frac{a_n^2}{a_n}Z_{\mu}^0\phi^1(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2\frac{a_n^2}{a_n}Z_{\mu}^0H(W_{\mu}^+\phi^--W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^-+W_{\mu}^-\phi^-) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^-\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^-+W_{\mu}^-\phi^-) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^0(W_{\mu}^-\phi^-+W_{\mu}^-\phi^+) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^-+W_{\mu}^-\phi^-+W_{\mu}^-\phi^-) = \frac{1}{2}ig^2s_{\mu}A_{\mu}\phi^-+W_{\mu}^-\phi^-+W_{\mu}^-\phi^-) = \frac{1}{2}$ $W_{\rho}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\rho}^{+}\phi^{-} - W_{\rho}^{-}\phi^{+}) - g^{2}\frac{z_{m}}{z_{m}}(2c_{w}^{2} - 1)Z_{\rho}^{0}A_{\mu}\phi^{+}\phi^{-} -$
$$\begin{split} g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- + \frac{1}{2} i g_e \lambda_{ij}^a (g_i^e \gamma^\mu q_j^e) g_\mu^e - \bar{\sigma}^b (\gamma \partial + m_b^a) e^{\gamma} - \bar{\sigma}^b (\gamma \partial + m_b^a) e^{\gamma} - \bar{\sigma}^b (\gamma \partial + m_b^a) e^{\gamma} - \bar{a}^j (\gamma \partial + m_b^a) e^{\gamma} - \bar{a}^j (\gamma \partial + m_b^a) e^{\gamma} + i g s_w A_\mu \left(-(\bar{e}^{\gamma} \gamma^\mu e^{\gamma}) + \frac{2}{3} (\bar{a}^{j} \gamma^\mu u_j^i) - \frac{1}{5} (d_j^{j} \gamma^\mu d_j^j) \right) + \frac{i g}{4 m_b^a} g_\mu^a \left((\bar{\sigma}^{j} \gamma^\mu (1 + \gamma^b) w^j) + (\bar{e}^{j} \gamma^\mu (4 s_w^2 - 1 - \gamma^b) e^{\gamma}) + (d_j^{j} \gamma^\mu (\frac{1}{3} s_w^2 - 1 - \gamma^b) d_j^{j}) + \frac{i g}{4 m_b^a} g_\mu^a \left((\bar{\sigma}^{j} \gamma^\mu (1 + \gamma^b) w^j) + (\bar{e}^{j} \gamma^\mu (4 s_w^2 - 1 - \gamma^b) e^{\gamma}) + (d_j^{j} \gamma^\mu (\frac{1}{3} s_w^2 - 1 - \gamma^b) d_j^{j}) + \frac{i g}{4 m_b^a} g_\mu^a \left((\bar{\sigma}^{j} \gamma^\mu (1 + \gamma^b) w^j) + (\bar{e}^{j} \gamma^\mu (4 s_w^2 - 1 - \gamma^b) e^{\gamma}) + (d_j^{j} \gamma^\mu (\frac{1}{3} s_w^2 - 1 - \gamma^b) d_j^{j}) + \frac{i g}{4 m_b^a} g_\mu^a \left((\bar{\sigma}^{j} \gamma^\mu (1 + \gamma^b) w^j) + (\bar{e}^{j} \gamma^\mu (1 + \gamma^b) w^j) + (\bar{e$$
 $(a_{j}^{*}\gamma^{\mu}(1-\frac{s}{2}g_{w}^{2}+\gamma^{s})a_{j}^{*}))+\frac{ig}{2\sqrt{2}}W_{\mu}^{*}\left((2^{\lambda}\gamma^{\mu}(1+\gamma^{s})\bar{U}^{rep}{}_{\lambda\kappa}c^{\kappa})+(a_{j}^{*}\gamma^{\mu}(1+\gamma^{s})\bar{C}_{\lambda\kappa}a_{j}^{*})\right)+$ $\frac{4a}{2\sqrt{2}}W^{-}_{\mu\nu}\left((\bar{e}^{\mu}U^{\dagger}e^{1}_{\mu\nu}\gamma^{\mu}(1+\gamma^{5})\nu^{2})+(\bar{a}^{\dagger}_{j}C^{\dagger}_{\mu\nu}\gamma^{\mu}(1+\gamma^{5})a^{1}_{j})\right)+$ $rac{4p}{2M\sqrt{2}}\phi^{\pm}\left(-m_{e}^{\kappa}(\mathcal{P}^{\lambda}U^{iep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{e}^{\lambda}(\mathcal{P}^{\lambda}U^{iep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+
ight)$ $\frac{i\epsilon}{2M\sqrt{2}}\phi^{-}\left(m_{*}^{\lambda}(\bar{e}^{\lambda}U^{l_{2}})_{\lambda\epsilon}^{\dagger}(1+\gamma^{\delta})v^{\lambda}\right) - m_{*}^{\lambda}(\bar{e}^{\lambda}U^{l_{2}})_{\lambda\epsilon}^{\dagger}(1-\gamma^{\delta})v^{\lambda}\right) - \frac{\epsilon}{2}\frac{w_{k}^{\lambda}}{M}H(\bar{v}^{\lambda}v^{\lambda}) = \tfrac{i}{2} \tfrac{m_{\mu}^2}{2} H(e^{\lambda} e^{\lambda}) + \tfrac{i g}{2} \tfrac{m_{\mu}^2}{M} \phi^0(e^{\lambda} \gamma^5 e^{\lambda}) - \tfrac{i g}{2} \tfrac{m_{\mu}^2}{M} \phi^0(e^{\lambda} \gamma^5 e^{\lambda}) - \tfrac{i}{4} \bar{\nu}_{\lambda} M_{\lambda \mu}^{R} (1 - \gamma_5) \hat{\nu}_{\lambda} \frac{1}{4}\overline{\rho_{\star}}\frac{M_{\lambda\epsilon}^{g}}{M_{\lambda\epsilon}^{g}}\frac{(1-\gamma_{5})\hat{v}_{\epsilon}}{(1-\gamma_{5})\hat{v}_{\epsilon}} + \frac{g}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{e}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1-\gamma^{5})d_{j}^{\nu}) + m_{u}^{\lambda}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1+\gamma^{5})d_{j}^{\nu}) + m_{u}^{\lambda}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1+\gamma^{5})d_{j}^{\lambda}) + m_{u}^{\lambda}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1+\gamma^{5})d_{j}^{\lambda}) + m_{u}^{\lambda}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1+\gamma^{5})d_{j}^{\lambda}) + m_{u}^{\lambda}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1+\gamma^{5})d_{j}^{\lambda}) + m_{u}^{\lambda}(\bar{v}_{j}^{\lambda}C_{\lambda\epsilon}(1+\gamma^{5})d_{j}$ $\frac{ic}{(M_{1}\sqrt{2})}\phi^{-}\left(m_{0}^{\lambda}(\bar{d}_{j}^{\lambda}G_{j,*}^{\dagger}(1+\gamma^{5})n_{j}^{\delta})-m_{h}^{\mu}(\bar{d}_{j}^{\lambda}G_{j,*}^{\dagger}(1-\gamma^{5})n_{j}^{\delta})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{2}{2}\frac{m_{h}^{\mu}}{M}H(\bar{u}_{j}^$ $\frac{i}{2} \frac{m_J^2}{M} H(d_j^2 d_j^3) + \frac{ig}{2} \frac{m_d^2}{M} \phi^0(\tilde{u}_j^3 \gamma^5 u_j^5) - \frac{ig}{2} \frac{m_d^2}{M} \phi^0(d_j^3 \gamma^5 d_j^5) + \bar{G}^a \partial^2 G^a + g_c f^{abc} \partial_a \bar{G}^a G^b g_b^c +$ $X^+(\partial^2-M^2)X^++X^-(\partial^2-M^2)X^-+X^0(\partial^2-\frac{M^2}{c^2})X^0+Y\partial^2Y+igc_wW^+_p(\partial_pX^0X^--M^2)X^0+X^0(\partial_pX^0X^-)=0$ $\begin{array}{l} \partial_{\mu}\bar{X}^{+}X^{c}) + igs_{w}W_{\mu}^{+}(\partial_{w}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}\bar{Y}) + igc_{w}W_{\mu}^{-}(\partial_{\nu}\bar{X}^{-}X^{c} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{2\epsilon}\bar{X}^{0}X^{0}H\right) + \frac{1-2\epsilon^{2}}{2\epsilon_{m}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + \frac{1-2\epsilon^{2}}{2\epsilon_{m}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{+}\right) + \frac{1-2\epsilon^{2}}{2\epsilon_{m}$ $\frac{1}{2m}$ igM $(\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}) + igM_{S_{m}}(\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}) + igM_{S_{m}}(\hat{X}^{0}X^{-}\phi^{-}) + igM_{S_{m}}$

 $\frac{1}{2}igM(\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0})$.

 $\mathcal{L}_{SM} = -\tfrac{1}{2} \partial_\nu g^a_\mu \partial_\nu g^s_\mu - g_a f^{abc} \partial_\mu g^a_\nu g^b_\mu g^c_\nu - \tfrac{1}{4} g^a_\mu f^{abc} f^{abc} g^d_\mu g^c_\nu g^d_\mu g^c_\nu - \partial_\nu W_\mu \partial_\nu W_\mu$ $M^2 W^+_\mu W^-_\mu = \frac{1}{2} \partial_\mu Z^0_\mu \partial_\nu Z^1_\mu - \frac{1}{2\kappa^2} M^2 Z^0_\mu Z^0_\mu - \frac{1}{2} \partial_\mu A_\nu \partial_\mu A_\nu - igc_e (\partial_\nu Z^2_\mu (W^+_\mu W^-_\nu - W^+_\mu Q^+_\mu Q$

- NLO EW + PS matching available in OpenLoops+POWHEG-BOX
- Automation allows for detailed phenomenological applications!

- $+\alpha_{S}^{2} d\sigma_{\rm NNLO} + \alpha_{\rm EW}^{2} d\sigma_{\rm NNLO\,EW} + \alpha_{S} \alpha_{\rm EW} d\sigma_{\rm NNLO\,QCDxEW}$

The OpenLoops program

[F. Cascioli, JML, P. Maierhöfer, S. Pozzorini, '14]

FAST and flexible implementation of the Open Loops algorithm [F. Cascioli, P. Maierhöfer, S. Pozzorini, '12]: a process- and model-independent numerical recursion for the calculation of one-loop amplitudes

- Publicly available at http://openloops.hepforge.org
- Amplitudes for any $2 \rightarrow 4(5)$ NLO QCD process in the SM available: tree & (renormalized) virtual amplitudes, color correlations, spin correlations.
- Installation (Requirements: gfortran \geq 4.6, Python 2
- Interfaces to reduction/scalar integral libraries:
 - \bullet
- Interfaces to Monte Carlos:
 - Native, BLHA, Sherpa, MUNICH, Herwig++, POWHEG-BOX, Whizard

$$2.x, x \ge 4$$
): \$ cd ./OpenLoops && ./scons

CutTools [Ossola, Papadopolous, Pittau; '07] + OneLOop [van Hameren], COLLIER [Denner, Dittmaier, Hofer], Samurai [Mastrolia, Ossola, Reiter, Tramontano; '10]

From tree recursion to loop diagrams

Recursive construction of tree wave functions

- start from wave functions W^{α} f external legs.
- recycle identical structures

numerical [OpenL

The Onen Loons algorithm.

• connect wave functions with vertices $X^{\beta}_{\gamma\delta}$ and propagators to recursively build "sub-trees".

• wave functions of sub-trees are 4-tuples of complex numbers (for the spinor/Lorentz index).

$$w^{\beta}(i) = \frac{X^{\beta}_{\gamma\delta}}{\gamma_{i}} w^{\gamma}(j) w^{\delta}(k)$$

 ∞ -loop amplitude into colour factors, tensor coefficients and tensor integrals

$$\int_{r}^{\mu_{1}...\mu_{r}} \cdot \int_{r}^{dd} q \frac{q_{\mu_{1}}...q_{\mu_{r}}}{D_{0} D_{1} \dots D_{N-1}}$$

$$\text{recursion} \qquad \text{tensor integrals} \qquad [Collier]$$

The Open Loops algorithm: From tree recursion to loop diagrams

propagators

Build numerator recursively connecting subtrees along the loop keeping the a dependence

 \Rightarrow very fast!

[F. Cascioli, P. Maierhöfer, S. Pozzorini; '12]

Freat one-loop diagram as ordered set of sub-trees $\mathcal{I}_n = \{i_1, \ldots, i_n\}$ connected by

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_{n};\boldsymbol{q}) = X^{\beta}_{\gamma\delta}(\boldsymbol{q}) \ \mathcal{N}^{\gamma}_{\alpha}(\mathcal{I}_{n-1};\boldsymbol{q}) \ w^{\delta}(i_{n})$$
$$X^{\beta}_{\gamma\delta} = Y^{\beta}_{\gamma\delta} + \boldsymbol{q}^{\nu} Z^{\beta}_{\nu;\gamma\delta}$$
$$\mathcal{N}^{\beta}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n}) = \left[Y^{\beta}_{\gamma\delta} \ \mathcal{N}^{\gamma}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1}) + Z^{\beta}_{\mu_{1};\gamma\delta} \ \mathcal{N}^{\gamma}_{\mu_{2}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1})\right]$$

The (original) Open Loops algorithm: recycle loop structures

OpenLoops recycling:

Illustration:

child 1

Lower-point open-loops can be shared between diagrams if

- cut is put appropriately
- direction chosen to maximise recyclability

Complicated diagrams require only "last missing piece"

child 2

12

The (original) Open Loops algorithm: one loop amplitudes

[F. Cascioli, P. Maierhöfer, S. Pozzorini; '12]

- evaluated with **COLLIER** [Denner, Dittmaier, Hofer; '16]

Tensorial coefficients $\mathcal{N}^{\alpha}_{\mu_1...\mu_r;\alpha}$ can directly be contracted with Tensor Integrals

Fast evaluation of $\mathcal{N}(q) = \sum \mathcal{N}_{\mu_1 \dots \mu_r} q^{\mu_1} \dots q^{\mu_r}$ at multiple q-values allows for efficient application of OPP reduction methods e.g. with CutTools [Ossola, Papadopolous, Pittau; '07]

- $q^{\mu}q^{\nu} = A^{\mu\nu} + B^{\mu\nu}_{\lambda}q^{\lambda}$

- problem: huge proliferation of topologies due to necessary pinching of propagators.
- - \Rightarrow as fast as OpenLoopsI+Collier

• solution: new helicity and colour treatment at M^2 level allows for merging of pinched topologies.

On-the-fly OpenLoops reduction [F. Buccioni, S. Pozzorini, M. Zoller '17]

• Huge advantage: allows for systematic treatment of numerical instabilities

On-the-fly OpenLoops reduction [F. Buccioni, S. Pozzorini, M. Zoller '17]

• Huge advantage: allows for systematic treatment of numerical instabilities

• unprecedented numerical stability (always as least as stable as OpenLoops I+Collier) • crucial in unresolved limits of **real-virtual contributions** in NNLO calculations

On-the-fly OpenLoops reduction [F. Buccioni, S. Pozzorini, M. Zoller '17]

• Huge advantage: allows for systematic treatment of numerical instabilities

- ultimate stability: OFR @ qp (based on all-order expansions)

• unprecedented numerical stability (always as least as stable as OpenLoops I+Collier)

• crucial in unresolved limits of **real-virtual contributions** in NNLO calculations

• soon to be public in **OpenLoops2** [F. Buccioni, JML, P. Maierhöfer, S. Pozzorini, M. Zoller]

17

Relevance of EW higher-order corrections I

Numerically $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow | \text{NLO EW} \sim \text{NNLO QCD}$

 $\delta \mathcal{M}_{\mathrm{LL}+}^{1-\mathrm{loc}}$

 \rightarrow overall large effect in the tails of distributions: p_T , m_{inv} , H_T ,... (relevant for BSM searches!)

I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

$$_{+\text{NLL}}^{\text{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\text{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\}$$

18

in sufficiently exclusive observables.

 \rightarrow important for various precision observables, e.g. for determination of M_W in DY

Nontrivial features in NLO QCD \rightarrow NLO EW

I. QCD-EW interplay

3. virtual EW corrections more involved than QCD (many internal masses)

At NLO EW corrections in production, decay and non-factorizable contributions for V decays
 → complex-mass-scheme

4. photon contributions in jets and proton \rightarrow photon-jet separation, γ PDF

 $\ell/\tilde{\nu}$

A few examples where theory precision is crucial:

 $\sim \lambda_{\perp}$

Dark Matter searches

A few examples where theory precision is crucial:

EW SUSY searches

Dark Matter searches

direct probe of the top Yukawa coupling

→ direct probe of the top Yukawa coupling → unfortunately very small cross section → have to consider H→bb decay with large BR

- ➡ in principle this process can be calculated out of the box at NLO+PS: NLO reduces scale uncertainties from 80% to 20-30% \rightarrow However: notoriously difficult multi-scale problem: ET_t, ET_t, ET_b, ET_b \rightarrow Large shower effects, in particular from double $g \rightarrow b\bar{b}$ splittings Large systematic uncertainties from parton shower matching

- Careful study required to understand these systematics

background

500000

10000000

g ooooot

googgoogh

A few examples where theory precision is crucial:

EW SUSY searches

Dark Matter searches

Filggs-pT:

$$p_{\perp} \ll m_t$$

Possibility to constrain the charm-Yukawa couplid
 $d\sigma/dp_{\perp} \propto y_t^2 + y_t y_b + y_b^2 + y_t y_c + \dots$
for $p_{\rm T} \ll m_H$: ~10% ~1% <<1%
 $A_{gg \rightarrow Hg}^Q \sim m_Q^2/m_H^2 \log^2\left(p_{\perp}^2/m_Q^2\right)$

Sudakov-like logarithmic enhancement of light-quark contribution at small pT

[Bishara, Haisch, Monni, Re; '16]

Higgs-pT: two regimes

 $p_{\perp} > m_t$

pling

Sensitive probe of New Physics

 \rightarrow In particular: disentangle c_g vs. c_t,:

$$\frac{\mathrm{d}\sigma_H}{\mathrm{d}p_\perp^2} \sim \frac{\sigma_0}{p_\perp^2} \begin{cases} (c_g + c_t)^2, & p_\perp^2 < 4m_t^2 \\ \left(c_g + c_t \frac{4m_t^2}{p_\perp^2}\right)^2, & p_\perp^2 > 4m_t^2 \end{cases}$$

Note: inclusive measurements only allow

Higgs-pT: higher-order corrections

Ansätze:

- analytical: very hard, planar MI known
- numerical: very CPU/GPU intensive

lower order predictions in full theory → check!!

 $p_{\perp} \ll m_t$, $p_{\perp} > m_t$

2.5 NLO $\langle \rangle$ where the sum runs over all final state partons i. This scale is known to give a good convergence of the perturbative expansion and stable differential K-factors (ratio of NLO to LO predictions) in the effective theory [68]. To estimate the theoretical uncertainty we vary independently μ_F and μ_R by factors of 0.5 and 2, and exclude the opposite variations. The total uncertainty is taken to be the envelope of this 7-point variation.

 $+\infty$

3.0

To Better highlight the differences arising from the two- 50 loop massive contributions, we convare the new results with full top-quark mass dependence, which we label as "full theory cestor der breaks "Gol mather blowing, to two different approximations. In addition to predictions in the effect Resultance for for the as HEFT in the following, we show results in which everything but the virtual amplitudes is computed with full top-quark mass dependence. In this latter case only the virtual contribution is computed in the effective field theory and

Higgs-pT: two regimes

• point-like ggH (HEFT) and full theory have very different high energy behaviour.

-(5-10)% for pT=20-40 GeV at LO and NLO

- Despite (large) corrections, the interference

$p_{\perp} > m_t$: top mass effects at NLO

- numerical integration of two-loop integrals based on **SecDec** [Borowka et.al.]

- hardly any shape dependence

 \rightarrow Control of the high-H-pT tail at NLO opens the door for new physics searches in this regime!

• NLO corrections very similar as in HEFT: K \sim 2 with remaining scale uncertainties \sim 20-25%

Dark Matter searches

 $ilde{\chi}_1^0$

• $\tilde{\chi}_1^0$

off-shell vector-boson pair production at NLO QCD+EW

[Kallweit, JML, Pozzorini, Schönherr; '17]

off-shell vector-boson pair production at NLO QCD+EW

off-shell vector-boson pair production at NLO QCD+EW

[Kallweit, JML, Pozzorini, Schönherr; '17]

- •YFS resummation (resonance aware) \Rightarrow valid approximation

Naive NLO EW+PS matching in Sherpa+OpenLoops (applicable at particle level) •CSS dipole shower (not resonaonce aware) \Rightarrow significant mismodelling

- Motivation:
 - background in mono-Higgs searches

p⊤ of Higgs

- ► NLO EVV: -20 % > 800 GeV
- MiNLO ensures NLO QCD and NLO EW accuracy in the whole phase-space

HV(+jet) at NLO+PS QCD + EW

[Granata, JML, Oleari, Pozzorini,; '17]

• HV in boosted regime allows to constrain $H \rightarrow bb$

- ► large QED effects due to radiative tail...
- ...reliably modelled by QED-PS
- matching at NLO EW has to be resonance-aware

A few examples where theory precision is crucial:

EW SUSY searches

Dark Matter searches

Canonical Dark Matter signature at the LHC: monojets / MET+jets

Early Universe Annihilation

experimental signal:

we hope to see:

Canonical Dark Matter signature at the LHC: monojets / MET+jets

Early Universe Annihilation

experimental signal:

we hope to see:

SM backgrounds in monojet / MET+X searches

Determine V+jets DM backgrounds

- very precise at low pT
- but: limited statistics at large pT

• systematics from transfer factors

QCD corrections

- mostly moderate and stable QCD corrections
- (almost) identical QCD corrections in the tail, sizeable differences for small pT

EW corrections

- correction in $pT(Z) > correction in pT(\chi)$
- ► -20/-8% for Z/γ at I TeV
- EW corrections > QCD uncertainties for $p_{T,Z}$ > 350 GeV

Prelude: Z/γ pT-ratio

QCD corrections

- 10-15% below 250 GeV ≤ 5% above 350 GeV

EW corrections

 sizeable difference in EW corrections results in 10-15% corrections at several hundred GeV

• remarkable agreement with data at @ NLO QCD+EVV!

how to correlate scale uncertainties in ratios?

how to estimate uncertainties due to missing higher-order EW?

how to combine higher-order QCD and EW correction? what is the related uncertainty?

Uncertainty estimates at (N)NLO QCD + (n)NLO EW

Pure QCD uncertainties

[*ML et. al.:* 1705.04664]

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{QCD}}^{(V)} = \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LOQCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{NLOQCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{NNLOQCD}}^{(V)}$$

$$\mu_0 = \frac{1}{2} \left(\sqrt{p_{\mathrm{T},\ell^+\ell^-}^2 + m_{\ell^+\ell^-}^2} + \sum_{i \in \{q,g,\gamma\}} |p_{\mathrm{T},i}| \right)$$

this is a 'good' scale for V+jets

- at large pTV: $HT'/2 \approx pTV$
- modest higher-order corrections
- sufficient convergence

scale uncertainties due to 7-pt variations:

O(20%) uncertainties at LO O(10%) uncertainties at NLO O(5%) uncertainties at NNLO

with minor shape variations

How to correlate these uncertainties across processes?

consider Z+jet / W+jet p_{T,V}-ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

 $p_{T,V}$ [GeV]

[1705.04664]

consider Z+jet / W+jet p_{T,V}-ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(<~ 1%) uncertainties

[1705.04664]

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(< 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat in Z+jet / W+jet ratio! → supports correlated treatment of uncertainties!

 $p_{T,V}$ [GeV]

[1705.04664]

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(< ~ 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat in Z+jet / W+jet ratio! → supports correlated treatment of uncertainties!

 $p_{T,V}$ [GeV]

Also holds for higher jet-multiplicities \rightarrow indication of correlation also in higher-order corrections beyond NLO!

How to correlate these uncertainties across processes?

• take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the <~ | % level

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the $<\sim$ 1 % level
- introduce **process correlation uncertainty** based on K-factor difference: →effectively degrades precision of last calculated order

δ<2%

$$\delta K_{\rm NLO} = K_{\rm NLO}^V - K_{\rm NLO}^Z$$

δ < 3-4 %

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the $<\sim$ 1 % level
- introduce **process correlation uncertainty** based on K-factor difference: →effectively degrades precision of last calculated order

check against NNLO QCD!

$$\delta K_{\rm NLO} = K_{\rm NLO}^V - K_{\rm NLO}^Z$$

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the <~ 1 % level
- →effectively degrades precision of last calculated order

• introduce process correlation uncertainty based on K-factor difference: $\delta K_{(N)NLO} = K_{(N)NLO}^V - K_{(N)NLO}^Z$

Uncertainty estimates at NNLO QCD

Pure EW uncertainties

$$\kappa_{\rm NLO\,EW} = \frac{\alpha}{\pi} \left[\delta_{\rm hard}^{(1)} + \delta_{\rm Sud}^{(1)} \right]$$

[JML et. al.: 1705.04664]

Large EW corrections dominated by Sudakov logs!

Pure EW uncertainties

 $p_{T,V}$ [GeV]

$$\kappa_{\rm nLO\,EW} = \frac{\alpha}{\pi} \left[\delta(1)_{\rm Sud} \right] \qquad \kappa_{\rm NNLO\,Sud} = \left(\frac{\alpha}{\pi}\right)^2$$
$$\kappa_{\rm NLO\,EW} = \frac{\alpha}{\pi} \left[\delta^{(1)}_{\rm hard} + \delta^{(1)}_{\rm Sud} \right] \qquad \kappa_{\rm nNLO\,EW} = \kappa_{\rm NLO}$$

[JML et. al.: 1705.04664]

Large EW corrections dominated by Sudakov logs!

check against two-loop Sudakov²⁰⁰ logs²⁰⁰ logs²⁰⁰

NLO/LO - 1statistical error

[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

 $\epsilon_{\rm EW} + \kappa_{\rm NNLO \, Sud}$

Mixed QCD-EW uncertainties

Given QCD and EW corrections are sizeable, also mixed QCD-EW uncertainties of relative $\mathcal{O}(\alpha \alpha_s)$ have to be considered.

Additive combination $\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$ (no $O(\alpha \alpha_s)$ contributions) Multiplicative combination

$$\sigma_{\rm QCD\times EW}^{\rm NLO} = \sigma_{\rm QCD}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}}\right)$$

(try to capture some $\mathcal{O}(\alpha \alpha_s)$ contributions, e.g. EW Sudakov logs × soft QCD)

Difference between these two approaches indicates size of missing mixed EW-OCD corrections.

$K_{\rm QCD\otimes EW} - K_{\rm QCD\oplus EW} \sim 10\%$ at 1 TeV

Too conservative!?

For dominant Sudakov EW logarithms factorization should be exact!

$$\frac{\mathrm{d}\sigma_{\mathrm{NLO\,EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+2\mathrm{jet}} - \frac{\mathrm{d}\sigma_{\mathrm{NLO\,EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+1\mathrm{jet}} \lesssim 1\%$$

$$\delta K_{\rm mix}^{(V)}(x) = 0.1 \left[K_{\rm TH,\oplus}^{(V)}(x,\vec{\mu}_0) - K_{\rm TH,\otimes}^{(V)}(x,\vec{\mu}_0) \right]$$

PDF uncertainties (LUXqed=PDF4LHC) ertanties for V+jet @ 13 TeV ℓ^{-})+ jet UXqed PDF uncertainties for V+jet ratios @ 13 TeV I_{-} I_{-} I_{-} $Z(\ell^{+}\ell^{-}) / W(\ell\nu)$

• $\delta_{\text{PDF}} < 5$ % for pT,V < 1500 GeV

- Z/W: $\delta_{\text{PDF}} < 0.5\%(2\%)$ for pT,V < 800 GeV(1.5 TeV)
- Z/ γ & W/ γ : δ_{PDF} < 2% for pT,V < 1.3 TeV
- W-/W+: $\delta_{\text{PDF}} > 5\%$ for pT,V < I TeV (due to large uncertainties on u/d ratio at large Bjorken-x)

Conclusions

- ► There is no clear scale/signature for new physics effects: Let's explore the unknown leaving no stone unturned!
- Precision is key for SM(+Higgs) measurements, as well as for BSM searches.
- Detailed understanding of theory systematics is becoming pivotal.
- ► At high energies inclusion of EW corrections crucial due to large Sudakov logs
- Automation of higher-order corrections allows for detailed phenomenological analyses for a multitude of process. But: need to look inside the black box.
- Let's push the precision frontier!

- Recursively build "open loops" polynomials $\mathcal{N}^{\beta}_{\mu_{1}...\mu_{r};\alpha}$
 - disentangle loop momentum q from the coefficients

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_{n};\boldsymbol{q}) = \sum_{r=0}^{n} \mathcal{N}^{\beta}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n}) \boldsymbol{q}^{\mu_{1}}\dots\boldsymbol{q}^{\mu_{r}} \qquad X^{\beta}_{\gamma\delta} = Y^{\beta}_{\gamma\delta} + \boldsymbol{q}^{\nu} Z^{\beta}_{\nu;\gamma\delta}$$

• recursion in d=4:

$$\mathcal{N}_{\mu_{1}\dots\mu_{r};\alpha}^{\beta}(\mathcal{I}_{n}) = \left[Y_{\gamma\delta}^{\beta}\mathcal{N}_{\mu_{1}\dots\mu_{r};\alpha}^{\gamma}(\mathcal{I}_{n-1}) + Z_{\mu_{1};\gamma\delta}^{\beta}\mathcal{N}_{\mu_{2}\dots\mu_{r};\alpha}^{\gamma}(\mathcal{I}_{n-1})\right]w^{\delta}(i_{n})$$

- model and process independent algorithm
- numerical implementation requires only universal building blocks, derived from the Feynma rules of the theory (full SM implemented; also HEFT; more BSM/EFT to come)
- ϵ -dimensional part of the numerator x poles of the tensor integrals yield R₂ rational terms

 $R_2 = ([\mathcal{N}]_{d=4-2\epsilon} -$

• numerical recursion in D=4 \rightarrow restore R₂ via process independent counter terms

[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09, '10; Shao, Zhang, Chao '11]

IF. Cascioli. P. Maierhöfer, S. Pozzorini: (121

$$[\mathcal{N}]_{d=4}) \cdot [TI]_{UV}$$

Overall remarkable data vs. theory agreement ➡Precision tests of the SM at the quantum level in a multitude of processes

Success of Run-I & Run-II of the LHC

ATLAS SUSY Searches* - 95% CL Lower Limits

De	ecember 2017								$\sqrt{s} = 7$
	Model	$\epsilon, \mu, \tau, \gamma$	Jets	E ^{miss} T	∫£#[N	-')	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Referenc
Inclusive Searches	$\begin{array}{l} \hat{q}\bar{q}, \bar{q} \rightarrow q \tilde{k}_{1}^{0} \\ \hat{q}\bar{q}, \bar{q} \rightarrow q \tilde{k}_{1}^{0} \ (compressed) \\ \hat{t}\bar{g}, \bar{g} \rightarrow q \bar{q} \tilde{k}_{1}^{0} \ (compressed) \\ \hat{t}\bar{g}, \bar{g} \rightarrow q \bar{q} \tilde{k}_{1}^{0} \\ \hat{t}\bar{g}, \bar{g} \rightarrow q q \tilde{k}_{1}^{0} \rightarrow q q W^{+} \tilde{k}_{1}^{0} \\ \hat{t}\bar{g}, \bar{g} \rightarrow q q \tilde{\ell}(\ell) \tilde{k}_{1}^{0} \\ \hat{t}\bar{g}, \bar{g} \rightarrow q q (\ell \ell) \tilde{k}_{1}^{0} \\ \tilde{q}\bar{g}, \bar{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GCM (bino NLCP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{Gravitino LSP} \end{array}$	0 mcno-jat 0 ee, μμ 3 e, μ 0 1-2 τ + 0-1 t 2 γ γ 0	2-6 jets 1-3 jots 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 7-2 jets 2 jets 2 jets 2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 30.1 36.1 20.3	q q q z z z z z z z z z z z z z z z z z	710 GeV scale 865 GeV	1.57 TeV m(l ² ₁)<200 GeV, m(1* gen. ij)=m(2*l gen. ij) m(ij)=m(i ² ₁)<5.3eV 2.02 TeV m(k ² ₁)<200 GeV	1712.02332 1711.01301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-201 ATLAS-CONF-201 1502.01518
yn gen	$tg, g \rightarrow b \overline{b} \overline{t}_1^0$ $\overline{t} \overline{g}, \overline{g} \rightarrow t \overline{t} \overline{t}_1^0$	0 0-1 e,μ	3 b 3 b	Yes Yes	36.1 36.1	g Ř		1.92 TeV m(ℓ ⁺ ₁) <tou gev<br="">1.97 TeV m(ℓ⁺₁)<200 GeV</tou>	1711.01901
3 rd gen. squarks drect production	$ \begin{array}{l} \hat{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \hat{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \hat{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^+ \\ \hat{b}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{k}_1^+ \\ \hat{b}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{k}_1^0 \\ \hat{b}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{k}_1^0 \\ \hat{b}_1 \tilde{t}_1 (natural GMSB) \\ \hat{b}_1 \tilde{t}_2, \tilde{t}_1 \rightarrow \tilde{t}_1 + Z \\ \hat{b}_1 \tilde{t}_2, \tilde{t}_1 \rightarrow \tilde{t}_1 + h \end{array} $	0 2 e,µ (S\$) 0-2 e,µ 0-2 e,µ 0 2 e,µ (Z) 3 e,µ (Z) 1-2 e,µ	2 b 1 b 1 -2 b 0 -2 jets/1-2 i mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 .7/13.3 0.3/56.1 36.1 20.3 36.1 36.1 36.1		950 GeV 275-703 GeV 117-170 GeV 200-720 GeV 90-198 GeV 0.195-1.0 TeV 90-430 GeV 150-600 GeV 290-790 GeV 320-880 GeV	$m(\hat{k}_{1}^{0}) < 420 \text{ GeV}$ $m(\hat{k}_{1}^{0}) < 200 \text{ GeV}, m(\hat{r}_{1}^{0}) = m(\hat{k}_{1}^{0}) + 100 \text{ GeV}$ $m(\hat{k}_{1}^{0}) = 2m(\hat{k}_{1}^{0}), m(\hat{k}_{1}^{0}) = 55 \text{ GeV}$ $m(\hat{k}_{1}^{0}) = 1 \text{ GeV}$ $m(\hat{r}_{1}) = m(\hat{k}_{1}^{0}) = 50 \text{ GeV}$ $m(\hat{k}_{1}^{0}) = 150 \text{ GeV}$ $m(\hat{k}_{1}^{0}) = 16 \text{ GeV}$ $m(\hat{k}_{1}^{0}) = 16 \text{ GeV}$	1708.09266 1706.03731 1209.2102, /TLAS-COM 1506.06616, 1709.04183 1711.09301 1403.5222 1706.0986 1706.0986
EW direct	$ \begin{array}{l} \hat{l}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{*} \rightarrow \ell \nu (\ell \tilde{\gamma}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{-}, \tilde{\chi}_{1}^{*} \rightarrow \ell \nu (\ell \tilde{\gamma}), \tilde{\chi}_{2}^{0} \rightarrow \dagger \pi (\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow \ell_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}), \tilde{\ell} \tilde{\chi}_{L} \ell (\tilde{\nu}), \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{2}^{*} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{2}^{*} Z \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{\nu} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{3}^{0}, \chi_{2,3}^{0} \rightarrow \ell_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \gamma \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \gamma \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 2 3 c, μ e μ, γ 4 e, μ δ 1 e, μ + γ δ 2 γ	0 0 • 2 jois 0-2 k 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 20.3 20.3 20.3 20.3 36.1	7 X1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90-500 GeV 750 GeV 760 GeV 1.13 TeV 500 GeV 270 GeV 535 GeV 115-370 GeV 1.06 TeV	$\begin{split} m(\hat{k}_{1}^{0}) = C \\ m(\hat{k}_{1}^{0}) = C, m(\hat{\ell}, \hat{\nu}) = 0.5(m(\hat{\ell}_{1}^{0}) + m(\hat{\ell}_{1}^{0})) \\ m(\hat{k}_{1}^{0}) = C, m(\hat{\ell}, \hat{\nu}) = 0.5(m(\hat{\ell}_{1}^{0}) + m(\hat{\ell}_{1}^{0})) \\ m(\hat{\ell}_{1}^{0}) = m(\hat{\ell}_{1}^{0}) = 0, m(\hat{\ell}, \hat{\nu}) = 0.5(m(\hat{\ell}_{1}^{0}) + m(\hat{\ell}_{1}^{0})) \\ m(\hat{\ell}_{1}^{0}) = m(\hat{\ell}_{2}^{0}), m(\hat{\ell}_{1}^{0}) = 0, \hat{\ell} \text{ decoupled} \\ m(\hat{\ell}_{1}^{0}) = m(\hat{\ell}_{2}^{0}), m(\hat{\ell}_{1}^{0}) = 0, \hat{\ell} \text{ decoupled} \\ m(\hat{\ell}_{2}^{0}) = m(\hat{\ell}_{2}^{0}), m(\hat{\ell}_{1}^{0}) = 0, \hat{\ell} \text{ decoupled} \\ m(\hat{\ell}_{2}^{0}) = m(\hat{\ell}_{2}^{0}), m(\hat{\ell}, \hat{\nu}) = 0.5(m(\hat{\ell}_{2}^{0}) + m(\hat{\ell}_{1}^{0})) \\ c_{1} < 1 mn \\ c_{1} < 1 mn \end{split}$	ATLAS-CONF-201 ATLAS-CONF-201 1708.07875 ATLAS-CONF-201 ATLAG-CONF-201 1501.07110 1405.1086 1507.05492 ATLAS-CONF-201
Long-Irved particles	$\begin{array}{l} \text{Direct} \widehat{\chi}_1^+ \widehat{\chi}_1^- \operatorname{proc., \ long-lived} \widehat{\chi}_1^\pm \\ \text{Direct} \widehat{\chi}_1^+ \widehat{\chi}_1^- \operatorname{proc., \ long-lived} \widehat{\chi}_1^\pm \\ \text{Stable, \ stopped } \widehat{g} \ \text{R-hadron} \\ \text{Stable, \ stopped } \widehat{g} \ \text{R-hadron} \\ \text{Metastable } \widehat{g} \ \text{R-hadron} \\ \text{Metastable } \widehat{g} \ \text{R-hadron} \\ \text{Metastable } \widehat{g} \ \text{R-hadron} \\ \text{Metastable, \ stable, \ } \widehat{\chi}_1^0 {\rightarrow} \widehat{\tau}(\widehat{e}, \widehat{\mu}) {\rightarrow} \tau(e, \mu) \\ \text{GMSB, \ stable, \ } \widehat{\chi}_1^0 {\rightarrow} \widehat{\tau}(\widehat{e}, \widehat{\mu}) {\rightarrow} \tau(e, \mu) \\ \text{GMSB, \ } \widehat{\chi}_1^0 {\rightarrow} \widehat{\tau}(\widehat{e}, \mu) {\rightarrow} \widehat{\chi}_1^0 \\ \widehat{\xi} g, \ \widehat{\chi}_1^0 {\rightarrow} eev/e \mu \nu \mu \mu \nu \end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 µ 2 y displ. cc/cp/p	1 jet - -5 jots - - - -	Yes Yes - Yes - Yes	36.1 18.4 27.9 3.2 32.8 19.1 20.3 20.3		460 GeV 495 GeV 850 GeV 537 GeV 440 GeV 1.0 TeV	$\begin{array}{c} m(\hat{k}_{1}^{0}) - m(\hat{k}_{1}^{0}) \sim 160 \ \text{MeV}, \ \pi(\hat{k}_{1}^{0}) = 0.2 \ \text{ns} \\ m(\hat{k}_{1}^{0}) - m(\hat{k}_{1}^{0}) \sim 160 \ \text{MeV}, \ \pi(\hat{k}_{1}^{0}) = 15 \ \text{ns} \\ m(\hat{k}_{1}^{0}) = 100 \ \text{GeV}, \ 10, \ \text{rs} < \pi(\hat{p}) < 1000 \ \text{s} \\ \hline 1.57 \ \text{TeV} \qquad m(\hat{k}_{1}^{0}) = 100 \ \text{GeV}, \ \pi > 0 \ \text{ns} \\ \hline 2.37 \ \text{TeV} \qquad \pi(\hat{k}_{1}^{0}) = 100 \ \text{GeV}, \ \pi > 0 \ \text{ns} \\ \hline 10 < \tan(<50) \\ 10 < \tan(<50) \\ 1 < \pi(\hat{k}_{1}^{0}) < 3 \ \text{ns}, \ \text{SPSt} \ \text{model} \\ 7 < \sec(\hat{k}_{1}^{0}) < 3 \ \text{ns}, \ \text{MeV} = 3 \ \text{TeV} \\ \end{array}$	1712.02118 1508.05333 1310.6584 1908.03128 1604.04520 1710.04901 1411.6795 1409.5542 1504.05108
RPV	$\begin{split} & IFV_{I\!P\!I} p \!\!\to\!\! \tilde{v}_{\tau} + X_{\cdot} \tilde{v}_{\tau} \!\!\to\!\! \mu r / e \tau_{I\!P\!I} r \\ & Bilinear \; RPV \; CNSSM \\ & \mathcal{I}_{1}^{+} \mathcal{X}_{1}^{-}, \mathcal{X}_{1}^{+} \!\!\to\!\!W \mathcal{X}_{1}^{0} \mathcal{X}_{1}^{0} \!\!\to\!\! e e v, e \mu v, \mu \mu r \\ & \mathcal{I}_{1}^{+} \mathcal{X}_{1}^{-}, \mathcal{X}_{1}^{+} \!\!\to\!\!W \mathcal{X}_{1}^{0} \mathcal{X}_{1}^{0} \!\!\to\!\! r \tau v_{e}, e \tau v_{\tau} \\ & \mathcal{I}_{2}^{+} \mathcal{I}_{3}^{-} \mathcal{I}_{3}^{+} \mathcal{I}_{3}^{+} \mathcal{H} \mathcal{X}_{1}^{0} \!\!\to\! q q g \\ & \mathcal{I}_{3}^{+} \mathcal{I}_{3}^{-} \mathcal{I}_{3}^{+} \mathcal{I}_{3}^{+} \mathcal{I}_{3}^{+} \!\!\to\! q g g \\ & \mathcal{I}_{3}^{+} \mathcal{I}_{3}^{+} \mathcal{I}_{1}, \mathcal{I}_{1}^{+} \!\!\to\! b r \\ & \mathcal{I}_{1} \mathcal{I}_{1}, \tau_{1} \!\!\to\!\! b s \\ & \mathcal{I}_{1} \mathcal{I}_{1}, \tau_{1} \!\!\to\!\! b \ell \end{split}$	eμeτ.μτ 2 e.μ (S\$) 4 e.μ 3 e.μ + τ 0 4 1 e.μ 8 1 e.μ 8 0 2 e.μ	-5 largo-R jo 3-10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes b - b -	5.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	v_r \bar{q}, \bar{g} $\bar{\chi}_1^+$ $\bar{\chi}_1^+$ \bar{g} \bar{g} \bar{g} \bar{g} \bar{g} \bar{g} \bar{f}_1 \bar{f}_1	1 1.14 TeV 450 GeV 100-470 GeV 480-610 GeV 0,4-1	1.9 TeV $L'_{j+1}=0.11$ $k_{02,(13),(23)}=0.07$ 1.45 TeV $m(\tilde{q})=m(\tilde{g})$ $c\tau_{i,S,P}<1 \text{ mm}$ V $m(\tilde{k}_{1}^{0})>4000kev$ $A_{12k}\neq0$ $k=1, 2$ $m(\tilde{k}_{1}^{0})>6000kev$ $A_{12k}\neq0$ $k=1, 2$ $m(\tilde{k}_{1}^{0})=1075$ GeV 1.875 TeV $m(\tilde{k}_{1}^{0})=1075$ GeV 2.1 TeV $m(\tilde{k}_{1}^{0})=1$ TeV, $\lambda_{112}\neq0$ 1.65 TeV $m(\tilde{k}_{1})=1$ TeV, $\lambda_{123}\neq0$ $m(\tilde{k}_{1})=1$ TeV, $\lambda_{223}\neq0$ $BR(\tilde{t}_{1}\rightarrow he/\mu)>20\%$	1607.08070 1404.2500 ATLAS-GONF-20 1405.5086 SUSY-2016-2 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes	20.3	ē	510 GeV	π(ξ ⁰ ₁)<200 GeV	1501.01325

10-1

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

> ➡ BSM certainly not 'around the corner' ➡ Leave no stone unturned

1

Search limits

ATLAS Preliminary , 8, 13 TeV

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

.

1

"Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

√s = 13 TeV

√s = 8 TeV

7.0

1.1.1.1

10-1

Magnetic monopolas

Push towards smaller couplings / exotic signatures

ATLAS

DY production, $|g| = \|g_0, \operatorname{spin} 1/2$

Mass scale [TeV]

10

Preliminary
8, 13 TeV
erence
CONF-2017-060 4-EP-2017-132 703.046412
603.02265 512.02566 4 EP 2017-132
CONF 2017-061 CONF-9016-104
CONF2017-027 CONF2017-050 603.03761 CONF-2016-014
705.04785 4-EP-2017-147 CONF-9017-055 1410,4103
703.09217
CONF-2017-027 504.04605
CONF-2017-068 704.03849 603.02372
605.05025 605.05025 508.04235
CONF-9016-104 705.10751 4-EP-2017-094 505.01906
409.5500 4-EP-2017-094 509.01281
708.09127 4-EP-2017-146 CONF-2016-060 510.02684
411.2521
CONF-3017-053 R111.2521 R110.5404
504.04185 509.04059

On-the-fly OpenLoops reduction

[F. Buccioni, S. Pozzorini, M. Zoller '17]

• Huge advantage: allows for systematic treatment of numerical instabilities in

- ultimate stability: OFR @ qp (work in progress)

• unprecedented numerical stability (always as least as stable as OpenLoops I+Collier) • crucial in unresolved limits of **real-virtual contributions** in NNLO calculations

• soon to be public in **OpenLoops2** [F. Buccioni, [ML, P. Maierhöfer, S. Pozzorini, M. Zoller]

inclusive V: MEPS@NLO QCD+EWvirt

[S. Kallweit, JML, P. Maierhöfer, M. Schönherr, S. Pozzorini, '14+'15]

- Bases on Sherpa's standard MEPS@NLO
- Stable NLO QCD+EW predictions in all of the phase-space...
- ...including Parton-Shower effects.
- Can directly be used by the experimental collaborations
- pT,V: MEPS@NLO QCD+EW in agreement with QCDxEW (fixed-order)

▶ Рт, ј I :

- merging ensures stable results (dijet topology at LO)
- compensation between negative Sudakov and LO mix

Automation of NLO EW

MoCaNLO+Recola	$pp \rightarrow \parallel + 2 \text{ jets}$ $pp \rightarrow e^+e^-\mu^+\mu^-/\mu^+\mu^-\mu^+\mu^-/e^+\nu_e\mu^-\nu_\mu$ $pp \rightarrow e^+\nu_e\mu^-\nu_\mu \text{ bb (tt)}$ $pp \rightarrow e^+\nu_e\mu^+\nu_\mu + 2 \text{ jets (VBS)}$ $pp \rightarrow e^+\nu_e\mu^-\nu_\mu \text{ bbH (ttH)}$	[4 .09 6] [60 .07787] [6 .05338 [607.0557] [6 .0295] [708.00268] [6 2.07 38]
Sherpa/Munich+OpenLoops POWHEG+OpenLoops	$pp \rightarrow W+1,2,3 \text{ jets}$ $pp \rightarrow II/I\nu/\nu\nu + 0, 1, 2 \text{ jets} (V+\text{jets})$ $pp \rightarrow II\nu\nu (VV)$ $pp \rightarrow IIH/II\nuH+0,1 \text{ jet} (HV)$	[1412.5156] [1511.08692] [1705.00598] [1706.03522]
MadGraph_aMC@NLO +MadLoop	$pp \rightarrow tt + H/Z/W$ $pp \rightarrow tt$ $pp \rightarrow 2 jets$	[1504.03446] [1606.01915] [1705.04105] [1612.06548]
MadDipole+GoSam Sherpa+GoSam	$pp \rightarrow W+2 \text{ jets}$ $pp \rightarrow \chi\chi+0,1,2 \text{ jets}$	[1507.08579] [1706.09022]

- many NLO QCD+EW calculations for multi-particle processes are becoming available

• NLO QCD+EW matching and merging with parton showers is under way (approximations available)

• Given the achieved automation: attention is shifting towards detailed phenomenological applications

Treatment of Photons

- QED IR subtraction [Catani,Dittmaier,Seymour,Trocsanyi; Frixione, Kunszt, Signer]
- Problem of IR safeness in presence of FS QCD partons and photons:
 - Democratic jet-algorithm approach (jets = photons)

collinear $q \rightarrow q\gamma$ singularities cancelled clustering q, g, γ on same footing

Separation of jets from photons through $E_{\gamma}/E_{jet} < z_{thr}$ inside jets

- rigorous approach: absorb $q \rightarrow q \gamma$ singularity into fragmentation function
- *approximation*: cancel singularity via $q\gamma$ recombination in small cone

difference < 1% for typical z_{thr} !

- QED factorisation for IS photons and PDF evolution [MRST2004, NNPDF2.3]
- γ -induced processes \rightarrow possible TeV scale enhancements (However large uncertainties!)

MEPS@NLO QCD+EWvirt

- observables)

$$\hat{B}_{n,QCD}(\Phi_n) \longrightarrow \tilde{B}_{n,QCD+EW}(\Phi_n) = \tilde{B}_n(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)$$

$$\frac{1}{\sqrt{2}} \int_{\Omega} \int$$

Incorporate approximate EW corrections into MEPS@NLO framework [Höche, Krauss, Schönherr, Siegert; '13] ► Idea: integrate out real photon corrections (typical at the percent level for high-energy

off-shell vector-boson pair production: WW-DF

Motivation:

- dominant $H \rightarrow WW \rightarrow 2I2v$ background
- Search for aTGC's

p⊤ of hardest lepton

- ▶ +40 % QCD corrections in the tail (Note: slight jet veto applied)
- ► LARGE negative EW corrections due to Sudakov behaviour: -40% @ | TeV

• important BSM background: 2 OS-DF leptons + MET

[Kallweit, JML, Pozzorini, Schönherr; '17]

[S. Kallweit, JML, P. Maierhöfer, M. Schönherr, S. Pozzorini, '14+'15]

I - v + I jet: inclusive

Setup: $\sqrt{S} = 13 \text{ TeV}$ $p_{\rm T,j} > 30 \,\,{\rm GeV}, \quad |\eta_{\rm j}| < 4.5$ $p_{\rm T,l} > 20 \text{ GeV}, \ |\eta_{\rm l}| < 2.5, \ E_T^{\rm miss} > 25$ $\mu_0 = \hat{H}_T/2 \ (+ 7\text{-pt. variation})$

- ► +100 % QCD corrections in the tail
 - large negative EW corrections due to **Sudakov behaviour:** -20–35% corrections at I-4 TeV
 - sizeable difference between QCD+EW and $QCD\timesEW$!

"igiant QCD K-factors" in the tail [Rubin, Salam, Sapeta '10]

dominated by dijet configurations (effectively LO, no EVV)

▶ positive 10-50% EW corrections from quark bremsstrahlung

[S. Kallweit, JML, P. Maierhöfer, M. Schönherr, S. Pozzorini, '14+'15]

NNLO QCD: [Boughezal, Focke, Liu, Petriello '15]

inclusive V: MEPS@NLO QCD+EWvirt

- Bases on Sherpa's standard MEPS@NLO
- Stable NLO QCD+EW predictions in all of the phase-space...
- ...including Parton-Shower effects.
- Can directly be used by the experimental collaborations
- p_{T,V}: MEPS@NLO QCD+EW in agreement with QCDxEW (fixed-order)
- PT, j1 : compensation between negative Sudakov and LO mix

Caveat: **y**+jet

Note: this modelling of process correlations assumes close similarity of QCD effects between different V+jets processes

- apart from PDF effects it is the case for W+jets vs. Z+jets
- at pT > 200 GeV it is in principle also the case for γ +jets vs. Z/W+jets

BUT: different logarithmic effects from fragmentation even at $pT \gg M_V$ W/Z+jet: mass cut-off $\rightarrow \log(pT/M_{\underline{y}_2})$ Y^+ jet: Frixione-isolation cone of radius $R_0 \rightarrow \log(\mathbb{R}_0)$ 1.8 ${}^{^{1}}\!\!R_{\mathrm{dyn}}^{^{1}}(p_{\!\!\mathcal{T}})$ Consider dynamic γ -isolation with $d\sigma_{V+j}^{NLO QCD}/d\sigma_{V+j}^{LO}$ 2.22 $(_{\text{fix})}+j$ (dyn)+J1.8 1.6200 1.4 1.2100 2005001000 3000 50 $p_{\mathrm{T,V}}\left[\mathrm{GeV}\right]$

Precise predictions for V+jet DM backgrounds

work in collaboration with: R. Boughezal, J.M. Campell, A. Denner, S. Dittmaier, A. Huss, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, S. Kallweit, M. L. Mangano, P. Maierhöfer, T.A. Morgan, A. Mück, M. Schönherr, F. Petriello, S. Pozzorini, G. P. Salam, C. Williams

GeV-TeV range)

one-dimensional reweighting

 $\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{TH}}^{(V)} = \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{QCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma$ with

- Robust uncertainty estimates including
 - I.Pure QCD uncertainties
 - 2. Pure EW uncertainties
 - 3. Mixed QCD-EW uncertainties
 - 4. PDF, χ -induced uncertainties

[1705.04664]

 Combination of state-of-the-art predictions: (N)NLO QCD+(N)NLO EW in order to match (future) experimental sensitivities (1-10% accuracy in the few hundred

$$:= \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}y} \sigma_{\mathrm{MC}}^{(V)}(\vec{\varepsilon}_{\mathrm{MC}}) \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}x} \sigma_{\mathrm{TH}}^{(V)}(\vec{\varepsilon}_{\mathrm{TH}}) \\ \frac{\mathrm{d}}{\mathrm{d}x} \sigma_{\mathrm{MC}}^{(V)}(\vec{\varepsilon}_{\mathrm{MC}}) \end{bmatrix}$$

$$g \text{ of MC samples in } x = p_{\mathrm{T}}^{(V)}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \sigma_{\mathrm{mix}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x} \Delta \sigma_{\mathrm{EW}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x} \sigma_{\gamma-\mathrm{ind.}}^{(V)}$$

- Prescription for **correlation** of these uncertainties
 - within a process (between low-pT and high-pT)
 - ► across processes

101

QCD uncertainties

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{N}^{k}\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\varepsilon}_{\mathrm{QCD}}) = \begin{bmatrix} K_{\mathrm{N}^{k}\mathrm{LO}}^{(V)}(x) + \sum_{i=1}^{3} \varepsilon_{\mathrm{QCD},i} \,\delta^{(i)} K_{\mathrm{N}^{k}\mathrm{LO}}^{(V)}(x) \\ \times \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\mu}_{0}) \\ \times \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\mu}_{0}) \\ \end{pmatrix}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\mu}_{0}) \\ = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{Q$$

(important for extrapolation from low-pT to high-pT)

$$\mathbf{S}^{(3)}K_{N^{k}LO}^{V} = \frac{K_{N^{k}LO}^{V}}{K_{N^{k-1}LO}^{V}} - \frac{K_{N^{k}LO}^{Z}}{K_{N^{k-1}LO}^{Z}}$$

(correlated)

Difference of (N)NLO corrections as **process correlation uncertainty**

Technical implementation of NLO EW

- Virtuals with OpenLoops:
 - Fast numerical routines for all tree+loop vertices in the full SM
 - $\mathcal{O}(\alpha r)$ normalization [Denner, Agyailable schemes: on-shell, G_{μ} and α (mZ)
 - R₂ rational terms
 - Treatment of unstable particles: complex-mass-scheme

Real radiation, subtraction, subprocess bookkeeping

\checkmark Sherpa

→ QED

 $\alpha_s \longrightarrow \alpha, \qquad C_F \longrightarrow Q_f^2, \qquad T_R$

 $\frac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} \longrightarrow \begin{cases} \frac{Q_{ij}Q_k}{Q_{ij}^2} & \text{if the emitter } ij \text{ is a (anti)fermion} \\ \kappa_{ij,k} & \text{if the emitter } ij \text{ is a photon}, \end{cases}$

$$I \propto \sum \int_{1} V_{\rm QED} \otimes$$

$$\longrightarrow N_{c,f}Q_f^2, \qquad T_R N_f \longrightarrow \sum_f N_{c,f}Q_f^2, \qquad C_A \longrightarrow 0$$

Mixed QCD-QED I-operator requires a non-trivial interplay between different Born orders

101

QCD uncertainties

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{N}^{k}\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\varepsilon}_{\mathrm{QCD}}) = \begin{bmatrix} K_{\mathrm{N}^{k}\mathrm{LO}}^{(V)}(x) + \sum_{i=1}^{3} \varepsilon_{\mathrm{QCD},i} \,\delta^{(i)} K_{\mathrm{N}^{k}\mathrm{LO}}^{(V)}(x) \\ \times \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\mu}_{0}) \\ \times \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\mu}_{0}) \\ \end{pmatrix}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LO}\,\mathrm{QCD}}^{(V)}(\vec{\mu}_{0}) \\ = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{QCD},i} = \varepsilon_{\mathrm{QCD},i} \\ = \varepsilon_{\mathrm{Q$$

(important for extrapolation from low-pT to high-pT)

$$\mathbf{S}^{(3)}K_{N^{k}LO}^{V} = \frac{K_{N^{k}LO}^{V}}{K_{N^{k-1}LO}^{V}} - \frac{K_{N^{k}LO}^{Z}}{K_{N^{k-1}LO}^{Z}}$$

(correlated)

Difference of (N)NLO corrections as **process correlation uncertainty**

Mixed QCD-EW uncertainties

Given QCD and EW corrections are sizeable, also mixed QCD-EW uncertainties of relative $O(\alpha \alpha_s)$ have to be considered.

Additive combination

 $\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$

Multiplicative combination

 $\sigma_{\rm QCD\times EW}^{\rm NLO} = \sigma_{\rm QCD}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}}\right)$

(try to capture some $\mathcal{O}(\alpha \alpha_s)$ contributions, e.g. EW Sudakov logs × soft QCD)

Difference between these two approaches indicates size of missing mixed EW-QCD corrections.

 $K_{\rm QCD\otimes EW} - K_{\rm QCD\oplus EW} \sim 10\%$ at 1 TeV

Too conservative!?

For dominant Sudakov EW logarithms factorization should be exact!

Mixed QCD-EW uncertainties

 $pT_{j,2} > 30 \text{ GeV}$

Bold estimate:

Consider real $\mathcal{O}(\alpha \alpha_s)$ correction to V+jet \simeq NLO EW to V+2jets

and we observe

 $\frac{\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+2\mathrm{jet}} - \frac{\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+1\mathrm{jet}} \lesssim 1\%$

strong support for

- factorization
- multiplicative QCD x EW combination

Mixed QCD-EW uncertainties

N-jettiness cut ensures approx. constant ratio V+2jets/V+jet

$$\tau_1 = \sum_k \min_i \left\{ \frac{2p_i \cdot q_k}{Q_i \sqrt{\hat{s}}} \right\}$$

Estimate of non-factorising contributions

(tuned to cover above difference of EW K-factors)

Photon-induced production

- suppressed by relative factor $lpha/lpha_S$
- irrelevant for Z+jet (and γ +jet)
- in W+jet O(5%) contribution with LUXqed, consistent with CT14qed
 - (due to t-channel enhancement)

 ~1% uncertainties in photon PDFs due to LUXqed

Pure EW uncertainties: ratios

NLO EW: ~5% for pT=1 TeV
nNLO EW: ~1% for pT=1 TeV

 $\delta(R) < 3-5\%$ for pT < 1-2 TeV

Ratios

ntal closure tests & CMS monojet searches

[CMS PAS EXO-16-048]

Black ratio from data and statistical uncertainties / Red from MC

Grey band includes theoretical uncertainties

dashed lines -> what the uncertainties would have been without the work of the theory community

