Measurement of the t-channel single top quark production cross section at 13 TeV with the CMS detector

Nils Faltermann (KIT) on behalf of the CMS collaboration

TOP2015 Ischia, 15.09.2015

Introduction

- Electroweak production of top quarks
- Sensitive to BSM physics (FCNC, new particles, ...)
- Early measurement with 42 pb-1 integrated luminosity of 50ns LHC data at 13 TeV
 - Challenging due to low statistics, detector performance after upgrade phase, QCD, ...
- Signature of t-channel events with leptonically decaying top quarks
 - Light quark with high |η|
 - Hard b quark
 - Soft second b quark, often fails detector acceptance
- Main backgrounds: tt, W+jets

Analysis

- Event selection:
 - ► Single muon trigger, one isolated muon with $p_T > 22$ GeV, $|\eta| < 2.1$
 - ▶ Jets with $p_T > 40$ GeV, $|\eta| < 4.7$ (2.4 for b-tagging)
 - ► Transverse W boson mass m_T > 50 GeV
- Define different categories:
 - 2 jet 1 tag (2j1t), main signal region
 - 3 jet 2 tag (3j2t), dominated by tt
- Process modeling:
 - aMC@NLO: t-channel (4FS), W/Z+jets
 - Powheg: tt, tW
 - Hadronization for all with Pythia8

QCD estimation

- QCD is expected to be a challenge at higher energies
- Do not rely on MC, use data-driven approach:
 - Inverting muon isolation to derive QCD-enriched template
 - Relax m_T cut, maximum likelihood fit to m_T distribution
 - Extrapolate QCD to $m_T > 50$ GeV region

See also poster from Georgios Krintiras

Event yields

- Define a signal region (SR) and sideband (SB) in 2j1t around the top mass: 130 GeV < m_{top} < 225 GeV
- Reduction of W/Z+jets background, modeling cross-check

Signal extraction

- Extract cross section with maximum likelihood fit
- Simultaneously in 2j1t (SR) and 3j2t
- Background normalization constrained, signal unconstrained

Systematic uncertainties

- Statistical uncertainties dominating
- Dominant systematics:
 - JES due to preliminary 13 TeV estimation
 - Luminosity (pre VdM scan)
 - b-tagging SF
 - PDF (NNPDF variations), muon trigger & reconstruction, Q² scale

Uncertainty source	$\Delta \sigma_{t-{ m ch}}/\sigma_{t-{ m ch}}^{ m obs}$
Statistical uncertainty	36%
JES	17%
JER	1.1%
b-tagging	5.6%
Muon trigger/reconstruction	3.4%
QCD extraction	1.1%
Signal generator	1.9%
Factorization and renormalization scales (Q^2)	3.3%
PDF	4.5%
MET	1.2%
Pileup	1.4%
Total systematic uncertainty	19%
Luminosity	12%
Total uncertainty	42%

Results

- Observed a signal with 3.5σ significance (2.7σ exp.)
- Inclusive cross section:

•
$$\sigma_{\text{t-channel}} = 274 \pm 98 \text{ (stat.)} \pm 52 \text{ (syst.)} \pm 33 \text{ (lumi) pb}$$

$$\sigma^{\text{theo}}$$
 = 216.99 pb (NLO) [Hathor v2.1]

CKM matrix element:

$$|V_{tb}| = \sqrt{\frac{\sigma_{t-ch.}^{meas.}}{\sigma_{t-ch.}^{theo.}}} = 1.12 \pm 0.24 \text{ (exp.)} \pm 0.02 \text{ (theo.)}$$

Cross-check: top mass

- Reconstructed top mass in the 2j1t, normalized to fit result
- Additional cut on the right: $|\eta_i| > 2.5$
- Signal-enriched events in the forward region

Conclusion

- Strong evidence for t-channel from fit significance and top-mass distribution in forward region
- Results compatible with Standard Model expectation

