
PROBING ULTRA-LIGHT BOSONS
WITH STELLAR TIDAL DISRUPTIONS

1

Daniel Egana-Ugrinovic
Simons Fellow

Perimeter Institute

In collaboration with
Peizhi Du (Stony Brook), Rouven Essig (Stony Brook), 

Giacomo Fragione (Northwestern) and Rosalba Perna (Stony Brook)



STELLAR TIDAL DISRUPTION EVENTS
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rt = tidal radius

Stars passing close to SMBH can  
be tidally disrupted by strong tidal forces
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STELLAR TIDAL DISRUPTION EVENTS

• Stars passing close to SMBH’s in the center of galaxies can be 
disrupted by strong tidal forces
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😃 🤬

rt = tidal radius

• The disruption is followed by a bright flare due to subsequent 
accretion of the stellar gas into the black hole

rt = R⋆( MBH

M⋆ )
1/3

∼ 10−6 pc



STELLAR TIDAL DISRUPTION EVENTS
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Hayasaki et al.  1501.05207

Lbb = 1043 erg/s (peak)

van Velzen et al. 2001.01409
ZTF survey

This behavior was predicted 
(Martin Rees, Nature 333 91988)



BASICS OF EVENT SELECTION

• TDE’s are ultra-bright transient events, with close to or sometimes super-eddington luminosity. 

• TDE light curves must be smoothly falling, with power-like law behavior.

• The light-curve fall timescale is of the order of months.

• TDE’s are selected only in -quiescent galaxies-. No AGN’s in them, and no previous history of 
accretion. 

• TDE colors are quite constant in time, differently from SN’s. 

• TDE’s are quite “blue”. 

• TDE’s spectra are black-body, differently from power-law AGN’s.

• TDE’s are non-recurrent phenomena, differently from AGN flares.

• TDE’s come with some specific atomic emission lines, which were actually predicted!
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TDE RATES
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Van Velzen 1707.03458
(see Stone, Metzger

1410.7772 for details)

Sharp cutoff at high masses

Observed and predicted TDE rates:
 ∼ 10−4/galaxy/year



THE HILLS MASS: NON-SPINNING BH

• For heavy BH’s, the tidal radius falls within the BH horizon, and 
TDE’s become unobservable. 
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rt = R⋆( MBH

M⋆ )
1/3

rSS = 2GMBH

rt
rSS 👀



THE HILLS MASS: NON-SPINNING BH
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For rt > rSS,

MBH ≲ 108M⊙[ R⋆

R⊙ ]
3/2

[ M⋆

M⊙ ]
−1/2

≡ MHills



THE HILLS MASS: SPINNING BH

• The Hills mass depends on BH spin, which modifies the near-
horizon geometry. 
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Hills mass 
grows with BH spin
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Hills mass for a main-sequence star

[Adapted from Kesden
1109.6329]

MHills(a → 1) ∼ 109M⊙



THE HILLS MASS

• TDE rates for galaxies with BH’s above the Hills mass are strongly 
suppressed, with a spin-dependent cutoff
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[Adapted from Kesden
1109.6329]

• Models of accretion in SMBH suggest that in fact, a large fraction of 
SMBH’s could have large spins (see e.g. Reynolds 2011.08984,  Zhang & Lu 1902.07056)

TDE rate
-per galaxy-
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In addition, if ultra-light bosons exist, 
SMBH spins are very uniquely affected by 

the superradiant instability

This would leave very unique imprints 
on the observed TDE rates
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BLACK HOLE SUPERRADIANCE
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⃗S

2p 3d …

Bosonic cloud μ
m

≲ ΩBH

μ = Boson mass

m = − l . . l

Zeldovich JETP Lett. 14 180, 1971



BLACK HOLE SUPERRADIANCE
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2p 3d …

Bosonic cloud

α = GMBHμ

Gravitational coupling

μ
m

≲ ΩBH



BLACK HOLE SUPERRADIANCE
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2p 3d …

Bosonic cloud

α = GμMBH

Gravitational coupling

Cloud radius

rcloud ∼
n2

μα

μ
m

≲ ΩBH



BLACK HOLE SUPERRADIANCE
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2p 3d …

Bosonic cloud

α = GμMBH

Gravitational coupling

For maximally spinning black holes
α
m

≤ 0.5

μ
m

≲ ΩBH



BLACK HOLE SUPERRADIANCE

• The SR rates are strongly suppressed at small α
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τSR ∼ 106 years[ α
0.1 ]

−8

[ MBH

108M⊙ ]

τSR ∼ 100 years[ α
0.1 ]

−6

[ MBH

108M⊙ ] Vectors (dark photons)

Scalars (axions)

• As a consequence, SR is most effective for , orα ∼ 0.1 − 1

μ ∼
1

GMBH
=

1
rg



SUPERRADIANT SPIN EXTRACTION
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Spin-0 boson

large αsmall α

Note: if your BH has a low
spin to start with, 

SR is not an observable 
effect
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The effect of light bosons
on TDE event rates



BOSONS DECREASE THE EFFECTIVE HILLS MASS
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Spin-0 boson

Ultra-light bosons decrease the
“effective Hills mass”

DEU, Du,Essig,Fragione,Perna.



THE EFFECTIVE HILLS MASS
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Spin-0 boson

DEU, Du,Essig,Fragione,Perna.



TDE RATES IN THE PRESENCE OF ULTRA-LIGHT BOSONS

26Spin-0 boson

DEU, Du,Essig,Fragione,Perna.

TDE rate
-per galaxy-
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The existence of ultra-light bosons
leaves unique signatures

in the TDE rate distributions

Note that testing ultra-light bosons
by measuring TDE rates 

does not require measuring the BH spin 
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Testing axions and dark photons 
with LSST measurements of  TDE rates
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TDE rate per-galaxy

SMBH volumetric spin and mass function

+

Expected TDE rate
in flux-limited sample

+

TDE luminosity



TDE RATE ESTIMATES IN LSST
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Spin 0 (axions) Spin 1 (dark photons)
(Our rate estimates in the absence of ultra-light bosons roughly agree with Bricman, Gomboc1906.08235)

DEU, Du,Essig,Fragione,Perna.

Preliminary
DEU, Du,Essig,Fragione,Perna.

Preliminary
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LIMIT PROJECTIONS
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Spin 0 (axions) Spin 1 (dark photons)

Include (arbitrary)  systematic on rate50 %
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DEU, Du,Essig,Fragione,Perna.

Preliminary
DEU, Du,Essig,Fragione,Perna.

Preliminary



SMEARING DUE TO MBH MEASUREMENT UNCERTAINTIES
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Current Optimistic? improvements

Spin 1
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CONCLUSIONS

• TDE’s rate measurements are a fascinating new probe of BSM 
physics.

• Ultra-light bosons leave unique imprints in the TDE rate distribution 
function, at high BH masses. 

• In principle, this can be used to either discover or set limits on 
these BSM theories, but work is required to understand 
systematics.

• The prospects are encouraging: LSST will select somewhere 
between 10K-100K TDE’s. 
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