Top perspectives @HL-LHC

Michele Selvaggi

Center for Cosmology, Particle Physics and Phenomenology (CP3)

UCLouvain Belgium

Top 2015 Ischia - September 18th , 2015

HL-LHC

HL-LHC

Why study tops @ HL-LHC?

Large number of tops @ LHC, 10x more @ HL-LHC!

Outline

- Experimental aspects
- Top Measurements @ HL-LHC

Detectors

High luminosity comes with high <u>pile-up</u> (150 – 200), event <u>rates</u> and <u>radiation</u> damage:

- · ATLAS and CMS will implement <u>track triggers</u> (event rates)
- · High granularity <u>pixel</u> detectors (PU rejection, b-tagging)
- \cdot Extended <u>tracker coverage</u> up to |eta| < 4 (b-tagging, pile-up removal, fwd jet tagging, MET resolution)
- · Extended <u>muon coverage</u>
- High Granularity Calorimeters (PU, high p_T)

High angular resolution is key in high pile-up, high p_T environment

Exp. issues (low p_T)

Pile-up can affect top measurements at low top $p_{\scriptscriptstyle T}$ (~ 100 GeV):

- b-tagging efficiency
- Jet energy resolution
- Missing E_{τ} resolution
- → more granular detector
- → efficient PU subtraction methods (cf. PUPPI)

Bertolini et. al 1407.6013

Exp. issues (high p_{T})

High luminosity comes with high $p_{\scriptscriptstyle T}$ tops as well..

- · Top decay products become more collimated: $R(W,b) \sim 2 \text{ m / } p_{\scriptscriptstyle T} \text{ (for } \Delta R \sim 0.4 \text{ for } p_{\scriptscriptstyle T} = 1 \text{ TeV) (cf. M. Spannowsky 'talk)}$
 - → need jet substructure techniques, and high detector granularity
- · At high top pT, less impact of pile-up on jet pT, but QCD and pile-up can affect other observables (ex: jet mass, shape)
 - → need grooming techniques

Top Measurements @ HL-LHC

Top studies

SM				BSM
mass	kinematics	(anomalous) couplings ra	FCNC are decays	direct search
Inv mass EndPoint J/Ψ L _{xy} cross sec.	spin corr. A _{FB} differentials	gtt tWb(d/s) ttγ/Z ttH	$t \rightarrow qZ$ $t \rightarrow qH$ $t \rightarrow qg$ $(q = u/c)$ $t \rightarrow W(d/s)$	SUSY stops T-partners Z'→t t

Top studies

The EFT approach

A Standard Model measurement can be seen as a search for deviation from D=4 SM lagrangian:

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$$

Grzadkowsky et. al [1008.4884]

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(\varphi^{\dagger}\varphi)^3$	Q_{earphi}	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	Q_{uarphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	Q_{darphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_p d_r \varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{arphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{arphi l}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{arphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi\widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{arphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{arphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi\widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

- · Valid for $m_{_{\scriptscriptstyle +}} << \Lambda$
- Top anomalous (and flavour violating) couplings can be derived from EFT:

$$O_{uG\phi}^{33} = (\bar{q}_{L3}\lambda_a \sigma^{\mu\nu} t_R) \tilde{\phi} G_{\mu\nu}^a$$

$$\longrightarrow \frac{g_s}{m_t} \bar{t} \sigma^{\mu\nu} (d_V + i d_A \gamma_5) \frac{\lambda_a}{2} t G^a_{\mu\nu}$$

gtt coupling

Enhance chromoelectric/magnetic contribution by going at $p > m_t$

Strategy:

- use boosted techniques to tag tops and reduce QCD background
- measure $\sigma_{\rm tt}$ (m > 1(2) TeV) to constrain d_{Δ} and $d_{\rm v}$

tWb coupling

$$\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^- - \underbrace{\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_W}(g_LP_L + g_RP_R)tW_{\mu}^- + h.c.}_{\text{enhance at }q > M_W}$$

SM

- $V_1 = V_{th}$ in the SM
- $\Delta V_{th} \sim 5$ % well constrained
- $\Delta V_{tb} \sim 2.5 \%$ with 300 fb⁻¹ (3 ab⁻¹)

Agashe et. al [1311.2028]

<u>Strategy</u> (suggested by M.Mangano):

- s-channel single top production perfect candidate
- probe off-shell region q² >> M_w² by selecting events such that $m_{th} > 1(2)$ TeV
 - \rightarrow enhance sensitivity of cross section to g₁, g_R
 - → reduce QCD backgrounds

thanks to F. Demartin and G. Durieux

14

tWb coupling

- At m $_{\rm tb}$ > 1-2 TeV, top decay products will be very collimated, need boosted techniques, also b-tagging tricky, but possible
- Backgrounds: QCD (dijet), ttbar

VERY PRELIMINARY (LO parton level) analysis:

- 2 central jets, $p_{\scriptscriptstyle T} > 600$ GeV, |eta| < 2.0
- $m_{ij} > 2 \text{ TeV}$
- 1 top-tagged (eff = 30%, mis = 0.1%)
- 1 b-tagged (eff = 50 (30)%, mis = 1(0.1)%) and Anti-top tagged (eff = 50(50)%, mis = 0.5(0.1)%)

conservative

aggressive

tWb coupling

m _{t b} > 2 TeV	s-channel ST	ttbar	dijet
σ_{fiducial} (fb)	82 (50) ab	105 (12) ab	750 (80) ab

conservative aggressive

$\Delta\sigma/\sigma_{stat}$ (300 fb ⁻¹)	$\Delta\sigma/\sigma_{stat}$ (3 ab ⁻¹)
68 (43) %	21 (13) %

Can do better by:

- · going NLO
- · include tW channel

ttZ coupling

$$\mathcal{L}_{t\bar{t}Z} = e\bar{u}(p_t) \bigg[\gamma^{\mu} \big(C_{1,V}^Z + \gamma_5 C_{1,A}^Z \big) + \underbrace{\frac{\mathrm{i}\sigma^{\mu\nu}q_{\nu}}{M_Z} \big(C_{2,V}^Z + \mathrm{i}\gamma_5 C_{2,A}^Z \big)}_{\mathrm{SM}} \bigg] v(p_{\bar{t}}) Z_{\mu}$$

- $C_{2V}^{Z} = 0.24$, $C_{2A}^{Z} = -0.60$ in SM
- ttZ rate (x4) from 8 to 14 TeV

Strategy:

- process: t t Z production (no background!)
- when has significant boost, enhance sensitivity of cross section to $C_{2,V}^Z$, $C_{2,A}^Z$
- $\sigma_{ttZ} \sim 800 \text{ fb}^{-1}$, but clean signal in 3 leptons, with $m_{II} \sim m_{7}$

Rontsh and Shulze [1404.1005]

(see. M. Shulze's talk)

ttZ coupling

ttH

$$\mathcal{L}_{ ext{ttH}} = -rac{g_w m_t}{2 M_w} \ ar{t} (a + i b \gamma^5) t \ H_s$$

- ttH not observed yet at the LHC
- $\sigma_{ttH} \sim 700 \text{ fb}^{-1}$ @14 TeV
- Eventually, sensitivity driven by $H \rightarrow \gamma\gamma$ (almost syst. free)

$\Delta\sigma/\sigma_{stat}$ (3 ab ⁻¹)	$\Delta y_t/y_t$ stat (3 ab ⁻¹)
25 %	15 %

Demartin, Maltoni, Mawatari and Zaro [1407.5089]

rate/shape sensitive to CPstructure of the coupling

Top FCNCs

- FCNC appear through loop correction in the SM, and are heavily suppressed by GIM
- Can probe through flavour violating couplings in EFT:

$$-\mathcal{L}_{eff} = \frac{g}{2c_W} X_{qt} \overline{q} \gamma_{\mu} (x_{qt}^L P_L + x_{qt}^R P_R) t Z^{\mu} + \frac{g}{2c_W} X_{qt} \kappa_{qt} \overline{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} t Z_{\mu}$$
$$+ e\lambda_{qt} \overline{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} t A^{\mu} + g_s \zeta_{qt} \overline{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} T^a q G^{a\mu}$$
$$+ \frac{g}{2\sqrt{2}} g_{qt} \overline{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + h.c.$$

Any measurable BR is a compelling indication for new physics

Agashe et. al [1311.2028]

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t\to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	-	$\leq 10^{-5}$	$\leq 10^{-9}$	-
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Top FCNCs

- FCNC appear through loop correction in the SM, and are heavily suppressed by GIM
- Can probe through flavour violating couplings in EFT:

$$-\mathcal{L}_{eff} = \frac{g}{2c_W} X_{qt} \overline{q} \gamma_{\mu} (x_{qt}^L P_L + x_{qt}^R P_R) t Z^{\mu} + \frac{g}{2c_W} X_{qt} \kappa_{qt} \overline{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} t Z_{\mu}$$
$$+ e\lambda_{qt} \overline{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} t A^{\mu} + g_s \zeta_{qt} \overline{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} T^a q G^{a\mu}$$
$$+ \frac{g}{2\sqrt{2}} g_{qt} \overline{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + h.c.$$

Aguilar-Saavedra [0811.3842]

Any measurable BR is a compelling indication for new physics

Agashe et. al [1311.2028]

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS	
$t \to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	_	
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$	
$t \to gu$	4×10^{-14}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-	
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$	
$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_	
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$	
$t \to hu$	2×10^{-17}	6×10^{-6}	-	$\leq 10^{-5}$	$\leq 10^{-9}$	_	
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$	

$t \rightarrow Zq$

Signal: $t t \rightarrow W b Z q$

Backgrounds: tt, W, ttV

Selection:

- 3 leptons + MET + 2 jets (1 btag)
- m(Zj)~m_{top}
- m (Wb) ~ m_{top}

Systematics

Uncertainty (%)	19.5 fb ⁻¹ @ 8 TeV	300 fb ⁻¹ @ 14 TeV	3000 fb ⁻¹ @ 14 TeV
Jet energy scale	13.5	3.5	3.4
E _T resolution	3.2	3.2	3.2
MC Statistics	5.3	1.4	1.3
$\sigma(tqZ)/\sigma(Vt\bar{t})$	3.1	1.0	0.8
b-tagging	17.7	4.5	4.2
Total	23	7	7

< 0.05 %

Phys. Rev. Lett. 112 (2014) 171802

$\mathcal{B}(t\to Zq)$	19.5 fb ⁻¹ @ 8 TeV	300 fb ⁻¹ @ 14 TeV	3000 fb ⁻¹ @ 14 TeV
Exp. bkg. yield	3.2	26.8	268
Expected limit	< 0.10%	< 0.027%	< 0.010%
1σ range	0.06 - 0.13%	0.018 - 0.038%	0.007 - 0.014%
2σ range	0.05 - 0.20%	0.013 - 0.051%	0.005 - 0.020%

$t \rightarrow c H$

Signal: $t t \rightarrow t_{lep(had)} c \gamma \gamma$

Backgrounds: ttH, W/Z+ jets, γγ+jets

Selection:

- 4 jets (1 b) + 2 photons (had)
- > 2 jets (1b), 2 photons (lep)
- m(cH)~m_{top}
- m (Wb) ~ m_{top}

2500 ATLAS Simulation tt→ cH(γγ)bW(had) Full simulation, 8 TeV Truth level 8 TeV Truth level 14 TeV 1500 1000 1000

ATLAS-PHYS-PUB-2013-012

100 150 200 250 300 350 400 450

diphoton-jet mass [GeV]

<u>Yields</u>

		Expected FCNC signal	SM sources	Background
atd auta	Hadronic events	34	61	1750
std cuts	Leptonic events	11	21	37
tight outs	Hadronic events	13	24	350
tight cuts	Leptonic events	7	14	25

 $B(t \rightarrow c H) < 1.5 \ 10^{-4}$

3-jet mass [GeV]

Other FCNC's

Current limits

Future limits

Process	Br Limit	Search	Dataset
t o Zq	2.2×10^{-4}	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to Zq$	$7 imes 10^{-5}$	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$3000~{ m fb^{-1}},14~{ m TeV}$
$t \to Zq$	$5(2) \times 10^{-4}$	ILC single top, γ_{μ} $(\sigma_{\mu\nu})$	$500~{\rm fb^{-1}},250~{\rm GeV}$
$t \to Zq$	$1.5(1.1) \times 10^{-4(-5)}$	ILC single top, γ_{μ} $(\sigma_{\mu\nu})$	$500 \; \mathrm{fb^{-1}}, 500 \; \mathrm{GeV}$
$t\to Zq$	$1.6(1.7) \times 10^{-3}$	ILC $t\bar{t}$, γ_{μ} $(\sigma_{\mu\nu})$	$500~{\rm fb^{-1}},500~{\rm GeV}$
$t \rightarrow \gamma q$	8×10^{-5}	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to \gamma q$	2.5×10^{-5}	ATLAS $t \bar{t} o W b + \gamma q$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to \gamma q$	6×10^{-5}	ILC single top	$500~{\rm fb^{-1}},250~{\rm GeV}$
$t \to \gamma q$	6.4×10^{-6}	ILC single top	$500~{\rm fb^{-1}},500~{\rm GeV}$
$t \to \gamma q$	1.0×10^{-4}	ILC $t ar t$	$500 \; \mathrm{fb^{-1}}, 500 \; \mathrm{GeV}$
$t \to gu$	4×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gu$	1×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gc$	1×10^{-5}	ATLAS $qg \rightarrow t \rightarrow Wb$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gc$	4×10^{-6}	ATLAS $qg \to t \to Wb$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	2×10^{-3}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	5×10^{-4}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	5×10^{-4}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \gamma\gamma q$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	$2 imes 10^{-4}$	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \gamma\gamma q$	$3000~{\rm fb^{-1}},14~{\rm TeV}$

Agashe et. al [1311.2028]

Summary and outlook

HL-LHC comes with important experimental challenges and opportunities:

- pile-up
- high p_⊤ events
 - → In order to maintain present performance need to extend capabilities of our detector

HL-LHC will deliver up billions of tops:

- \rightarrow great opportunity to challenge the SM by measuring as best as we can:
 - top properties (mass, couplings, FW-BW asym., spin correlation, etc...)
 - rare decays (FCNC, $t \rightarrow Ws/d$, tZ, tH, $VV \rightarrow tt$)
 - explore new ideas in the boosted regime to enhance sensitivity to anomalous couplings (cf. ttg, tWb ..)

Thanks!

Backup

Rare top processes

ATLAS Phase II upgrades

- Essential to upgrade ATLAS
 - Mitigate radiation damage
 - Cope with higher pile-up
 - ➤ Maintain or improve performance

Main upgrades towards HL-LHC

- Read-out electronics and DAQ
- Updated trigger system
 - Finer granularity
 - Two hardware trigger levels (L0\L1)
 - Tracking in lower level trigger
- New forward muon detectors
- New inner tracking detector

CMS Phase II upgrades

M. Klute 30

Top Mass

tty/ttZ

Collider	LI	łС	ILC/CLIC
CM Energy [TeV]	14	14	0.5
Luminosity $[fb^{-1}]$	300	3000	500
SM Couplings			
photon, F_{1V}^{γ} (0.666)	0.042	0.014	0.002
Z boson, F_{1V}^Z (0.24)	0.50	0.17	0.003
Z boson, F_{1A}^Z (0.6)	0.058	_	0.005
Non-SM couplings			
photon, F_{1A}^{γ}	0.05	_	-
photon, F_{2V}^{γ}	0.037	0.025	0.003
photon, F_{2A}^{γ}	0.017	0.011	0.007
Z boson, F_{2V}^Z	0.25	0.17	0.006
Z boson, ReF_{2A}^{Z}	0.35	0.25	0.008
Z boson, ImF_{2A}^{Z}	0.035	0.025	0.015

Table 1-5. Expected precision of the top quark coupling measurements to the photon and the Z boson at the LHC [62, 31] and the linear collider [22]. Expected magnitude of such couplings in the SM is shown in brackets. Note that the "non-standard model" couplings appear in the Standard Model through radiative corrections; their expected magnitude, therefore, is 10^{-2} .