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- Introduction to ultra high energy cosmic rays physics.
. Astrophysical sources of UHECRs
- Introduction to CREDQO: multi-messenger astronomy

- Tests of space-time structure, LIV, Fundamental
Constants Variation

- Compact Stars, Quark matter and the Axion

. Other possible applications of CREDO



Energy: the higher the better?
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Dark Matter Candidates and Searches

Dark Sector Candidates, Anomalies, and Search Technigques
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Cosmic rays (CRs) - high-energy particles coming from space
(protons, nuclei, neutrinos, photons, electrons,...)
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Constraint on electromagnetic
acceleration of UHECR
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Neutron star mergers

High-energy emissions from neutron star mergers

Shigeo S. Kimura'23*

'Department of Physics, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
2Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
*Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, Pennsylvania, 16802, USA

Abstract. In 2017, LIGO-Virgo collaborations reported detection of the first neutron star merger event,
GW170817, which is accompanied by electromagnetic counterparts from radio to gamma rays. Although
high-energy neutrinos were not detected from this event, mergers of neutron stars are expected to produce
such high-energy particles. Relativistic jets are launched when neutron stars merge. If the jets contain pro-
tons, they can emit high-energy neutrinos through photomeson production. In addition, neutron star mergers
produce massive and fast ejecta, which can be a source of Galactic high-energy cosmic rays above the knee.
We briefly review what we learned from the multi-messenger event, GW170817, and discuss prospects for
multi-messenger detections and hadronic cosmic-ray production related to the neutron star mergers.
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Magnetic Penrose Process

Ergosphere

Event Horizon

N\

Inward Falling
Particle

Output Particle (E,)

(E;) > (Ep)
Parent Particle (E,)

Naresh Dadhich, Arman Tursunov, Bobomurat Ahmedov, Zdenék Stuchlik, The
distinguishing signature of magnetic Penrose process, Monthly Notices of the Royal
Astronomical Society: Letters, Volume 478, Issue 1, July 2018, Pages L89-L94



Can UHECRSs be produced by black holes?

2mr

Kerr black hole hypothesis (M & a) = I = T o2l 1 Ergosphere: g =0
Inside the ergosphere g:+ changes its sign

Outer event horizon
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Black hole mechanics and Thermodynamics have uncanny correspondence!

Black hole area non-decrease states that 29% of BH’s energy is available for extraction.

For extremely rotating SMBH of 10%solar mass the available energy is 107%eV

Credit: Arman Tursonov



Beta—decay in ergosphere

7
7

/ . .
i Neutron beta—decay in the ergosphere of rotating
black hole in the presence of external magnetic

field. The electron falls into black hole with the

negative energy.

In the hot and dense torus, with temperature of ~10'! K and density >10'° g-cm ™3, neutrinos are

efficiently produced. The main reactions that lead to their emission are the electron/positron
capture on nucleons, as well as the neutron decay. Their nuclear equilibrium is described by
the following reactions:

p+e —n—+ve
p+ive—n+e"

Credit: Arman Tursonov pt+e +vVe—n A. Janiuk et al, Galaxies 5, 15 (2017)



Super-preshowers (SPS) from the vicinity of the Sun
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Narm> 1— observable (line even 10000 km wide), not yet tried

— First calculations: W. Bednarek 1999
low energies not treated: extent ~ tens of km

— N. Dhital, 2018

complete energy spectrum: extent

~ thousands of km

Distributlon of photons at the top of the Atm
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>=EeV photons nearby the Sun— big CRE

YUHE

(E > 10'8eV)
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Simulations of SPS at the vicinity of the Sun
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Left: The cumulative spatial distribution of secondary photons at the top of the atmosphere, for the
primary photons energy 100 EeV. Right. Shower footprint derived from the CORSIKA simulation
program for particles that are tracked through the atmosphere that eventually react with air nuclei. The
inset displays the core of the footprint in a smaller area.

N. Dhital, P. Homola, D. Alvarez-Castillo et al.,
arXiv:1811.10334, JCAP03(2022)038
B. Poncyljusz, T. Bulik, N. Dhital et al.,
arXiv:2205.14266, Universe 8 (2022) 498



State-of-the-art detection of cosmic rays: N rv = 1
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Generalized detection of cosmic rays: Ny >=1

primary Cosmic Ray anything + interaction
(p, Fe, ...) ,

Narm=1— Natm > 1

| /T Cosmic-Ray
// |\ Ensemble

7 ‘*, T

| ATMOSPHERE ~—
Natm > 1

GROUND

| CHANCE FOR A UNIQUE SIGNATURE!
STATISTICS — SIGNATURES | REQUIRES A GLOBAL RESEARCH!

© : a cosmic-ray detector
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A chance for a unique CRE signature
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CREDQO: the first N v >= 1 observatory

Cosmic-Ray Extremely
Distributed Observatory
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DATABASE/
l NTERFACE

Central database/interface: access to everything for everybody
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2140 TFLOPS in CPUs + 256 TFLOPS in GPUs
2232 nodes, 53568 CPU cores, 279 TB RAM

10 PB usable disk space @ 180 GB/s

A

.
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2.4 PFLOPS, #39 ON TOP500
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https://play.google.com/store/apps/
details?id=science.credo.mobiledetector

THE QUEST FOR THE UNEXPECTED

CREDOQO Detector

IFJ PAN  Edukacja

L3 Nadzér rodzicielsk

~Sono0e

= Defwbior credoschexe

data acquisition!
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https://play.google.com/store/apps/
details?id=science.credo.mobiledetector

THE QUEST FOR THE UNEXPECTED

CREDOQO Detector

IFJ PAN  Edukacja

L3 Nadzér rodzicielsk

~Sono0e

= Defwbior credoschexe

data acquisition!

<number=>



CREDO Detector: examples

User: ,smph-kitkat”, https://api.credo.science/web/user/smph-kitkat/
Device: Smasung SM-G357FZ, Android 4.4.4 (KitKat)

Average detection rate: ~10/hr

(flight to Kyiv on 29.05: 60/hr :)

Example images:

<number=



CREDQO: already global

42 institutions / 19 countries / 5 continents / ~ 11 900 users / ~ 4400 teams / > 10 000 000 smartphone detections
/ > 1100 smartphone work years 23



Why high energy photons interesting?

- they should exist
- they should initiate large scale cascades

- detection of large scale cascades unattempted
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Photons as cosmic rays: astrophysical scenarios

Astrophysical scenarios

acceleration of nuclei (e.g. by shock waves)

+ ,,conventional interactions”, e.g. with CMBR

e sufficently efficent astrophysical objects difficult to find

» small fractions of photons and neutrinos - mainly nuclei expected

’?’?7 Exotic scenarios (particle physics) 777

Decay or annihilation the early Universe relics

- hypothetic supermassive particles of energies ~10** eV
— decay to quarks and leptons — hadronization (mainly pions)

 large fraction of photons and neutrinos in UHCER flux

X
not the case?
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Astro-tests of the space-time structure

=
CHANDRA

X-RAY OBSERVATORY VERITAS Gamma Observatory

— maximum photon energies < 10" eV
— testable scale of the space-time ,grain” <10"°m

— maximum photon

- energies in CRE (ensembles) < 10* eV +
C R E D @ *. - — Potential sensitivity to the
THE QUEST FOR THE UNEXPECTED the Space'time ,,grain” < 10-26 m
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More on Experimental Quantum Gravity

T. Jacobson, S. Liberati, and D. Mattingly, Annals Phys. 321 (2006) 150

Lorentz violation al_high energy: concepts,
phenomena and astrophysical constraints

Ted Jacobson ®, Stelano Liberali®, David Mattingly

*leperament af Phpsics, Undeevsily of Marpland, £5A
idernationa! Schwoo! for ddvancst Studies and INFN, Triesle, Huly

FDrpurtinend of Phgsies, Undverssly of Cabiforase wf Davis, U534
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CRE and Lorentz Invariance Violation

Modified dispersion relation of a photon:

f 1 limits from gamma-ray astronomy,
B (k) TR & 98% C.L. (Klinkhamer & Schreck, 2008):
TS / AN b -20 -18
(14 &) 6x10%> xk>-9x 10
Kk > 0: pair production supressed .
— more UHE photons reach Earth e
Y >/
UHE
e
}'
Y - Kk = 0: ,normal” pair production
UHE
e F
/dv k < 0: pair production enhanced
y - (photon lifetime ~ 1 sec.!)
UHE — no UHE photons reach Earth

— critical importance for the UHE photon search!
Observation of photon cascades would point to x < 0!
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Studying the Variation of Fundamental Constants at
The Cosmic Ray Extremely Distributed Observatory

D. Alvarez Castillo®?!

@ Joint Institute for Nuclear Research, Dubna, Russia

b Institute of Nuclear Physics PAN, Cracow 31-342, Poland

The Study of the Variation of Fundamental Constants through time or in lo-
calized regions of space is one of the goals of the The Cosmic Ray Extremely
Distributed Observatory which consists of multiple detectors over the Earth. In
this letter, the various effects which can be potentially identified through cosmic
rays detections by CREDOQO are presented.

PACS: 06.20.Jr; 96.50.S—; 04.60.—m; 11.30.Cp

Phys.Part.Nucl. 53 (2022) 4, 825-828, arXiv:2208.09391



Example non-exotic scenario: preshowers

Preshower (important for E > 101° eV):
— contains typically 100 particles
(created at around 1000 km a.s.l.)
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Super massive High energy photon Low energy photons
particle decays to a @l collision creates lots in a super-preshower
very high energy y of low energy are detected on the

photon photons Earth

Super Massive
Particles formed in
the early Universe




Classes of cosmic-ray ensembles

A Y uue B: ¥Yyue C: Yuue D: ¥Yune
(e.g. 10%eV) (e.g. 10%%V) (e.g. 10%%V) (e.g. 10%%V)
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Cosmic-Ray Ensembles (CRE): road map

Theoretical scenarios (ongoing)

non-exotic / exotic v
CRE standalone simulatiovns — particle distributions
at the top of the atmosphere (ongoing) v
Air shower simulations (ongoing) )
Detector respbnse (ongoing)
v

observation¥ upper limits
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Experimental evidence about yyug

no interactions or screenin
YUHE ! ! "3,  Earth

NOT OBSERVED
, . ELECTROMAGNETIC
unexpected interactions, r Cf A TG (O AT T
YUHE screepnm » CASCADES (CcosMmIC- —»  Earth
g, ... RAY ENSEMBLES)

NOT TRIED SO FAR...

Y
CREDO!

“<nun
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Bosonic Dark Matter in NS

Tidal forces deform compact
objects in binary systems

Deformation of spacetime
away from spherical symmetry

D. R. Karkevandi, S. Shakeri, V. Sagun, O. Ivanytskyi, arXiv:2112.14231



Gravitational Waves from NS

e Non-radial QNMs raised from time varying quadrupole
deformations are source of GWs.

e fundamental (f) mode,
o no node, probe for mean density,(1 kHz < f < 3kHz)
e pressure (p) mode,
o Sound speed, (5 kHz < f < 10kHz)
e gravity (g) mode,
o (50Hz<f<500Hz)
e R-mode, for rotating stars only.

o Viscosity, (0.5 kHz < f < 2kHz)
Credit: C. Hanna and B. Owen e Space-time (w) mode.

o 5kHz<f
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ECosmic Einstein
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Einstein Tlscope

CENTRAL FACILITY

COMPUTING CENTRE

LENGTH: 10km
TUNNEL: 5m




On the Magnetic Precursor of the Chilean Earthquake
of February 27, 2010

N. V. Romanova®*, V. A. Pilipenko?, and M. V. Stepanova®
@ Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
e-mail: natalia.romanova@usach.cl, pilipenko_va@mail.ru
b Universidad de Santiago de Chile, Santiago, Chile
Received March 24, 2014, in final form, June 19, 2014

Abstract—Some recent publications reported on an anomalous geomagnetic disturbance that was observed
three days before the strongest Chilean earthquake on February 27, 2010. The present paper analyzes in detail
the data from magnetic station, photometers, and riometers in Canada, Chile, and Antarctica. The analysis
unambiguously shows that the supposedly anomalous geomagnetic disturbance was not related to seismic
activity and was caused by a standard isolated substorm.

DOI: 10.1134/S0016793215010107

INTRODUCTION

Recent publications by Shestopalov et al. (2011a,
2011b, 2013) reported on a series of anomalous geo-
physical phenomena prior to the Chilean earthquake
of February 27, 2010. In particular, it was reported that
a significant geomagnetic disturbance had been
observed three days before the event for about an hour
long at different magnetic stations of the INTERMA-
GNET network. The authors thought it was endoge-
nous disturbance (Belov, Shestopaloy, and Kharin,
2009; Belov et al., 2010), because no magnetic storms
took place that time.

However, an absence of magnetic storms in the ana-
lyzed period does not exclude effects from such natural
geomagnetic disturbances as substorms, which are con-
stantly observed in auroral zones in the absence of mag-
netic storms. The natural problem is whether the phe-
nomenon analyzed in (Shestopalov et al., 2013) an
anomalous disturbance or a common substorm. To

solve this problem, we will consider a broader set of =20
geophysical data.
Epi
ANALYSIS OF GEOMAGNETIC ACTIVITY 40 e

PRIOR TO THE EARTHQUAKE

The strongest M 8.8 Chilean earthquake occurred
on February 27, 2010 in 0634 UT at a depth of / =
35 km (the geographic coordinates of the epicenter are
35.93° S, 72.78° W). According to (Shestopalov et al.,
2013), the magnetic precursor of this event was -
;emvgzlsg on February 24, 2010, at different magnetic —sol . AWSD.

—60 P

Let us consider the magnetograms of February 24, —120 -100 —80 —60 —40
2010, obtained at stations of the SAMBA (Chile) and
CARISMA (Canada) networks (Mann et al., 2008), Fig. 1. Map of positions of the chosen stations and the

which form a latitudinal profile along the zero mag- earthquake epicenter.

39



CR rate in the last 5 days, scaled
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magnitude sum in the last 5 days
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The data

public resources of:

Pierre Auger Observatory scaler data
Neutron Monitor Database

U.S. Geological Survey

Solar Influences Data analysis Center

240

Y1 Auger, 5 days

Y1: Moscow, 5 days, x0.8

Y1: Oulu, 5 days, x1.9

Y2: log10(Magnitude sum, EQmag > 4), 5 days
220 Sun spots, month mean smoothed 13m, scaled by 0.01
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https://labdpr.cab.cnea.gov.ar/ED/index.php?scaler=1
http://www01.nmdb.eu/
https://earthquake.usgs.gov/earthquakes/search/
http://www.sidc.be/silso/datafiles

Local cosmic dynamics vs. global seismicity:
dependence on geographical location?
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different cosmic ray sites see
the correlation effect

o
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Malargue (Pierre Auger Observatory), left Y axis
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/ differently? Need for more
17 detectors?

2010 2011

~6 o significance of the effect in three technically independent CR data sets collected by the Moscow and
Oulu NMDB stations, and by the Pierre Auger Observatory, compared to sunspot numbers. Each point
illustrates the correlation effect during the last ~4.5 years (335 five-day intervals). All the significance
curves were obtained after fine tuning of the parameter ¢, performed by applying 20 small shifts in time

between 0 and 5 days.
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Cosmic Rays and earthquake early warning?

Wikipedia: ,Geomagnetic reversal”

Earth outer core: Liquid (molten iron)
— geomagnetism

Impulse (tiaal forces)
— hydrodynamics: waves

soutil":‘ wovth
— Mechanical wave upwards (slow, hours?)
between reversals during areversal — Electromagnetic wave (,instant”, ms)
Wikipedia: ,Health threat from cosmic rays” Local geomagnetic fleld vector changes

AND seismic effect might occur!

Variation of t;le CR rate!

Earthquake erecursors?

<number=



Seismic data and QGravity

Bose-Einstein Condensate and Liquid Helium He*: Implications of GUP and Modified
Gravity Correspondence

Aneta Wojnar®!:*

! Department of Theoretical Physics €& IPARCOS,
Complutense University of Madrid, E-28040, Madrid, Spain

Utilizing the recently established connection between Palatini-like gravity and linear General-
ized Uncertainty Principle (GUP) models, we have formulated an approach that facilitates the
examination of Bose gases. Our primary focus is on the ideal Bose-Einstein condensate and lig-
uid helium, chosen as illustrative examples to underscore the feasibility of tabletop experiments
in assessing gravity models. The non-interacting Bose-Einstein condensate imposes constraints on
linear GUP and Palatini f(R) gravity (Eddington-inspired Born-Infeld gravity) within the ranges
of =10 <o <3x10*s/kgm and —107" < B < 10" m? (=4 x 107" < e < 4 x 10" m?),
respectively. In contrast, the properties of liquid helium suggest more realistic bounds, specifically
—10% < ¢ < 10* s/kg m and —10° < B < 10° m®. Additionally, we argue that the newly developed
method employing Earth seismic waves provides improved constraints for quantum and modified
gravity by approximately one order of magnitude.

arXiv:2401.01159

| am spearheading an application, along with a number of colleagues, for
COST Action 2024, with the goal of bringing together researchers in the
areas of (quantum) gravity, particle physics, seismology, and solid-state
physics.

awojnar@ucm.es
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Time of flight in colliders




Invitation to cooperation — distributing small

detector arrays for CREDO

Jerzy Pryga !

1 University of the National Education Commission

04.06.24



Cooperation offer

Installation in your
Institution

Workshop:

@ Lecture about CREDO and
cosmic rays.

@ Hands-on training for
students on how such

detectors work and how to
build them.

@ Laboratory classes to
practice how to conduct
measurements.




Cooperation offer

What do we offer?

Detector station:

8 scintillators (top figure)

+ master unit (bottom figure).
Tools:

Housing for outdoors
measurements, accessories for
experiments with students.
Residence time:

At least to the end of the project
(around 1.5 year).




Costs of such station
is around 5000 PLN ~ 1170 EUR.

You can buy parts and we can built it together if you want.

If you are interested in any cooperation — please contact me!

e-mail: jerzy.prygaQwp.pl
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Solar Eclipse and Cosmic Ray Flux

Cite as: Phys. Teach. 60, 100 (2022); https://doi.org/10.1119/10.0009417
Published Online: 31 January 2022
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Muon Rates in Tracker Telescopes During Eclipse
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Fig. 8. Tracking telescope results of muon events per 10
minutes since midnight UTC. Presented are rates correct-
ed for elevation: on-axis (13+24) for the EW (NS) tracker in
blue circles (red squares); off-axis (14+23) for the EW (NS)
tracker in green diamonds (yellow triangles). The yellow
highlighted area marks the time interval of the eclipse.



TOTAL SOLAR ECLIPSE 2024

7 /;,// /“l‘./ ’/ (’
WL




STROBE-( ¥

-,
g
-

*s




More about CREDO

https://credo.science

Personal contact:

Piotr Homola / CREDO Project Coordinator /

Piotr.Homola@credo.science / +48 502 294
333

57


https://credo.science/
http://Piotr.Homola@credo.science

Conclusions

Cosmic Rays are potentially capable of bring insight into the solution of
fundamental problems like the nature of dark matter

Studying the nature of space-time structure and associated variation of
constants is pursued by CREDO.

Many astrophysical sources include compact objects.

CREDO is a scientific project open to citizens as well which relies on support
of many educational and scientific institutions.

Many other possible applications of CREDO data are being studied as well:

earthquakes. )
W



