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The detection and measurement of the momenta of charged particles is
an essential aspect of any large particle physics experiment to study the
physics processes.

A charged particle travels through a certain medium and ionize atoms.
By detecting this ionisation, it is possible to reconstruct the trajectory of
a charged particle commonly knows as the Tracking.




Tracking in Particle Physics

* Tracking is the act of measuring the direction and
magnitude of charged particles momenta

* Use constant magnetic field B to curve particle
trajectories in helixes, where particle momentum
p measured from radius of curvature r

P
r=—
qB
* Important to combine tracks and find vertices

el




Tracking Technologies

Bubble chambers ~1960s

* Many bubbles along path; take stereo photos; measure
trajectory by manual scanning of film

Gas detectors >1970s

* Atype of electronic detector, can digitally record “hits” at high
rate without human intervention

» Software links hits together into helix sections called “tracks”
e Accuracy as good as ~200 um per hit
e Used in CMS muon system

Silicon detectors (>1990s)

e Accuracy ~10 um per hit and very radiation-hard but also more
expensive

* Used in the CMS central tracker system
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Why Silicon?

Advantages:

 large signal in thin layers (~24k e in 300 pm)
 fast signal: O(10 ns)

* NO recovery time

 very good position resolution

 light: low Z, X0 =9.36 cm
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Disadvantages: 3 . g g
* needs lots of auxiliary electronics,
services —
* high channel density that leads
to more power dissipation — Requires Cooling by 2808
» susceptible to radiation damage wSi
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Silicon Properties

= Siliconis a group IV element -> 4
valence electrons that form covalent bonds

= Siis a semiconductor (isolator at
T~ OK and conductance between
metal and insulator at RT)

= can form single crystals (111 or
100 orientation)

= diamond cubic lattice (2 interleaved
fcc sub-lattices)

= one of the most abundant
elements in earth crust - mostly in
the form of SiO, - aka sand

Mineral composition of Earth’s crust

aluminum\__£
other metals -

(about 1%)

magnesium
(2.0%)

potassium sodium  calcium
(2.6%) (2.8%) (3.6%)
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Band Gap

= due to the regular lattice of the Si atoms in
a single crystal, energy levels form
bands: valence-band & conduction-band

= at lower temperatures, the valence band is
filled and the conduction band empty

» electrons in the v-band can be (thermally)
excited to the c-band leaving empty bonds
(holes)- the band-gap is 1.12 eV

» E; denotes the Fermi-level, where the
occupation of states = 50%

= conductivity behavior can be altered by
introducing additional levels in the band
gap -> “doping”
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Conduction Band Energy Band Gaps in Materials
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Doping
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The PN Junction - |

 iIf p- and n- doped materials are brought in contact, the majority carriers start diffusing in the

other region building up a potential barrier

 leads to creation of a space-charge region (electric field) that stops further diffusion

 leads to a stable, charge carrier free region -> depletion region

 contact voltage VO
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The PN Junction - |l

« applying an external voltage can alter the behavior of the depleted region depending on the
polarity:

* V., In forward direction decreases the potential barrier and thus the width of the depleted region

-> diffusion currents drastically increase
* V. In reverse direction increases the width of the depleted region -> very small leakage current

width W of the depleted region:

|
+
* .+
0 0 e

2e0€p 1 1
W= 0V
Vo V) (5 + )

e ... dielectric constants

Mg ... acceptor/donor concentrations
Vo ... contact voltage

\V . external voltage

gp ... elementary charge
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The PN Junction - Il

« applying an external voltage can alter the behaviour of the depleted region depending on the
polarity:

* V., In forward direction decreases the potential barrier and thus the with of the depleted region ->
diffusion currents drastically increase

* V., INn reverse direction increases the width of the depleted region -> very small leakage current
until breakdown (avalanche effect in E-field)

I{mA)

width W of the depleted region:

4

I ~FORWARD
-~

2

CONDUCTION . ; = . .
W =~ \/ 2ep€-pp|V| for V.>>V,
Vg 1+
1 1 L:.. 1 1 1 1 | 1 | J 1 1 viv)
-6 -5 -4 -3 -2 110 1 2 . .
-1 & ... dielectric constants
_.. resistivit
" REVERSE -2 | P N y o .
BREAKDOWN U ... charge carrier mobility
-3 V ... external voltage
_4 -

Imran Awan - Regional E-conference on Physics



PN Junction of a Detector

 use one thin but highly doped region (O(10%°)) - electrode

« one thick region (O(10%?)) - bulk

« width W of depleted region:
detector

. V_.=0V: Wp = 0.02um, Wn = 23pm /

* V.. reverse = 100V: Wp = 0.4pm, Wn = 363um

This is how to operate PN junction as

Possible to use:
P+ contact in n bulk
N+ contact in p bulk

P+ - +

Typical detector thickness: 50 — 500 ym
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Detection Principle

the depleted region (free of charge carriers)
acts in a similar manner to a gaseous
detector

instead of e-ion pairs, electron - hole pairs
are created by traversing particles (an e
from the valence band is excited to the
conduction band leaving a hole)

e h* pairs drift in the E-field inducing a signal
at the contacts

the required average energy loss for the
creation of e/h pair is only 3.6eV (~30eV for
gases)-> very thin produce high signals

particle

Readout Strips

éThaVsthe
isignall

N+

Backplane Al

No free charge is present in the
depleted region to extinguish the
generated electron-hole pair
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Sighal Vs intrinsic charge carriers

lonization E in intrinsic silicon E;=3.62 eV

average dE/dx in Si: 3.87 MeV/cm

intrinsic charge carrier density @ T=300K: n, = 1.45 x 101%cm-3
created e h* pairs for detector with d= 300pm and A=1cm?:

dE/dx x d  3.87 x 10°V/cm0.03em
1y B 3.62¢V

~ 3.2 x 10*

thermally generated e-h+ pairs in undepleted detector:

ndA=1.45x109cm=3x0.03cm x 1 cm?=|4.35 x 108

signal drowned in thermally generated “noise” by 4 orders of magnitude
absolutely vital to operate the detector depleted



» To cope with the High Luminosity LHC operation,
A new tracker will be installed at CMS by 2026

» ~11000 2S Modules will be produced across
worldwide assembly centres

CMS DETECTOR STERERETURN

Total weight : 14,000 tonnes SILICON TRACKERS
Overall diameter : 15.0m Pixel (100x150 pm) ~16m* ~66M channels
Microstrips (80x180 um) ~200m* ~9.6M channels

Overall length  :28.7m
Magnetic field :38T
SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers

Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers 10 12 T4
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Brass + Plastic scintillator ~7,000 channels



NCP is one of the Module Assembly and sensor
qgualification centre.

A dedicated lab for semiconductor detector
technology has been developed



CMS Quter Tracker 2S Module

1: 28 silicon sensor

The 2S modules are built from two silicon strip sensors with 2: Al-CF spacer
1.8 mm or 4 mm spacing, depending on the region in the S

. P : g, dep g _ g _ 4: Service hybrid
CMS detector. The active area of approximately 92 cm? is 5: CFRP support
read out by 16 CBC3 front-end chips forming hit pairs from ‘ 6: High voltage tab

he t Th ti is 5.0 W for th & Temperaturg sensor
the two sensors. The power consumption is 5. or the 3 8: Kapton HV isolators
front-end electronics and 1.0 W for the sensors at -20 °C.

s

¥

high transverse
momentum

low transverse
momentum

Module will have on board pT discrimination:

» Pair of hits = Stubs (Hit Position + Bend Info) e Signals from two closely spaced sensors are correlated
» 2 Hits per Module * Exploit strong magnetic field for local pT measurement
* Local rejection of low pT tracks to minimize data volume

Imran Awan - Regional E-conference on Physics



* Dimension of Sensor 102.7 x 94.183 mm
e Thickness of Sensor 320 um

* Number of Strips 2032 (2 x 1016)

* Length of Single Strip 5cm

 Strip Pitch 90um

e Standard Wafer Material Float Zone (FZ)

N in P sensor for phase-2
HL-LHC i.e., bulk material
is p-type with n-implants

2S Module Silicon Sensor

Precision marker

StIumbcr

bias ring - guardring  wire bond - bias resistor

/’- /" DCpad _AC pad
e e, e - - -
alurminium strip ™ g -

Outer protecting ring
(for CMS: AL over n++)

Si02 covering Si

—

-,
-

oxide P i i i
(thin layers of b
Si0, and SigN,) .
T # x\&

? [T p = N p— . + 04

Ll | 7 o strips p -implants below
v o bias and

-+ A

p -<implants belows"|| w guard ring
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Electrical Characterization of Silicon Sensors

1.1V 2.CV 3. h.ak 4.R,;..
Sensor current vs Sensor capacitance vs Strip leakage Strip bias resistor
Bias Bias current

5. CCoup 6. It:liel
Coupling capacitance Dielectric current

8.C

int

Interstrip capacitance
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Sensor Qualification Setup at NCP

SY 1527 Power Supply
e G v

. Picco ammeter
LCR meter

Software has been developed locally to automatize the electrical characterization
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CV and IV measurements

depleted. The kinks determines the depletion voltage.

The current increases while capacitance decreases linearly with the width of PN junction until the sensor is fully
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® NCP-25-019
® NCP-25-023
® HPK-25-019

® HPK-25-023

200

HPK: Temp =25 C, RH =40%

NCP: Temp =20 C, RH =10%

1000
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2S Tracker Module Assembly Steps

1. Glue polyimide HV 2. Wire-bond and 3. Glue sensors on

isolation and attach HV encapsulate HV tails AI-CF bridges
tails on sensor backside |
I |
9,Check dicing . '
precision \

(metrology) 9. Optical inspection 9 HV test backside isolation % Module metrology

o,Sensor I(V)

|
6. Encapsulate wire-bonds 5. Place ~4000 wire-bonds

‘ < Optical inspection
9 Module test 2, Module test S HV/LV test
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4. Glue readout and
service hybrids on
bare module




o) :

Glue Transfer Plate Sensors Sandwich Glue curing for 24
Assembly hours
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=' E ‘5 Weight bars for uniformity of the glue and curing
Alignment of sensor strips W|th the bond pads of Front-End Hybrid 7o




> Glue is mixed in vacuum with 3-axis Robot
controlled speed (SmartMix X2)

» The glue dispenser can be programmed
for speed and quantity for controlled
dispensing of glues (Precifluid)

» 3-axis robot can be programmed to i
dispense the glue at desired location .
on the modules ol

» The glue is passed through an
independent vacuum chamber for the
removal of air before using for the
module assembly

B S -
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Locally developed 3-axis Robot Vacuum chamber



Wire Bonding and Encapsulation

Encapsulant

Wire Bonds

Lby|

UL L penagaeaatiity

Front-End Hybrid

HHIH\\\\’H 110

Delvotec wire bonder model G5 64000 Wire bonds on Silicon Sensor
Speed of 2 to 3 wires per second
(depending on application)

Fine wire @ 25 pum (Al/Si Alloy)

4064 wire bonds / Module
10 wire bonds / HV tail

Wire bonds with height of
<500 pm is made
between HV tail bond pad
and sensor backside for
biasing of the sensor

22/12/2020

Sylgaurd 186 silicon elastomer
is used to protect the wires
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I(nA)

2S Module with 8CBC3 Assembly — IV Measurements

Bottom Sensor Top Sensor

140 140

120 120
oo M
100 W 100 Wj.m"”""“w

—o— Bare-Sensor-T20C-RH20% 30 it

80 —e—Bare-Sensor-T20C-RH20%

+After-PI-H|\I-taiI-gIuing-TZOC-RHlO% 2
£ —o— After-PI-HV-tail-gluing-T20C-RH10%
—o— After-Bare-module-assembly-T21C-RH23% _—
60 f 60 —o—After-Bare-module-assembly-T23C-RH20%
40 , 40
20 20
0 © 0 ¢
0 200 400 600 800 1000 0 200 400 600 800 1000
Volts (V) V (Volts)
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1st Silicon Dummy Module 2nd Silicon Functional Module 3rd Silicon Functional Module
Without CBC chips 8CBC2 Front End Hybrids 8CBC3 Front End Hybrids
AX =-12.9 um
AY = -4.0 um
Angle =-21.9 prad
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Thank You |
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