

ATLAS Searches for New Physics at 13 TeV

Jeremy Love
On Behalf of the ATLAS Collaboration

Status After Run-I

- Other than the SM Higgs no new particles discovered
- Limits of most Run-I searches around
 1-2 TeV
 - Both SUSY and other BSM Theories
- Look to Run-II to discover what is beyond the SM
- Many search channels not yet sensitive but relaxed cuts have been used to validate analysis techniques and control regions

1 TeV

LHC Run-II

- ATLAS has recorded a total of 319 pb-1 recorded
- Two data taking periods already used for physics
 - 50 ns with $\langle \mu \rangle = 20$
 - 25 ns with $\langle \mu \rangle = 17$
 - Results shown for one or the other

First Look at New Energies

- Search for neutral resonances decaying to lepton pairs
 - Sign of a new fundamental symmetry
- Single lepton trigger selects events
 - Require two isolated leptons
 - $p_T > 30 \text{ GeV}, \& |\eta| < 2.5$
- Calculate invariant mass of lepton pairs
 - Normalize MC prediction to observed data in window around the Z peak
 - 80 < m_{II} < 120 GeV
- Highest mass di-electron event at 740 GeV
- Highest mass di-muon event at 881 GeV

Di-Lepton Final States (eμ)

- Search for lepton flavor violation in charged lepton sector
- Single lepton trigger selects events
 - Require two opposite flavor leptons with p_T > 30 GeV
- Calculate invariant mass of lepton pairs
 - Normalize MC prediction to observed data in low mass region
 - M_{II}< 300 GeV

Di-Lepton Final States (ev, μν)

- Search for charged resonances decaying to lepton pairs
 - Sign of a new fundamental symmetry
- Single lepton trigger selects events
 - Require one charged lepton with p_τ > 65
 (55) GeV for e(µ)
 - Balanced by missing transverse momentum
- Calculate transverse mass of lepton pairs
- Highest transverse mass event in electron channel 1050 GeV
- Highest transverse mass event in muon channel 966 GeV

Di-Photon Final States

- Search for new resonances decaying to pair of photons

 Ex: RS Gravitons

 Photons must be isolated in
- Photons must be isolated in calorimeter and have $E_{\tau} > 55 \text{ GeV}$
- Calculate invariant mass of photon pairs
 - Normalize MC to observed number of data events
- Highest mass photon pair is 940 GeV

One Lepton, Jets, & Missing Energy

- Search for colored super partners
 - Calibration and validation of control regions
- Ultimately searches for squarks and gluinos in final states with jets, missing transverse momentum, and one lepton
- Calculate transverse mass in high multiplicity events
 - One isolated lepton p_T > 30 GeV
 - 2-4 jets p_⊤ > 30 GeV
 - E_tmiss > 100 GeV
- Sensitivity over the Run-I search expected with ~3 fb⁻¹

Run-I: 1501.03555/1507.05525

J. Love -- ATLAS 13 TeV Search Results -- TOP2015

No Leptons 2-4 Jets + Missing Energy

- Search for colored super partners
 - Calibration and validation of control regions
- Ultimately searches for squarks and gluinos in final states with jets, and missing transverse momentum
- Calculate scalar sum of transverse momentum of objects in events m_{eff}
 - Three control regions for W, Z, and top events
- Top control region selected with m_T requirement
 - 30 < m_T < 100 GeV
- Good purity in background control regions
- MC distributions normalized to the observed data
- Sensitivity over Run-I search expected with ~3 fb-1

Run-1: 1405.7875/1507.05525

J. Love -- ATLAS 13 TeV Search Results -- TOP2015

Search Results

Search for Evidence of Strong Gravity

- Search for evidence of strong gravity in jet multiplicity bins
 - Dramatic threshold signals
- Require events to have at least three jets with p_T > 30 GeV
- Calculate scalar p_T sum of jets in the event H_T
 - MC is normalized to observed Data in low-H_T control region
 - Normalization is validated in intermediate-H_T region
 - Extrapolated into signal region at high-H_T
- Spectrum is fit with analytic functions
 - Signal is searched for by testing consistency in high-H_T signal region
 - Data split into two periods 6.5 pb⁻¹ for validation and 74 pb⁻¹ for search

J. Love -- ATLAS 13 TeV Search Results -- TOP2015

Search for Evidence of Strong Gravity - Results

- Jet multiplicity bins combined for final fit
 - Expect 1.4 events in SR observe 1
- No significant deviation from background only hypothesis
 - Set 95% CL limits on models of low scale gravity using CHARYBDIS2
 - 2D plane of M_D M_{TH}

Search for TeV Scale Gravity with

=vents

Leptons and Jets

Search for evidence of strong gravity in H_T spectrum

Dramatic threshold signal

- Single lepton triggers select events
 - Events categorized based on highest p_T lepton
- Calculate H_T of all objects in the event
- Control Regions for W, Z, and top backgrounds
 - Validation Region to test consistency
- Signal Regions where lepton $p_T > 100 \text{ GeV}$ plus two other 100 GeV objects, and event H_{τ} > 2 TeV or 3 TeV

Search for TeV Scale Gravity with **Leptons and Jets** Events / 200GeV

Control region fits are extrapolated to high H_T region

- Profile likelihood fits of W, Z, top contributions
- Validation region w/ H_T between 1.5-2.0 TeV
- Signal appears at high-H_™
- In 2(3) TeV Signal Regions expected 5.3 (0.3) event from SM fits
 - Observed 5 and 0
- No significant deviation from background only hypothesis
 - Set 95% CL limits on models of rotating black holes using CHARYBDIS2
 - Limits set in 2D M_D vs M_{TH} plane

Search for TeV Scale Gravity - Results

 In both leptonic and hadronic channels Run-II 95% CL limits already surpass Run-I analysis!

Searches In Di-Jet Final States

- Search for non-SM features in di-jet final states
 - New resonances in m_{jj}
 - Deviations in angular variables
- For resonance search
 - Select events with leading(subleading) jet has $p_T > 410(50)$ GeV and $|y^*| < 0.6$
 - Calculate invariant mass m_{ii}
- For angular analysis
 - Select events with leading(subleading) jet has $p_T > 410(50)$ GeV and $|y^*| < 1.7$ and $|y_B| < 1.1$
 - Calculate angular variable χ

$$y^* = \frac{1}{2}(y_1 - y_2)$$

J. Love -- ATLAS 13 TeV Search Results -- TOP2015

Di-Jet Resonances Search

$$f(z) = p_1(1-z)^{p_2} z^{p_3+p_4 \log z}$$

$$z \equiv m_{jj}/\sqrt{s}$$

- Fit m_{jj} distribution with analytic function
- Compare fit with observed data using BumpHunter
 - Most discrepant region identified as
 2.9 3.2 TeV
 - p-value of 0.76
- Consistent with background only hypothesis
- Highest mass event is 5.2 TeV

Di-Jet Event with $m_{ii} = 5.2 \text{ TeV}!$

Di-Jet Resonances Search - Results

- 95% CL limits are derived for a Gaussian signal as function of resonance width
- Signal hypothesis for ADD Graviton using BlackMax and Quantum Black Hole MC generators
 - For all signals $M_D = M_{th}$ and n=6
- The resonant search excludes
 M_{th} < 6.8 TeV at 95% CL using QBH
 - Using BlackMax M_{th} < 6.5 TeV excluded at 95% CL

Di-Jet Angular Search

$$\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

- For events with m_{jj} over 2.5 TeV the χ distribution is tested for consistency with the SM
 - Performed in bins of m_{ii}
- SM prediction from PYTHIA8 corrected in m_{jj} and χ using NLOJET++
- QBH signal would appear as excess in low χ bins
- The p-value of the background only hypothesis to the data is 0.5
- No significant deviation is observed

Di-Jet Angular Search - Results

- 95% CL limits are derived for ADD models of gravity as function of M_{TH}
- The angular search excludes
 M_{th} < 6.5 TeV at 95% CL using QBH
 - Using BlackMax M_{th} < 6.4 TeV excluded at 95% CL

Summary and Conclusions

- ATLAS has recorded 319 pb⁻¹ of 13 TeV data
 - Two periods of 80 pb⁻¹ used in public results
- Re-establishing understanding of high momentum objects
 - Leptons, photons, jets, missing transverse momentum, H_T
- Relaxed cuts have been used to validate control regions and analysis techniques where sensitivity has not yet passed Run-I analyses
- Using the Run-II data ATLAS has performed searches in a number of final states
 - No significant deviation from the background only hypothesis is observed.
 - Searching for signs of Strong Gravity in hadronic and lepton plus jets final states
 - Setting limits in a two dimensional plane
 - Search for Gaussian signal and Quantum Black Holes s in di-jet final state
 - Excluding M_{th} below 6.8 TeV using both a resonant search and angular analysis
- More searches are right around the corner!

Additional Material

