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• This is about classical physics in the applied environment, and 
unusual topic at physics conferences.

Physics Aeronautical 
engineering
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“fluids are just plasmas with all the difficult 
fields taken out”
• A physicist in engineering: an “applied theoretical physicist”?
• plasma simulation: 
• Wave instabilities, plasma confinement (UCLA, John Dawson), space shuttle 

outgassing (Stanford, Oscar Buneman, Owen Storey)
• computational fluid dynamics:
• Cellular automata, Computational Fluid Dynamics (CSIR South Africa)
• Computational physics in collaboration across fields:

• Methane explosions in coal mines, ocean breakwater engineering;
• Molecular modelling for M. tuberculosis treatment, HIV treatment; modelling non-

linear optics for protection of eyes from lasers
• New interest: accelerating flight
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The fine print for this talk

• Understanding aerodynamics when accelerations are significant
• This is not a history of flow physics or aerodynamics: it is a 

background with one thread, that of acceleration
• 2022/2023: centenary of the International Union of Pure and Applied 

Physics
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100 years of flow physics

• Acceleration … Against the background of the development of flow physics
• The practical past
• The golden age of theory
• The expansion of experiments
• The contribution of Computational Fluid Dynamics – “CFD”
• Next!

• Fluid behaviour in non-intuitive and non-linear
• Not easy to predict
• Sometimes counter-intuitive
• But often beautiful

5



I Gledhill 2022/01/20

• Reasonably well understood:
• Steady flow 
• Time-dependent flow over constant-velocity objects
• Aeroelasticity 
• Turbines and helicopter blades; small oscillations
• Internal flow: pipes and engines
• Multi-phase flow
• Multi-physics models

• Not well understood:
• Turbulence, of course!
• Accelerating flight 
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Accelerating flight in the transonic range

• Transonic: near the 
speed of sound, 
Mach number near 1

• Compressibility is 
important

• An example: The 
Bloodhound 
Supersonic Car 

• Flying at zero altitude
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The Practical Past
Water has dominated the flow of humanity

Economies, migrations and legends
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The Practical Past

• https://en.wikipedia.org/wiki/Wah_Gardens By Umer23459 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72569360 9

https://en.wikipedia.org/wiki/Wah_Gardens
https://commons.wikimedia.org/w/index.php?curid=72569360
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Mapungubwe, South Africa

• One of South Africa’s First Peoples
• Settled 1200 to 1290 CE (Common Era)
• Rich flood plain, similar to the Nile
• Abandoned c1400 CE
• Apparently because of a local change of 

climate
• Hydraulic engineering would have been 

useful…

• https://www.peaceparks.org/unesco-director-visits-mapungubwe/
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By Etan J. Tal - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=12251977
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The Golden Age of Theory
Before 1922 and lasting into the 1950’s
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The golden age of theory

• By 1922/23, the Navier-Stokes relations 
• conservation of mass, momentum and energy in a fluid
• well established.

• Constitutive relations and equation of state established 
• Their non-linear nature gave rise to many approximate forms of 

soluble equations, and elegant solutions:
• Potential flow, inviscid
• Stokes flow, dominated by viscosity
• Boundary layer flow, along a wall
• Pipe flow: Poisson flow
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A. Piccard, E. Henriot, P. Ehrenfest, E. Herzen, Th. de Donder, E. Schrödinger, J. E. Verschaffelt, W. Pauli, W. Heisenberg, R. H. Fowler, L. Brillouin;
P. Debye, M. Knudsen, W.L. Bragg, H. A. Kramers, P. A. M. Dirac, A. H. Compton, L. de Broglie, M. Born, N. Bohr;
I. Langmuir, M. Planck, M. Curie, H.A . Lorentz, A. Einstein, P. Langevin, Ch.-E. Guye, C. T. R. Wilson, O. W. Richardson
Fifth Solvay conference participants, 1927. Institut International de Physique Solvay in Leopold Park.
https://en.wikipedia.org/wiki/Solvay_Conference

L: Debye
L: Langmuir
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Accelerating flight

• The Navier-Stokes equations include a body force, usually gravity
• were, over the years, transformed into rotating frames 

• Interest in weather and oceans

• transformed into an arbitrarily relative, non-inertial frame in various 
ways
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O
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Accelerating flight

• Interframe velocity: 

relative velocity of two points u

O

O’

r(t) v fluid velocity
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Accelerating flight

O

O’
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Conservation of 
• Mass

• Momentum

• Energy

using
Generalised Rothalpy
(convenient form)

This form: 
Gledhill et al., Aerosp. Sci. Tech. 13 197 2009
Gledhill et al., Theor. Comp. Fluid Dynamics 30 449 2016
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Taylor-Proudman theorem

In a fluid that is
Inviscid, 
Incompressible,
Dominated by Coriolis effect, i.e.
Rotating with Rossby number

𝑅𝑅𝑅𝑅 =
𝐿𝐿𝐿𝐿
2𝜔𝜔

≪ 1

…fluid velocity will be uniform 
along any line parallel to the axis 
of rotation

http://weathertank.mit.edu/links/projects/taylor-columns-introduction

https://mirjamglessmer.com/2019/09/11/taylor-column-in-a-tank/ 23

http://weathertank.mit.edu/links/projects/taylor-columns-introduction
https://mirjamglessmer.com/2019/09/11/taylor-column-in-a-tank/


I Gledhill 2022/01/20 https://witgaf2019.sciencesconf.org/data/pages/Noir1.pdf

In a fluid that is
Inviscid, 
Incompressible,
Dominated by Coriolis effect, i.e.
Rotating with Rossby number

𝑅𝑅𝑅𝑅 =
𝐿𝐿𝐿𝐿
2𝜔𝜔

≪ 1

…fluid velocity will be uniform 
along any line parallel to the axis 
of rotation
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• Taylor columns
• Demonstrated by G.I. Taylor 

in 1923
• Previously demonstrated by 

Kelvin, Perry
• Previously derived by Hough, 

Proudman

https://witgaf2019.sciencesconf.org/data/pages/Noir1.pdf25
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Notes: physics in 
Glatzmaier and Roberts, 
Physics of the Earth and 
Planetary Interiors 91 
631995
https://websites.pmc.ucs
c.edu/~glatz/book.html
https://solidearth.jpl.nas
a.gov/PAGES/mag01.htm
l

https://websites.pmc.ucsc.edu/%7Eglatz/book.html
https://solidearth.jpl.nasa.gov/PAGES/mag01.html
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Of course it’s more 
complicated in MHD…

• A snapshot of the simulated geomagnetic field produced by Glatzmaier and 
Roberts (1995). A set of magnetic lines of force illustrated the 3D structure of 
the field, which is intense and complicated inside the fluid core and smooth 
and dipole-dominated outside the core. The rotation axis of the model Earth 
is vertical in the illustration and yellow lines represent outward directed field 
and blue line represent inward directed field. The field is sheared around the 
‘tangent cylinder’ to the inner-core equator

• Notes: physics in Glatzmaier and Roberts, Physics of the Earth and Planetary 
Interiors 91 631995

• https://websites.pmc.ucsc.edu/~glatz/book.html

• https://solidearth.jpl.nasa.gov/PAGES/mag01.html 29
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Aurnou et al., Rotating convective 
turbulence in Earth and planetary 
cores, Physics of the Earth and 
Planetary Interiors, 246 52 2015
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Add turbulence…

• Notes

• Oblique view of the axial vorticity field in an asymptotically-reduced 
rotating convection model with Pr=0.0235, a value comparable to that of 
many liquid metals. The flow is in the geostrophic turbulent regime.

• Aurnou et al., Rotating convective turbulence in Earth and 
planetary cores, Physics of the Earth and Planetary 
Interiors, 246 52 2015
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https://eoimages.gsfc.nasa.gov/images/im
agerecords/90000/90734/tristan_oli_2017
176_lrg.jpg
Tristan da Cunha—The image was 
captured on June 25, 2017, by 
the Operational Land Imager (OLI) on 
the Landsat 8 satellite. The image is false-
color (OLI bands 6-5-3) to better 
distinguish areas of land, water, and 
clouds.
NASA Earth Observatory images by Joshua 
Stevens and Jesse Allen, using Landsat 
data from the U.S. Geological Survey and 
VIIRS data from the Suomi National Polar-
orbiting Partnership. Story by Kathryn 
Hansen

https://eoimages.gsfc.nasa.gov/images/imagerecords/90000/90734/tristan_oli_2017176_lrg.jpg
http://landsat.gsfc.nasa.gov/?p=5447
http://landsat.gsfc.nasa.gov/?page_id=4071
http://earthexplorer.usgs.gov/
http://npp.gsfc.nasa.gov/
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Non-linearity of the NS equations leaps out in 
von Kármán vortex streets

https://eoimages.gsfc.nasa.gov/images/im
agerecords/90000/90734/tristan_oli_2017
176_lrg.jpg
Tristan da Cunha—The image was 
captured on June 25, 2017, by 
the Operational Land Imager (OLI) on 
the Landsat 8 satellite. The image is false-
color (OLI bands 6-5-3) to better 
distinguish areas of land, water, and 
clouds.
NASA Earth Observatory images by Joshua 
Stevens and Jesse Allen, using Landsat 
data from the U.S. Geological Survey and 
VIIRS data from the Suomi National Polar-
orbiting Partnership. Story by Kathryn 
Hansen
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The expansion of 
experiments

Wind tunnels and why they don’t model accelerating flight
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• By NASA/photographer unknown - Great Images in NASA Description, Public 

Domain, https://commons.wikimedia.org/w/index.php?curid=6450057 35
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Before 1922: the bicycle
• Before 1902: Wilbur (1867-

1912) and Orville (1871-1948) 
Wright ran a bicycle business.

• Built wind tunnel without walls = 
apparatus on a bicycle, balance 
two airfoils to find optimum

• Built a lift balance and a drag 
balance

Credit From the Collections of The Henry Ford.
https://www.thehenryford.org/collections-and-research/digital-collections/artifact/149448/

36
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• replica of the Wright Brothers' wind 
tunnel at the Virginia Air & Space 
Museum in Hampton, VA. The entry 
of the tunnel was called the 
'goesinta' by the brothers and the 
exit was dubbed the 'goesouta.’

• https://en.wikipedia.org/wiki/Wind_tu
nnel#/media/File:WB_Wind_Tunnel.j
pg

37
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• “Low” speed
• Subsonic M<1
• 120 kmh-1

• Incompressible 
behaviour

• No shocks
• Transonic

• “Medium” speed
• M ~ 1
• Shocks appear

• Supersonic
• Attached and 

detached shocks

https://www.csir.co.za/suite-wind-tunnels
38
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A problem for accelerating flight modelling

• But – accelerating the flow in a wind tunnel is not equivalent to 
accelerating an aircraft in flight

• Wind-tunnel startup requires a pressure gradient
• Accelerating flight takes place in stagnant air

• A problem for finding validation data.
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Boundary layers

• https://www.flightliteracy.com/high-speed-flight-part-two-boundary-layer-and-shock-waves/

40
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Shock waves

• Propagating disturbance that moves faster than the local speed of 
sound c

• Sonic boom
• Fluid properties: density, pressure, flow velocity v, flow Mach number 

M = v/c, temperature, entropy

• Shock wave in air: about 200 nm thick 

41
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Shocks

https://en.wikipedia.org/wiki/Shock_wave#/media/File:Transonic_flow_patterns.svg public domain42
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Shocks cont.

• https://www.flightliteracy.com/high-speed-flight-part-two-boundary-layer-and-shock-waves/

43
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Shocks on airfoils

• Shocks cause flow separation: 
reverse flow

• Critical Mach number v/c, c is
speed of sound (!)

• Far from an aircraft: sonic boom
• Treat as a discontinuous solution 

of the NS equations

44

Images G Morrow, Quora, https://www.quora.com/What-causes-shockwaves-to-form-
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First supersonic flight, X-1, 1947
Test flight is an experiment

https://commons.wikimedia.org/w/index.php?curid=111134 45
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Why does this matter?

• Shock wave may be over an aileron – loss of control
• Buffeting
• “Compressibility lockup”
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• Image: U.S. Navy photo by ENSIGN JOHN GAY
• AN F/A -18 HORNET BREAKS THE SOUND BARRIER in the skies over the Pacific Ocean.
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NASA flights to capture background schlieren of two supersonic T-38 aircraft

https://www.nasa.gov/sites/default/files/styles/image_card_4x3_ratio/public/thumbnails/image/f4_p3_rgb_planedrop.jpg 49

https://www.nasa.gov/sites/default/files/styles/image_card_4x3_ratio/public/thumbnails/image/f4_p3_rgb_planedrop.jpg
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Mach lines

• Pbroks13 https://en.wikipedia.org/wiki/Sound_barrier#/media/File:Sound_barrier_chart.svg

subsonic sonic supersonic

50
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Mach waves
for acceleration
• 1953, Lilliy
• Weak waves interfere 

to form shock waves
• The sonic boom
• Hydraulic analogy 

trials
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Regular reflection and Mach reflection

• G. Ben-Dor, O. Igra, and T. Elperin, Handbook of Shock Waves,. 
Academic Press, 2000.
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Ballistic range puzzle: shocks in subsonic flow?

• Free flight
• Ballistic range: spheres travel 

at M ≈1

• High speed camera: frame 
rate 125 000 s-1

• exposure 1 μs
• The shock standoff distance 

is unexpectedly large

Saito et al., Shock Waves, 21 483 2011
53
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Rocket sleds

54

• Data not always available
• Pendine facility UK
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The contribution of 
Computational Fluid Dynamics –

“CFD”
Early computing – but not the whole history
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Early Computational Fluid Dynamics (CFD)

• 1940’s: ENIAC and weather 
prediction

• John von Neumann and 
Stanislaw Ulam, Monte Carlo 
methods

• 1950’s Particle-in-Cell methods for 
plasmas: Buneman, Dawson, 
Hockney, Birdsall, Morse

• https://commons.wikimedia.org/w/index.php?curid=6557095

56
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First reported bug

• https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-
bug/#:~:text=On%20September%209%2C%201947%2C%20a,their%20computer%20at%20Harvar
d%20University.

• 9 September 1947, Harvard, 15:45  Relay # 70, Panel F, of the Mark II Aiken Relay Calculator Team 
reported the bug; History reported by Grace Hopper, PhD maths Yale 1923, , invented the first 
English-language data-processing compiler,an author of COBOL

• https://commons.wikimedia.org/wiki/File:First_Computer_Bug,_1945.jpg
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Computers

• 1940’s Buneman: analytical machine at Harwell
• 1940’s Buneman: the travelling wave tube analysis, fields and 17 

electrons to each student
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1936-1958 Jet Propulsion Laboratory 
computers

• https://www.space.com/34619-
women-computers-of-nasa-
jpl.html

59
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1936-1958 Jet Propulsion Laboratory 
computers

• https://www.space.com/346
19-women-computers-of-
nasa-jpl.html

• Credits NASA/JPL-Caltech, 
Rise of the Rocket Girls 
Little, Brown and Co.

• JPL 1953 group photo 
includes Janez Lawson

60
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Cards

First Open 
Source Poisson 
Solver? 

Image of punch cards
By ArnoldReinhold - Own 
work, CC BY-SA 3.0, 
https://commons.wikimedia.
org/w/index.php?curid=1604
1053

61
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The contribution of Computational Fluid Dynamics 
– CFD

• Plasmas: PDEs are MHD; particle-in-cell (superparticles)
• Fluids: PDEs are CFD; SPH (superparticles), Cellular Automata
• Multi-physics: boundary conditions…
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Super computing

• 1980’s Cray X-MP
• The light nanosecond

• http://www.craysupercomputers.com/cr
ayxmp.htm

• https://en.wikipedia.org/wiki/Connection_M
achine#/media/File:Computer_Museum_of
_America_(51).jpg  CC BY-SA 3.0

• File:Computer Museum of America (51).jpg

63
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Super computing

• 1980’s Cray II
• FFT (Fortran, 

assembler)

• http://www.craysupercomputers.co
m/crayxmp.htm

64
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Parallel processing

1980’s: the age of parallel 
processing
http://www.craysupercomputers.com/crayxmp.htm

Thinking Machines Connection 
Machine

By Judson McCranie, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=81284520

65
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Parallel processing

Oscar Buneman and visualisation

https://www.physics.ucla.edu/icnsp/buneman.htm

66
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From Cellular Automata to the Lattice Gas

• a collection of "coloured" cells 
• on a grid of specified shape 
• that evolves through a number of discrete 

time steps 
• according to a set of rules based on the 

states of neighbouring cells.
• The rules are applied iteratively for as 

many time steps as desired

• https://mathworld.wolfram.com/CellularAutomaton.html

67
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From Cellular Automata to the Lattice Gas

• Conway's game of life, 
discovered by 
J. H. Conway in 1970

• https://mathworld.wolfram.com/CellularAut
omaton.html

68
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Lattice gases mimic fluids: Lattice Boltzmann 
methods
• Triangular lattice
• Each node has particles
• All particles hop to next 

node each time step

• Images B Hasslacher LosAlamos Science 1987, B 
Wylie PhD Thesis U Edinburgh 1990
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Lattice gases mimic fluids: 
Lattice Boltzmann methods
• Do the statistical mechanics: Chapman-Enskog

expansion gives Boltzmann equation, and the 
Navier-Stokes equation can be recovered with an 
anisotropic viscosity depending on lattice 
geometry and collision rules

• Run as a cellular automaton using bits only
• Or run as local particle distributions

• Images B Hasslacher LosAlamos Science 1987, B Wylie PhD Thesis U Edinburgh 1990
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• http://www.ai.mit.edu/projects/im/broch/lat1.html

71
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• https://www.osti.gov/servlets/purl/6590163

• Hasslacher Los Alamos Science 1987

72
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Massive parallelism in lockstep

• 1980’s Goodyear Massively Parallel Processor 
• 16 384 Single-Instruction Multiple Data processors 

in Mapping particle data to memory
• Space Shuttle glowing on ram surfaces,
• Whistler instability, galaxy evolution
• NASA Ames, MPP, change the particles and fields
• 2D grid of 16 384 (214) processors in lockstep
• IF by masking

• Gledhill and Storey, Frontiers of Massively Parallel Scientific Computation, p 37-46, NASA 
Goddard Space Flight Centre, Greenbelt, Maryland, 1986

• https://courses.lumenlearning.com/introchem/chapter/glow-of-space-shuttles/ O+NO→NO2
*
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Early aeronautics

• Panel methods: Euler equations, Green’s function method, discretised 
model

• Panel plus boundary layer: Eppler and Drela for airfoil and wing 
design

• Subsonic flow reasonably well modelled
• 3D Potential codes: Jameson, Courant Institute, 1977
• Discretisation
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CFD and acceleration: shocks

• Airfoil, 
• Discrete grid
• Capture boundary layer
• ~ 1 μm transonic!
• Boundary conditions:

Riemann boundary conditions
to prevent reflection of shocks;
Must be many typical lengths
away
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• discretisation grids Cartesian, unstructured, hybrid; multi-grid 
acceleration, adaptive grids; moving overset grids, adaptive 
unstructured grids

• Finite difference, finite volume, finite element; boundary element 
methods

• Transient flow; aeroelastic solid-fluid coupling
• Decades of development of algorithms and grids!
• At shocks: Gibbs phenomenon  - overshoot and oscillation, or 

undershoot and smoothing; limiters and heuristics
• Gridless methods: SPH – Smooth Particle Hydrodynamics
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2022

• Subsonic: elliptical equations, incompressible, few problems
• Supersonic: hyperbolic equations, characteristic solution often useful, 

few problems

• Transonic: critically dependent on small features of geometry and on 
gridding that captures the flow features “grid the flow, not the 
geometry”

• Transient cases often run for days “work expands to fill the time 
available”

• Transonic accelerating flight: now in scope of resources 
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The Problem

• Predicting Turbulence.
• Direct Navier-Stokes simulation down to the inner turbulence scale 

has been done
• Formerly a factory for manufacturing PhD theses
• Now: usually run three models in validation phase and choose the 

most appropriate
• Large Eddy Simulation: expensive, informative
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Aerofoils in ground effect at transonic speeds

• Subsonic, Mcrit reached sooner in ground effect, lift was larger up to 
shock formation, flowfields sensitive to changes in any variable; shock 
on lower surface destablised pitch - dangerous

• Transonic speeds

• Doig et al., The Aeronautical Journal, 116, 407, 2012

• Keogh et al., J. Wind Eng. Ind. Aerodyn. 154 34, 2016
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Destabilising shock in
Ground effect

• Doig et al., The Aeronautical Journal, 116, 407, 2012

• Keogh et al., J. Wind Eng. Ind. Aerodyn. 154 34, 2016
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Back to simulation of flight at low altitude

• Ahmed body: standard 
vehicle

• Turns and aerodynamic 
effect on stability

• Large Eddy Simulation
• Experimental data 

existed for validation

• Keogh et al., J. Wind Eng. Ind. Aerodyn. 154 
34, 2016
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Back to simulation of flight at low altitude

• Ahmed body: standard 
vehicle

• Turns and aerodynamic 
effect on stability

• Large Eddy Simulation
• Experimental data 

existed for validation

• Keogh et al., J. Wind Eng. Ind. Aerodyn. 154
34, 2016
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https://unsplash.com/s/photos/aircraft

Absolute frame
Inertial frame
• Fly the aircraft grid 

through an inertial 
frame

• For each point on 
the grid, x(t)

• Boundaries: v=0 

Relative frame
Non-inertial frame
• Add all the 

source terms
• Include 

acceleration of 
fluid in  every 
fluid element 

• Boundaries: 
flow 
accelerated
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Absolute frame
Inertial frame

Relative frame
Non-inertial frame

O

O’

84
https://www.skyscrapercenter.com/building/abu-dhabi-international-airport-air-traffic-control-tower/30422; 
https://unsplash.com/s/photos/aircraft

https://www.skyscrapercenter.com/building/abu-dhabi-international-airport-air-traffic-control-tower/30422
https://unsplash.com/s/photos/aircraft


I Gledhill 2022/01/20

Vectors in 
Absolute frame
Inertial frame

Relative frame
Non-inertial frame

O

xO’
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Vectors in 
Absolute frame
Inertial frame

Relative frame
Non-inertial frame

• Interframe velocity uO

O’
r(t)
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Vectors in 
Absolute frame
Inertial frame

Relative frame
Non-inertial frame

• Interframe velocityO

O’
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Invariants under transform

• Density
• Pressure
• Temperature
• Position, velocity, acceleration are transformed
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The search for validation data

• Wind tunnel data can only 
support steady flight

• Ballistic range
• Rocket range
• Land Speed record
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Ballistic range puzzle: shocks in subsonic flow?

• Free flight
• Ballistic range: spheres travel 

at M ≈1

• High speed camera: frame 
rate 125 000 s-1 exposure 1 
μs

• The shock standoff distance 
is unexpectedly large

Saito et al., Shock Waves, 21 483 2011

δ
δ
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Steady sphere velocity validation

91
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• Contours of static pressure in Pa at 
Mach number 1.10 while

• Simulated in relative frame with 
source term

• decelerating from M0 = 1.25 with 
velocity-dependent drag

• Roohani et al., Shock Waves 30, 115, 2020
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Velocity dependent drag

• Validation of method
• In constant velocity sphere 

cases, no shocks exist below 
M = 1

• But there are clear shocks in 
the subsonic case in CFD
and the experiment
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Airfoil case

• Left: steady flight at
• Right: deceleration 
𝒓̈𝒓 = -86.77 ms-1

M = 1.10, 1.00, 0.98

M = 1.10

M = 1.00

M = 0.98
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Controversy

• Detached shocks exist for drag 
deceleration for M<1, down to 
below M ~ 0.6, airfoil (RAE2822 
profile)

• Shock propagating at M~1, sphere 
at M<1

• Classic example of flow history and 
entrenched thinking

• Roohani et al., Shock Waves 30 115 2020
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Controversy

• Turns out to be equivalent to blast 
wave behaviour

• Roohani et al., Shock Waves 30 115 2020
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• Deceleration of −1,041ms-2

• density contour plots 
• Roohani and Skews, Shock Waves 19 297 2009

Shocks overtake the airfoil

M = 0.82 M = 0.70 M = 0.64
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Image https://www.ironman4x4.com/blog-posts/keeping-dust-out-of-your-4x4/

Shocks overtake the airfoil
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Supersonic Cars: Bloodhound LSR –
Land Speed Record

• up to 3g of acceleration and -4g of deceleration
• flow physics of accelerating and decelerating subsonic, transonic 

and supersonic flow at ground level
• Acknowledgements B.J. Evans
• https://axleaddict.com/cars/Thrust-SSC-More-than-1000-kmph-Car
• https://24htech.asia/?#thrust-ssc-is-so-fast-it-creates-sonic-booms-s80144.html
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Supersonic Cars: Bloodhound LSR –
Land Speed Record

• Thrust SSC: 763mph (1,227km/h) 1997 Black Rock Desert, Nevada, 
USA

• RAF Pilot Andy Green
• Bloodhound target: new record; 800 mph

• Acknowledgements B.J. Evans
• https://axleaddict.com/cars/Thrust-SSC-More-than-1000-kmph-Car
• https://24htech.asia/?#thrust-ssc-is-so-fast-it-creates-sonic-booms-s80144.html
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Haksteenpan

• Found by searching on 
google earth for flattest 
large area with suitable 
surface and access
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Bloodhound SSC

• Tyre check at Technical 
Centre, Bristol. UK, 2016

• A high-speed collaboration

• On hold: COVD-19
• funding
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critical items 

• Wheel contact with ground
• Airbrakes and parachute 
• Dust drag – the car takes an estimated 3 

tons of dust with it (added mass!)

• Gust sensitivity
• Shocks under the car: dangerous pitching
• Anomalies in rocket sled testing
• Validation data!
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Aerofoil in ground effect with shocks at 
transonic speeds – with linear acceleration

Mach 
number

0.85 0.90 0.95

Steady 
velocity

Acceleratin
g: 175 g

Morrow et al., 23rd International Shock Interaction Symposium9 - 13 July 2018 104
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Pressure distribution (surface) 
and streamlines (velocity  
colours)
In-house finite volume code, 
HLLC convective flux function and 
the Spalart– Allmaras turbulence 
model, on unstructured hybrid 
meshes
Evans et al., Numerical Methods for Partial Differential 
Equations 27 141 2011
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• Jet: Rolls Royce EJ200 jet engine from the Eurofighter Typhoon jet 
fighter

• Wheel design: solid, inspired by boat hull

• 2017
• 628mph (1010km/h)
• Data for validating CFD models (Swansea University)
• Needs a rocket fitted for next trial
• Designed to pursue the 1,000mph (1,609km/h) record M ~ 1.4
• Constraint: all wheels must maintain contact with the ground
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Bloodhound LSR

107
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Next!
• CFD
• Aviation

• the constraint is passenger movement on the ground, not the aerodynamics
• Pandemic(s) and Climate Change are certainly affecting travel and 

collaboration
• AI? Software and pilots have a controversy
• Increasing manoeuvre for aircraft and drones

• Computing and CFD
• Models expand, multi-physics
• Quantum computing?? Enable Boltzmann models; classical CFD is 

deterministic and compute-hungry
• Keep an open mind, but don’t let you brains drop out 
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• Barber et al., J. Aeronautical Engineering 226 602 (2012)
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