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Motivation (i)

Vulcano Ranch (1962-63)
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- Sub-luminal pulses with a delay of at least 3us
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Note by A.M. Hillas (1982)
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10 ps Today: Extensive literature on dedicated neutron measurements (e.g. Stenkin and others)



Motivation (ii
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Possible impact depending on measurement principle
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charge integration in EAS arrays

Digitization time

(Drescher & Farrar, Astropart Physics 24 (2005) 372)
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Scintillators in Auger Observatory

D. Schmidt, Pierre Auger Collaboration
(ICRC 2021)

- Late signals seen in scintillators (SSD)

- Late pulses have no coincident signal
in water-Cherenkov detectors (WCD)
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Motivation (ii)
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SD0416: 7.3 MIP at 2.3 km
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Scintillators in Telescope Array

TA Collaboration
(Amaterasu event, Science 2024)

- Two layers of scintillators, steel plate
- Late signals seen in scintillators

- Late pulses in only one of the
two scintillator layers?



Neutrons in the cascade Monte Carlo code FLUKA

Simulation of neutrons in FLUKA

| — total cross-section 14N

— total cross-section °O

- = elastic cross-section

- - total cross-section (FLUKA)

J Neutron interactions at higher energy are handled by 10! [=—
FLUKA nuclear models |

4 FLUKA: neutrons below 20 MeV low-energy neutrons

d Transport and interactions of neutrons with energies
below 20 MeV are handled by a dedicated library
(matrix-transfer calculation)

Why are low-energy neutrons special?
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> No charge and ~ « lifetime = can (only) undergo nuclear
interactions even at very low energies, e.g. meV

> Cross sections (o) are complex and structure rich = cannot _
be calculated by models = we rely (like all codes) on 100 |
evaluated data files - :

> Even at “thermal” energies neutrons can still generate
several MeV'’s of y’s and/or charged particles through capture 10~
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10~ 10-° 10> 10
incident kinetic energy / GeV

(A. Ferrari, PR. Sala, A. Fasso, J. Ranft, FLUKA:
A multi-particle transport code, CERN-2005-010) www.fluka.org
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Benchmarking FLUKA with cosmic-ray neutron data
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Comparison of expectations for muons and neutrons

Multiplicity of

charged pions Ey Muons

- Mainly produced in hadronic interactions through

decay of charged pions and kaons
Ny + | = neh k - Small energy loss, large attenuation length (~1000 g/cm?2)
| - Directional information approx. preserved

- Arrive early at ground (less multiple scattering
than em. particles)

Nyt o = (nch)2

A
Neutrons
k - High energy: mainly produced in hadronic interactions,
Nrs = (neh) baryon-antibaryon pair production
B — Innen o g - Low-energy: photo—diss.ociation c?f air nuclei
In 1o ' - Energy loss due to elastic scattering,

(Matthews, APP22, 2005) (Superposition model) attenuation length (~100 - 150 g/CmZ)
- Directional information lost, wide lateral distribution
Ey P - Bulk of neutrons arrives late with very long time delay
u

NZ‘ ~ Al_BNH ~ 1.4 Nu (neutron cloud / thunder)



Air shower results: primary particle dependence
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low-energy part dominated by attenuation



Air shower results: depth evolution (attenuation)
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Energy spectrum E dN/dE

Air shower results: energy dependence
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Air shower results: energy dependence
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Air shower results: time delay distribution
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Close to shower maximum: neutrons as abundant as muons
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Air shower results: muons vs. neutrons at large distance
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Sum Mary (see 2406.11702 for details)

Neutrons First very rough estimate of

- Interesting sub-luminal particles detection probabilities (%)

» Feature-rich and very wide energy spectrum Neutron Scintillator Water
: rp Energy Threshold Threshold
* Notoriously difficult to detect (MeV) (100e-keV) (1300 VEM) (1/100 VEM)
» Very difficult to simulate accurately (environment) 0.0001 23x107> 137 <107
| o 0.001 1.0x1072 13.7 <1073
- Expected to produce late pulses in scintillators 001 42%x10-3 13.7 <10-3
0.1 1.3x107° 150 <1079
0.5 <1072 18.5 <1073
Scaling observations 0.7 4.65 20.1 <1073
1 14.7 16.9 <1073
* Production ~50% hadronic, ~50% electromagnetic. dissociation 2 17.1 25.1 <1073
: - . 3 15.5 28.0 <1073
- Hadronic production scales similar to muons s >4 50,0 4n10-3
» Electomag. production scales linearly with energy 10 9.78 41.3 11.1
. . 19.1
- Attenuation (neutron removal) length 80 ... 200 g/cm? %8 Z.ZZ 22; 238
- Very wide lateral distribution, wider than muons 50 447 58.6 30.3
100 2.87 61.8 37.5
 Typical delay in arrival time ~ 1 ... 20 ps (Exin > 20 MeV) 200 2.30 63.9 44 4
_ 500 2.31 75.3 52.3
» Thermal neutrons up to ~ 100 ms 1000 ) 55 83 9 79 7




Note by Michael Hillas on neutrons

"Sub-luminal particles in alr showers

(1) OQualitative deductions

These pulses, discovered in scintillators by John Linsley, are delayed
after the shower front by a time T > r/e¢, r being the distance from the
shower axis. They are not very uncommon in scintillators at 1-2 km from the
axis in showers above 10'® eV, but have not been noticed in much smaller
showers. The pulses were sharp (compared with normal shower pulses), and

had sizes around 2 to 5 times that produced by a standard muon =— say 30 to
80 MeV deposited in the scintillator. More than one such signal could be
detected in some showers — sometimes more than one in a single scintillator,

iell spread out in time.
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for soc far from the axis. The pulse size would then call for somewhail slow
heavily-ionizing particles (such as 30-100 MeV protons, possibly knocked on
by 50 - 100 MeV neutrons), and the long delay also calls for slow and highly
scattered particles. The most likely cause of the pulses seems therefore %o
be heavily-ionizing protons generated by neutrons of 30 - 200 MeV which have
performed a randem walk from the central region of the shower. The neutrons
are non-relativistic and suffer large-angle scattering by interactions with
nuclei. (Non-relativistic muons do not deposit enough energy in a scintilla-
tor before stopping, and are not scattered so much in the last kilomeire or
so.) Large numbers of sub-GeV neutrons and protons are produced as recoils
from the interactions of hadrons with nuclei (arnd also to a non-negligible

extent from interactions of photons with nuclei). The number of such nucleons

should be nearly proportional to shower primary energy, but if the pulses are
due to individual particles, one would not expect smaller showers to show

the subluminal particles as smaller-amplitude pulses, but rather to show the
same large pulses though much less often. Water-Cerenkov detectors are

not expected to detect these particles to any appreciable extent,

Note provided by Alan Watson
(Haverah Park array, unpublished)

Volcano Ranch:
scintillators of 9 cm thickness

Monte-Carlo simulations are being carried out to check the numbers of
non-relativistic nucleons expected in this energy range at around 1.5 km
from the shower axis, and the typical time delays to be expected. The
details of nucleon production and scatbtering in intra-nuclear cascades are
complex, and it is necessary to check that the simulation reproduces this
to a reasonable extent, as the amount of scattering and energy loss must
have a large influence on the numbers and delays of particles at very large
distances. Initial results with a much simplified treatment (which may be
inaccurate) indicate that at least half of the neutrons above 30MeV are
fgyub-luminal®, and a considerable proportion of the protons, and the
detection probability in a scintillator at the distance mentioned would
become high at a shower size of a little above 10'° eV. The tail of the
muon time distribution probably ends at about #r/c.

A, Mo Hillas
28th October 1982,
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