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precision hadron collisions
Keeping theory predictions in 
line with experimental data
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the NNLO frontier
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Part B2: The scientific proposal

Section a: State of the art and Objectives

Precision QCD at colliders:

Run 2 at the Large Hadron Collider (LHC) has already given particle physicists their first look at 13 TeV hadron
collisions and produced some amazing new results. However, the data collected so far only represents a few
percent of the total planned during the lifespan of the LHC so there is a huge potential for future discoveries
of new fundamental physics. New ideas for experimental analyses have led to dramatic improvements in sys-
tematic uncertainties. As a result a wide class of observables will be measured at the percent level precision
in the near future.

Keeping theoretical uncertainties in line with experiments is an essential task if we hope to get the maximum
amount of information out of the LHC. This task requires enormous effort and deep insight into the mathe-
matical structure of quantum field theory in order to overcome the technical challenge of computing precise
perturbative quantum corrections. Finding solutions to the problems that these challenges raise bridges the gap
between mathematics and physics and new ideas often come from unlikely places. The road between math-
ematical concepts and phenomenological predictions is extremely long and notoriously difficult and success
relies on a broad knowledge of perturbative gauge theories.

High energy hadron-hadron collisions present an extremely complex environment. First and foremost these
collisions are controlled by the strong force which binds quarks and gluons inside the proton. Our model of
the strong force, Quantum Chromodynamics (QCD), follows the principle of asymptotic freedom. Without this
modern collider physics would not be possible since it allows us to separate long distance interactions from
short distance effects, the latter of whichwe canmodel through perturbativemethods to probe the highest energy
interactions. The effect of asymptotic freedom on the strong coupling ↵s is to decrease its value as the energy
of the hard scattering increases. The value at the average collision energy seen at the LHC is around 0.1 and so
a naive counting of the perturbative convergence implies that both next-to-leading order (NLO) corrections of
order ↵s and next-to-next-to-leading order (NNLO) corrections of order ↵2

s are needed to obtain percent level
predictions. To have any hope of reaching a percent level precision at least NNLO accuracy will be required.

Quantum corrections to strong interactions give rise to the appearance of additional radiation in the final state.
This radiation is seen as deposits of hadronic energy in the detector which can be clustered to form jets. Un-
derstanding the dynamics of these jets is an important step in finding precise descriptions of the highest energy
scattering which the LHC requires. This task requires the ability to model high multiplicity scattering of jets
in association with Standard Model particles such as Higgs and vector bosons. These high multiplicity jet ob-
servables are the key to pinning down the transverse momentum (pT ) distributions of Standard Model (SM)
particles. Current technology is only able to model 2 ! 3 scattering processes at NLO. This project addresses
the need for precise descriptions of 2 ! 3 scattering and will new develop technology for NNLO predictions.

The project targets key observables which are of high priority at the LHC [1] and aims to provide a general
framework for NNLO predictions beyond 2 ! 2 scattering at hadron colliders. Obtaining precise descriptions
of these observables will open up new ways to probe the high energy properties of the SM. In particular we
target processes that are sensitive to the fundamental parameter ↵s in the high energy regime, Higgs and vector
boson pT spectra and the Higgs boson coupling with the electroweak sector of the SM. These proton-proton
scattering processes can be denoted pp ! ABC where each final state ABC can probe different properties of
the fundamental forces:

process precision observables
pp ! 3j jet multiplicity ratios, ↵s at high energies, 3-jet mass
pp ! �� + j background to Higgs pT , signal/background interference effects
pp ! H + 2j Higgs pT , Higgs coupling through vector boson fusion (VBF)
pp ! V + 2j Vector boson pT ,W+/W� ratios and multiplicity scaling
pp ! V V + j backgrounds to pT spectra for new physics decaying via vector boson

1

new subtractions methods (almost) complete set of 2→2 
processes at NNLO!

⇒
qT, n-jettiness, antenna, sector 

decomposition/STRIPPER

example: 3j/2j ratio at the LHC can probe of the 
running of αs in a new energy regime

e.g. CMS @ 7 TeV 

(amplitude) =
X

(coe�cient)(integral)

pp ! �� + j

pp ! 3j

pp ! H + 2j

pp ! W + 2j

pp ! Z + 2j

pp ! WW + j

gg ! ggg
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complexity
~ #loops + #legs (+#scales)

pp→ H @ N3LO σ 
[Anastasiou et al. (2015), 

Mistlberger (2018)]

e.g. pp→ tt @ NNLO + NLO EW dσ
 [Fiedler, Czakon, Heymes, Mitov, 

Pagani, Tsinkos, Zaro (2015-2017)]

e.g. pp→ W+5j @ NLO dσ 
[BLACKHAT+SHERPA Bern et. al (2013)]

N3LO

NNLO

NLO

LO

3 4 5 6 7 8 9 10
legs

order



computational bottlenecks

• Large numbers of diagrams?

• Complicated basis of functions?

• Large cancellations due to redundant variables?

• Complicated kinematic algebra?



computational bottlenecks

• Large numbers of diagrams?

• Complicated basis of functions?

• Large cancellations due to redundant variables?

• Complicated kinematic algebra?

maybe not such a problem - easy to automate 
tree-level codes : MadGraph, CalcHEP, Alpgen,...

yes - multi-scale loop integrals are difficult. 
evaluations methods are improving a lot...

choosing the wrong basis of functions/variables can 
compromise accuracy : try to work with physical 

degrees of freedom as far as possible

on-shell methods, algebraic(numerical) methods,...



complexity in N  = 4 SYM
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loops

legs

(just amplitudes/integrands this time)

analytic solution to BCFW
[Drummond, Henn 0808.2475]

local integrands for all three-loop amplitudes
[Bourjaily, Herrmann, Trnka 1704.05460]

4-loop 7-point MHV remainder function 
[Dixon et al. 1612.08796]

5-loop and planar 6-loop 4-point integrands
[Bern et al. 1210.7709][Bern et al. 1207.6666]

many other partial results, specific helicities, strong coupling etc.



outline

• integrand reduction for dimensional regulated amplitudes

• generalised unitarity ⇒ loops from trees

• two loop integrands and planar five gluon helicity amplitudes



rational function 
of kinematics

special basis of 
functions

(amplitude) =
X

c

(colour)c(ordered amplitude)c

(ordered amplitude) =
X

i

(kinematic)i(integral)i

pM = (p̄µ, µ,m) ) p2 = p̄2 � µ2 �m2

strip colour factors



loop-level methods

integral basis separates analytic and algebraic parts
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e.g. one-loop

diagrams master integrals amplitudereduction integration

integration-by-parts
[many Laporta style codes: FIRE5, Reduze2, Grinder, Kira…]

integrand reduction
[1-loop (CutTools,LoopTools), multi-loop: polyn. div.]

tensor reduction
[many implementations: LoopTools, Collier, FeynCalc, PJFry, ...]

generalized unitarity
[BlackHat, NJet, Rocket,...]

sector decomposition
[numerical: FIESTA4, pySecDec]

differential equations
[a lot of progress with Henn’s “canonical” approach]

direct evaluation
[MPL (Bogner), HyperInt (Panzer)]



unitarity and discontinuities
1 = SS† = (1 + iT )(1� iT †) ) TT † = i(T † � T )
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Classic S-matrix theory - 
perform dispersion integral to 

obtain full amplitude
pij

l2

l1

pjp1im1

Cutkosky rules:
imaginary part obtained from

Modern unitarity method - 
use cuts to find coefficient 

of basis integrals
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Bern, Dixon, Dunbar, Kosower (1994)



Unitarity: double cuts 
[BDDK ’94]

[triple cuts BDK ’97]

Generalized unitarity: 
quadruple cuts [BCF ’04]

Integrand reduction [OPP ’05]

triple cuts [e.g. Forde ’07]
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explicitly remove polesfind complex contour to isolate 
integral coefficient
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D-dim. generalized unitarity [GKM ’08]

automated one-loop amplitudes
solving on-shell conditions requires complex momenta 

⇒ factorise residues into tree amplitudes

multi-scale 
kinematic algebra 

performed 
numerically

dimensional reg./red.

(amplitude) =
X

c

(colour)c(ordered amplitude)c

(ordered amplitude) =
X

i

(kinematic)i(integral)i

pM = (p̄µ, µ,m) ) p2 = p̄2 � µ2 �m2

k = k̄ + k[�2✏] ) k2 = k̄2 � µ2



SHERPA

HERWIG7
MC

GENEVA

BLACKHAT

NJETGOSAM
OPENLOOPS

MADGRAPH5_aMC@NLO

HELAC-NLO
RECOLA2

MADLOOP, MADFKS, ...

OLP
On-shell methods 
for high multiplicity

Generic processes with 
Feynman diagrams*

* efficient algorithms with off-shell recursion

e.g. Binoth Les Houches Accord

one-loop made easy!

POWHEG
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GENEVA

BLACKHAT

NJETGOSAM
OPENLOOPS

MADGRAPH5_aMC@NLO

HELAC-NLO
RECOLA2

MADLOOP, MADFKS, ...

OLP
On-shell methods 

for High Multiplidity

Generic processes with 
Feynman Diagrams*

* efficient algorithms with off-shell recursion

QCD,EW,(EFT?) 
corrections for 

anything up to 2→4

Specific processes at 
2→5/6, e.g. massless 

QCD, W/Z+jets, 
Wbb+jets

one-loop made easy!

e.g. Binoth Les Houches Accord

POWHEGHERWIG7



Maximal unitarity
Integrand reduction via 

polynomial division
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e.g. IBPs

[Mastrolia, Ossola, SB, Frellesvig, Zhang, 
Mirabella, Peraro, Malamos, Kleiss, 

Papadopoulos, Verheyen, Feng, Huang]

[Kosower, Larsen, Johansson, 
Caron-Huot, Zhang, Søgaard]

multi-loop amplitudes from trees

[Gluza, Kosower, Kajda 1009.0472] [Schabinger 1111.4220][Ita 
1510.05626] [Larsen, Zhang 1511.01071][Kosower 1804.00131]

IBPs must be free of 
doubled propagator MI

Numerical unitarity
[Abreu, Febres-Cordero, 
Ita, Jaquier, Page, Zeng]



a toolbox for multi-loop 
integrands

momentum twistors
six-dimensional 
spinor-helicity

generalised unitarity
cuts integrand reduction

[Hodges (2009)]

colour/kinematics
BCJ relations
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functional reconstruction 
with finite fields

[Peraro 1608.01902]



summary of state-of-the-art

4-gluon 2-loop with 
numerical unitarity

all 2→2 scattering amplitudes 
from Feynman diagrams + IBPs

planar 5,6 and 7 gluon 2-loop ‘all-plus’

planar 5-point integrals

non-planar 5 gluon 2-loop ‘all-plus’

[Abreu et al (2017)]

[SB, Frellesvig, Zhang (2013)] [Dunbar, Perkins (2016)] 
[SB, Mogull, Peraro(2016)] [Dunbar, Godwin, Jehu, Perkins (2017)] 

[Papadopoulos, Tommasini, Wever (2015)]

[SB, Mogull, Ochirov, O’Connell (2015)]

[Gehrmann, Henn, Lo Presti (2015)]



summary of state-of-the-art
first results for planar 2→3 
gluon scattering amplitudes 

[Abreu, Febres-Cordero, Ita, 
Page, Zeng arXiv:1712.03946]

[SB, Brønnum-Hansen, Hartanto, 
Peraro arXiv:1712.02229]

[Boels, Jin, Luo arXiv:1802.06761]

Efficient integrand reduction for 
particles with spin

Planar two-loop five-gluon 
amplitudes from numerical unitarity

a first look at two-loop five-gluon 
amplitudes in QCD



a first look at two-loop five-gluon amplitudes in QCD

SB, Brønnum-Hansen, Hartanto, Peraro arXiv:1712.02229
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[Gehrmann, Henn, Lo Presti 1511.05409]

3

RESULT FOR ALL-PLUS AMPLITUDE

We consider the unrenormalized all-plus five-gluon am-
plitude at leading color:

A5(1
+2+3+4+5+)|leading color =g3

∑

L≥1

(

g2NcΓ
)L

×
∑

σ∈S5/Z5

tr(T a
σ(1)T a

σ(2)T a
σ(3)T a

σ(4)T a
σ(5))

×A(L)
5 (σ(1)+σ(2)+σ(3)+σ(4)+σ(5)+) . (4)

Here S5/Z5 denote all non-cyclic rotations of five points.
Since the amplitude vanishes at tree-level, it is finite at
the one-loop level,

A(1)
5 = R F (1)

5 +O(ϵ) , (5)

with R = i/6/(⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨51⟩) and

F (1)
5 = v1v2 + v2v3 + v3v4 + v4v5 + v5v1 + tr5 . (6)

At two loops, the infrared and ultraviolet divergent terms
can be predicted in terms of the one-loop result. This mo-

tivates the definition of a finite remainder F (2)
5 according

to [40]

A(2)
5 =A(1)

5

[

−
5

∑

i=1

1

ϵ2

(

µ2

−vi

)ϵ
]

+R F (2)
5 +O(ϵ) , (7)

We use the integral representation of [1] and express it in
terms of our basis of integrals. Plugging in the solution
for the ϵ-expansion of the latter, we analytically verify
the divergence structure of eq. (7). To define the finite
remainder function, the expansion of (5) to order ϵ2 is
derived, which involves the one-loop massless pentagon
integral to this order, computed from its differential equa-
tion. In the finite remainder, remarkably all Chen iter-
ated integrals of weight one, three and four cancel out.
We then express the remaining weight two functions in
terms of dilogarithms, and find the following expression
for the finite remainder,

F (2)
5 =

5π2

12
F (1)
5 +

4
∑

i=0

σi

⎧

⎨

⎩

v5tr
[

(1− γ5)/p4/p5/p1/p2

]

(v2 + v3 − v5)
I23,5

+
1

6

tr
[

(1− γ5)/p4/p5/p1/p2

]2

v1v4
+

10

3
v1v2 +

2

3
v1v3

⎫

⎪

⎬

⎪

⎭

. (8)

where σi cyclically shifts all indices (of p, v, and I) by i,
and where

I23,5 =ζ2 + Li2

[

(v5 − v2)(v5 − v3)

v2v3

]

− Li2

[

v5 − v3
v2

]

− Li2

[

v5 − v2
v3

]

. (9)
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FIG. 2. Five-particle amplitude factorizing into four-point
amplitudes and splitting functions in the collinear limit.

Note that eq. (8) contains both parity odd and even
terms. We remark that the trace can also be written in
a natural way using momentum twistors.

We compared our analytical result for the unrenormal-
ized two-loop amplitude (7) with the numerical values
quoted in [1] for specific phase space points in the Eu-
clidean region, finding full agreement. In the Euclidean
region, this expression is single-valued and real. We note
that eq. (9) can be rewritten in a form where this is
manifest, and that our result can straightforwardly be
analytically continued to other kinematical regions.

The result above is for pure Yang-Mills theory. We
would like to mention that the full nf dependence can be
reconstructed in a simple way: the n2

f terms only come
from a restricted class of diagrams, and the remaining nf

terms are fixed by supersymmetry [30].

LIMITS

Scattering amplitudes have universal factorization
properties in soft and collinear limits. They serve as an
important check of our result.

We take the p4||p5 collinear limit, without loss of gen-
erality. In the limit, one expects (cf. Fig. 2)

A(2)
4 (1+, 2+, 3+, 4+, 5+)

p4||p5−→ (10)

A(1)
4 (1+, 2+, 3+, P+) SplitP→45 (1)(−P−, 4+, 5+)

+A(1)
4 (1+, 2+, 3+, P−) SplitP→45 (1)(−P+, 4+, 5+)

+A(2)
4 (1+, 2+, 3+, P+) SplitP→45 (0)(−P−, 4+, 5+) .

where ‘Split’ are splitting amplitudes [29]. The ampli-
tudes appearing on the right hand side of eq. (10) can
be found in [30].

Taking the collinear limit of (7), we recover the struc-
ture predicted by (10). It is interesting to note in this
context that the second line of eq. (8) contains terms
that behave as [45]/⟨45⟩ in this limit. The latter repro-
duces a contribution from the helicity-violating one-loop
splitting function SplitP→45 (1)(−P+, 4+, 5+).
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Note that eq. (8) contains both parity odd and even
terms. We remark that the trace can also be written in
a natural way using momentum twistors.

We compared our analytical result for the unrenormal-
ized two-loop amplitude (7) with the numerical values
quoted in [1] for specific phase space points in the Eu-
clidean region, finding full agreement. In the Euclidean
region, this expression is single-valued and real. We note
that eq. (9) can be rewritten in a form where this is
manifest, and that our result can straightforwardly be
analytically continued to other kinematical regions.

The result above is for pure Yang-Mills theory. We
would like to mention that the full nf dependence can be
reconstructed in a simple way: the n2

f terms only come
from a restricted class of diagrams, and the remaining nf

terms are fixed by supersymmetry [30].
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where ‘Split’ are splitting amplitudes [29]. The ampli-
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be found in [30].

Taking the collinear limit of (7), we recover the struc-
ture predicted by (10). It is interesting to note in this
context that the second line of eq. (8) contains terms
that behave as [45]/⟨45⟩ in this limit. The latter repro-
duces a contribution from the helicity-violating one-loop
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constructing the integrand basis

2

FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.

are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
Gröbner basis [10, 14]. In this work we took a simpler
approach which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

k
µ
i = k

µ
k,i + k

µ
?,i, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i = k
[4]

?,i + k
[�2✏]
?,i . The size of the 4-d transverse

space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

k
µ
k,i =

Pdk
j=1

aijv
µ
j and a basis w for the spurious space

k
µ,[4]
?,i =

Pd?,[4]

j=1
bijw

µ
j , with vi.wj = 0.

The coe�cients in the physical space kk are functions
of the aij(ki) ⌘ aij({D}, {k.q}) where D are the inverse
propagators and ki.qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs ki.wj and µij = �k
[�2✏]
?,i .k

[�2✏]
?,j .

Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µij = ki.kj � kk,i.kk,j � k
[4]

?,i.k
[4]

?,j . (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies
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the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies

2

FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.
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fitting the integrand through cuts

�c;T

�����
cut

=
Y

i

A(0)
i �

X

T 0

�c;T 0Q
l2T 0/T Dl

�����
cut

on-shell, the numerators can be written 
as products of tree-level amplitudes

proceed top down - subtract previously extracted singularities 
at each stage (as at one-loop in the OPP method)



numerator construction
FDH scheme at two-loops

Tree-amplitudes using 
six-dimensional helicity method

use momentum twistors to deal with the 
complicated kinematics at 2→3

[Cheung, O’Connell (2009)]

[Bern, De Freitas, Dixon, Wong (2002)]

[Bern, Carrasco, Dennen, Huang, Ita (2011)]

need to capture µ11, µ22, µ12
[Davies (2012)]

c.f. Feynman rules + Feynman 
gauge and ghosts (scalars)

gµµ = ds

[Hodges (2009)]



momentum twistors

kinematic variables with manifest momentum conservation
or

a rational phase space generator

2.3 Momentum twistors: SO(1, 3) $ SU(2)⇥ SU(2) $ SO(4, 2)

Hodges [1] introduced momentum twistors as a natural extension of Penrose’s twistor
formalism for reciprocal space. In comparison with the spinor-helicity formalism where
�(p) and �̃(p) are used to describe the kinematics, the momentum twistor Z is a four
component object that can do an equivalent job,

ZiA = (�↵(i), µ
↵̇(i)), (50)

where the new two component object µ↵̇(i) is used instead of the �̃↵̇(i) spinor the define
the kinematics for the n-particle system i = 1, n. The �̃(i)↵̇ spinor is defined through
the dual twistor,

W
A
i = (µ̃↵(i), �̃

↵̇(i)) =
"
ABCD

Z(i�1)BZiCZ(i+1)D

hi� 1iihii+ 1i
(51)

from which we can find the definition of the anti-holomorphic spinor,

�̃(i)↵̇ =
hi� 1iiµ↵̇(i+ 1) + hi+ 1i� 1iµ↵̇(i) + hii+ 1iµ↵̇(i� 1)

hi� 1iihii+ 1i
. (52)

Written in terms of the spinors the twistor co-ordinates are,

µ
↵̇(i) = �↵(i)

 
x
↵↵̇
0 +

iX

k=1

�
↵(k)�̃↵̇(k)

!
(53)

where x0 is an arbitary reference direction (i.e. point in position space). This makes the
link to the motivation for the construction to make dual conformal invariance manifest
since the dual co-ordinates are,

p
µ
i = x

µ
i � x

µ
i�1 (54)

such that
Pn

i=1 pi = 0 , xn = x0. The inversion of this system requires us to choose
one dual point which in this case is x0,

x
µ
i = x

µ
0 +

iX

k=1

p
µ
k = x

µ
0 + p

µ
1,i (55)

Exercise

Show for any �̃i defined through equation (52) momentum conservation is automati-
cally satisfied,

nX

i=1

pi.�↵↵̇ =
nX

i=1

�↵(i)�̃↵̇(i) = 0↵↵̇, (56)

using the Schouten identity in eq. (26).

The 4⇥ n matrix ZiA has additional symmetries,
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FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.

are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
Gröbner basis [10, 14]. In this work we took a simpler
approach which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

k
µ
i = k

µ
k,i + k

µ
?,i, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i = k
[4]

?,i + k
[�2✏]
?,i . The size of the 4-d transverse

space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

k
µ
k,i =

Pdk
j=1

aijv
µ
j and a basis w for the spurious space

k
µ,[4]
?,i =

Pd?,[4]

j=1
bijw

µ
j , with vi.wj = 0.

The coe�cients in the physical space kk are functions
of the aij(ki) ⌘ aij({D}, {k.q}) where D are the inverse
propagators and ki.qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs ki.wj and µij = �k
[�2✏]
?,i .k

[�2✏]
?,j .

Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µij = ki.kj � kk,i.kk,j � k
[4]

?,i.k
[4]

?,j . (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies
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just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process
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independent basis of monomials whose coe�cients can
be fixed from unitarity cuts in six dimensions. We take
a top-down, OPP-like, approach to solving the complete
system using information from previously computed cuts
to remove known poles from the factorised product of tree
amplitudes using the six-dimensional spinor-helicity for-
malism [36]. The product of tree amplitudes is e�ciently
evaluated by sewing together Berends-Giele currents [37]
as described in Ref. [31].

After completing the integrand level reconstruction,
the remaining transverse integration must be performed
to obtain a form compatible with traditional integration-
by-parts (IBP) relations. Following a recent ap-
proach [38], we have two options in order to achieve this:
1) to integrate the full transverse space to remove ki.wj

and µij introducing dependence in ✏ into the integral co-
e�cients or, 2) integrate only over the spurious space
retaining µij dependence which can subsequently be re-
moved through dimension shifting identities. In this work
we have taken the second approach since it turned out to
have better numerical stability to use dimension shifted
integrals instead of high rank tensor integrals.

In either case the tensor structure in the trans-
verse space can only involve the metric tensor g

µ⌫
? (or

g
µ⌫
?,[4], g

µ⌫
?,[�2✏] depending on the particular transverse

space being integrated out). This makes the tensor de-
composition for non-vanishing integrals in the spurious
space rather simple. Further examples of this technique
can be found in Ref. [38].

We build integration identities and certain symmetry
relations (for example k1 $ k2 in the 3-propagator sun-
rise topology) into the integrand basis by using them to
create spurious numerators. For example, rather than
fitting the coe�cient of (k1.w2)2 we replace it with the
function

(k1.w2)
2 �! (k1.w2)

2 � w2
2

d?,[4]
k
[4]

?,1.k
[4]

?,1, (5)

which will integrate to zero. In Tab. I we summarise
the result of our fit to unitarity cuts listing the number
of non-zero coe�cients at the integrand level before and
after performing the integration over the spurious space.
Cuts with scalar loops are required for the reduction from
6 to 4�2✏ dimensions. We perform the fit taking into ac-
count the individual contribution of these scalar loops in
order to reconstruct the dependence of the numerator on
the spin dimension ds. Setting ds = 2 gives a supersym-
metric limit in which the highest rank tensor integrals
do not appear in the amplitudes. We use a polynomial
expansion of the integrand in (ds � 2) to separate the
coe�cients into terms of increasing complexity. The fit
can be performed e�ciently using rational numerics for
each phase space point and in most cases it was pos-
sible to obtain completely analytic expressions for the
integrands of the helicity amplitudes using modest com-
puting resources.

NUMERICAL EVALUATION

The unitarity based method outlined above has been
complemented by an approach based on numerical evalu-
ation of Feynman diagrams to determine the coe�cients
of independent monomial bases. Both of these methods
use a momentum twistor [32] parametrisation of the ex-
ternal kinematics to obtain a rational numerical phase-
space point. This is extremely important since in order
to make use of the finite field reconstruction methods our
numerical algorithm must be free of all square roots [39–
42]. The parametrisation in this case was chosen (some-
what arbitrarily) to be,

Z =

0

BBB@

1 0 1

x1

1+x2
x1x2

1+x3(1+x2)

x1x2x3

0 1 1 1 1

0 0 0 x4
x2

1

0 0 1 1 x4�x5
x4

1

CCCA
, (6)

where the columns give the 4-component momentum
twistors of the 5 external particles (see, for example, Ap-
pendix A of Ref. [15] for more details). These methods
have been implemented using a combination of tools in-
cluding Qgraf [43], Form [44, 45], Mathematica and
a private implementation of the finite field reconstruction
method [31].
We have validated our setup on a number of known

cases. Firstly, we have reproduced integrand level ex-
pressions for the ‘all-plus’ helicity sector [15] and against
the known integrands in N = 4 Super-Yang-Mills the-
ory [46]. The latter check was obtained by computing
all fermion and (complex)-scalar loop contributions and
subsequently setting nf = N and ns = N � 1. We also

helicity flavour non-zero
coe�cients

non-spurious
coe�cients

contributions
@ O(✏0)

+++++

(ds � 2)0 50 50 0

(ds � 2)1 175 165 50

(ds � 2)2 320 90 60

�++++

(ds � 2)0 1153 761 405

(ds � 2)1 8745 4020 3436

(ds � 2)2 1037 100 68

��+++

(ds � 2)0 2234 1267 976

(ds � 2)1 11844 5342 4659

(ds � 2)2 1641 71 48

�+�++

(ds � 2)0 3137 1732 1335

(ds � 2)1 15282 6654 5734

(ds � 2)2 3639 47 32

TABLE I. The number of non-zero coe�cients found at
the integrand level both before (‘non-zero’) and after (‘non-
spurious’) removing monomials which integrate to zero. Last
column (‘contributions @ O(✏0)’) gives the number of coe�-
cients contributing to the finite part. Each helicity amplitude
is split into the components of ds � 2.
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basis is performed with sector decomposition methods to obtain the first benchmark results for all
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INTRODUCTION

As data continues to pour in from the LHC experi-
ments, the precision of many theoretical predictions for
high energy scattering processes are being challenged by
experimental measurements. While there has been re-
markable progress in Standard Model (SM) predictions
for multi-particle final states at next-to-leading-order
(NLO) and 2 ! 2 scattering processes at next-to-next-
to-leading order (NNLO), the computational complex-
ity of 2 ! 3 scattering processes at NNLO results in
many important measurements being currently (or in the
near future) limited by theoretical uncertainties. Pure
gluon scattering at two loops in QCD is a key bottle-
neck in making such predictions which have been known
for gg ! gg for more than 15 years [1, 2]. The one-loop
five-gluon amplitudes have been known since 1993 [3] and
were among the first results from the on-shell methods
that led to the modern unitarity method [4, 5].

In this letter we demonstrate how new evaluation tech-
niques based on generalised unitarity [6, 7] and integrand
reduction [8–14] can o↵er a solution to the traditional
bottlenecks in these computations and present the first
results for a complete set of planar five-gluon helicity
amplitudes in QCD. The results extend previous results
obtained for ‘all-plus’ helicity amplitudes [15–22]. These
on-shell techniques have also been explored in the context
of maximal unitarity [23, 24] and numerical unitarity [25–
27] approaches to QCD amplitudes. Work in this area has
received considerable interest due to the phenomenolog-
ical importance of precision predictions for 2 ! 3 scat-
tering. E↵orts to complete the unknown two-loop am-
plitudes for processes such as pp ! 3 jets, pp ! H + 2
jets or pp ! ��+jet have been further motivated by the
recent analytic computations of the planar master inte-
grals (MIs) [18, 28] using new di↵erential equation tech-
niques [29, 30].

Our approach exploits a parametrisation of the multi-
particle kinematics with rational functions combined
with numerical evaluation over finite fields [31] to avoid

the large intermediate algebraic expressions that tradi-
tionally appear. The rational parametrisation of the ex-
ternal kinematics is provided by momentum twistor co-
ordinates [32].

INTEGRAND PARAMETRISATION AND

RECONSTRUCTION

We define the unrenormalised leading-colour (planar)
five-gluon amplitudes using the simple trace basis:

A(L)(1, 2, 3, 4, 5) = n
L
g
3

s

X

�2S5/Z5

tr (T a�(1) · · ·T a�(5))

⇥A
(L) (�(1),�(2),�(3),�(4),�(5)) , (1)

where T a are the fundamental generators of SU(Nc) and
S5/Z5 are all noncyclic permutations of the external par-
ticles. The overall normalisation is n = m✏Nc↵s/(4⇡)
where ↵s = g

2
s/(4⇡) is the strong coupling constant

and m✏ = i(4⇡)✏e�✏�E (�E is the Euler–Mascheroni con-
stant). The L-loop partial amplitude A

(L) can be con-
structed from colour ordered Feynman diagrams. In
this article we will compute the pure gluonic contribu-
tions to these amplitudes at two loops including the
dependence on the spin dimension, ds. Results in the
’t Hooft-Veltman (tHV) and four-dimensional-helicity
(FDH) schemes can be obtained by setting ds = 4 � 2✏
and ds = 4 respectively [33].
The integrand of the ordered partial amplitudes can

be parametrised in terms of irreducible numerators, �,

A
(2) (1, 2, 3, 4, 5) =

Z
[dk1][dk2]

X

T

�T ({k}, {p})Q
↵2T D↵

, (2)

where {k} = {k1, k2} are the (d = 4 � 2✏)-dimensional
loop momenta, T are the set of independent topologies
and {p} = {1, 2, 3, 4, 5} are the ordered external mo-
menta. The measure is [dki] = �i⇡

�d/2
e
✏�Ed

4�2✏
ki and

the index ↵ runs over the set of propagators associated
with the topology T . Our planar five-gluon amplitudes
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FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.

are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
Gröbner basis [10, 14]. In this work we took a simpler
approach which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

k
µ
i = k

µ
k,i + k

µ
?,i, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i = k
[4]

?,i + k
[�2✏]
?,i . The size of the 4-d transverse

space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

k
µ
k,i =

Pdk
j=1

aijv
µ
j and a basis w for the spurious space

k
µ,[4]
?,i =

Pd?,[4]

j=1
bijw

µ
j , with vi.wj = 0.

The coe�cients in the physical space kk are functions
of the aij(ki) ⌘ aij({D}, {k.q}) where D are the inverse
propagators and ki.qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs ki.wj and µij = �k
[�2✏]
?,i .k

[�2✏]
?,j .

Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µij = ki.kj � kk,i.kk,j � k
[4]

?,i.k
[4]

?,j . (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies
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are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
Gröbner basis [10, 14]. In this work we took a simpler
approach which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

k
µ
i = k

µ
k,i + k

µ
?,i, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i = k
[4]

?,i + k
[�2✏]
?,i . The size of the 4-d transverse

space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

k
µ
k,i =

Pdk
j=1

aijv
µ
j and a basis w for the spurious space

k
µ,[4]
?,i =

Pd?,[4]

j=1
bijw

µ
j , with vi.wj = 0.

The coe�cients in the physical space kk are functions
of the aij(ki) ⌘ aij({D}, {k.q}) where D are the inverse
propagators and ki.qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs ki.wj and µij = �k
[�2✏]
?,i .k

[�2✏]
?,j .

Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µij = ki.kj � kk,i.kk,j � k
[4]

?,i.k
[4]

?,j . (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process
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✏�4 ✏�3 ✏�2 ✏�1 ✏0

bA(2),[0]
��+++ 12.5 27.7526 -23.773 -168.117 -175.207±0.004

P (2),[0]
��+++ 12.5 27.7526 -23.773 -168.116 —
bA(2),[0]
�+�++ 12.5 27.7526 2.5029 -35.8094 69.661±0.009

P (2),[0]
�+�++ 12.5 27.7526 2.5028 -35.8086 —

TABLE II. The numerical evaluation of bA(2),[0](1, 2, 3, 4, 5)
using {x1 = �1, x2 = 79/90, x3 = 16/61, x4 = 37/78, x5 =
83/102} in Eq.(6). The comparison with the universal pole
structure, P , is shown. The +++++ and -++++ amplitudes
vanish to O(✏) for this (ds � 2)0 component.

have performed gauge invariance checks at the integrand
level using the Feynman diagram setup.

To obtain a numerical value for the complete am-
plitude after integration we perform a sector decom-
position of the basis integrals combined with Monte
Carlo integration. After applying dimension shifting re-
lations [2, 47, 48] to rewrite the extra-dimensional ISPs
as standard integrals we processed the full set of inte-
grals using both Fiesta [49] and pySecDec [50] pack-
ages. This setup was validated with the four-gluon he-
licity amplitudes and cross-checked against results in the
literature [25]. Simple topologies with 2 ! 2 kinematics
were reduced to the known MIs of Ref. [51] using IBPs
from Fire5 [52] and Reduze2 [53] and dimensional re-
currence relations from LiteRed [54]. This gave a sub-
stantial improvement in the numerical accuracy.

The results for evaluation at a specific phase-space
point are given in Tables II and III for the amplitudes

bA(2),[i]
�1�2�3�4�5

=
A

(2),[i](1�1 , 2�2 , 3�3 , 4�4 , 5�5)

ALO(1�1 , 2�2 , 3�3 , 4�4 , 5�5)
, (7)

with helicities �i and A
(2) =

P
2

i=0
(ds � 2)iA(2),[i]. The

leading order amplitudes A
LO are the tree-level for the

--+++ and -+-++ and rational one-loop amplitudes for
the +++++ and -++++. The finite (1-loop)2 configuration
A

(2),[2] is presented in Tab. IV. Numerical accuracy is not

✏�4 ✏�3 ✏�2 ✏�1 ✏0

bA(2),[1]
+++++ 0 0.0000 -2.5000 -6.4324 -5.311±0.000

P (2),[1]
+++++ 0 0 -2.5000 -6.4324 —
bA(2),[1]
�++++ 0 0.0000 -2.5000 -12.749 -22.098±0.030

P (2),[1]
�++++ 0 0 -2.5000 -12.749 —
bA(2),[1]
��+++ 0 -0.6250 -1.8175 -0.4871 3.127±0.030

P (2),[1]
��+++ 0 -0.6250 -1.8175 -0.4869 —
bA(2),[1]
�+�++ 0 -0.6249 -2.7761 -5.0017 0.172±0.030

P (2),[1]
�+�++ 0 -0.6250 -2.7759 -5.0018 —

TABLE III. The numerical evaluation of bA(2),[1](1, 2, 3, 4, 5)
and comparison with the universal pole structure, P , at the
same kinematic point of Tab. II.

bA(2),[2]
+++++

bA(2),[2]
�++++

bA(2),[2]
��+++

bA(2),[2]
�+�++

✏0 3.6255 -0.0664 0.2056 0.0269

TABLE IV. The numerical evaluation of finite
bA(2),[2](1, 2, 3, 4, 5) helicity amplitudes at the same kine-
matic point of Tab. II. As only one-loop integrals are
required for these amplitudes the integration error is
negligible.

an issue here since the integrand level reduction already
leads to a basis of one-loop MIs. In addition we find
complete agreement with the finite part of the known
integrated ‘all-plus’ amplitude [18].
In cases where the ✏ pole structure of the amplitudes

is non-trivial we compared with the known universal IR
structure [55–58] including the dependence on ds ex-
tracted from the FDH scheme results [59]. The lead-
ing pole in 1/✏4 was verified analytically and is therefore
quoted exactly in Tabs. II and III. By comparing the
agreement in the poles between the (ds�2)0 and (ds�2)1

we clearly see the e↵ect of the highest rank tensor inte-
grals which only appear in the latter case. We find con-
vincing agreement between the poles and our amplitudes
within the numerical integration error [60]. Since the full
amplitude is the sum of all three parts we see in this
case that the simple (ds � 2)0 part dominates and the
complete amplitude is evaluated with sub-percent level
accuracy. This feature is probably not generic for the
whole phase-space however.

CONCLUSIONS

The techniques presented in this letter have allowed
the first look at a set of five-point two-loop helicity am-
plitudes with phenomenological relevance for LHC ex-
periments. We have found that unitarity cutting meth-
ods in six dimensions can be combined with finite field
reconstruction techniques to compute multi-scale dimen-
sionally regulated two-loop amplitudes in QCD. In many
cases it was possible to obtain completely analytic ex-
pressions for the integrands of the helicity amplitudes.
While a lot of e↵ort was taken to find manageable ex-

pressions, the final integrand form was still extremely
large and significantly more challenging than the previ-
ously known ‘all-plus’ helicity configuration. One obvious
next step is to include a full set of integration-by-parts
identities and reduce the amplitude onto a basis of ana-
lytically computed MIs. Promising new approaches that
use finite field reconstruction [61] or algebraic geometry
analyses [27, 62–65] could make this possible in the near
future. We expect there will be other ways to improve
the integrand form by using canonical bases [29] and local
integrand representations [66–68] though at the present
time more work is needed to investigate these approaches.
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reconstruction techniques to compute multi-scale dimen-
sionally regulated two-loop amplitudes in QCD. In many
cases it was possible to obtain completely analytic ex-
pressions for the integrands of the helicity amplitudes.
While a lot of e↵ort was taken to find manageable ex-

pressions, the final integrand form was still extremely
large and significantly more challenging than the previ-
ously known ‘all-plus’ helicity configuration. One obvious
next step is to include a full set of integration-by-parts
identities and reduce the amplitude onto a basis of ana-
lytically computed MIs. Promising new approaches that
use finite field reconstruction [61] or algebraic geometry
analyses [27, 62–65] could make this possible in the near
future. We expect there will be other ways to improve
the integrand form by using canonical bases [29] and local
integrand representations [66–68] though at the present
time more work is needed to investigate these approaches.
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summary

• two-loop amplitudes from on-shell building blocks:

• generalised unitarity cuts and integrand reduction in d-dimensions

• first results for realistic processes. Lot’s more to do for NNLO

a local integrand basis?
[‘prescriptive unitarity’ Bourjaily, Herrmann, Trnka (2017)]

non-planar?
[Arkani-Hamed Bourjaily, Cachazo, Postnikov, Trnka (2015)]

[Bern, Herrmann, Litsey, Stankowicz, Trnka (2016)]
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