Sequences & Series

- 1. Sequeces, Series, Convergence
- 2. Binomial Series
- 3. Power Series
- 4. Taylor Series
- 5. Fourier Series

UMD Summer Enrichment, 2024

2. Binomial Series

Binomial Series

An important series that comes up often is the binomial series:
$$1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \dots = (1+x)^p$$

If p is an integer, n , then $1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + x^n = (1+x)^n$

• Q:

- Use the binomial series expression to write out $(1 + x)^2$, $(1 + x)^3$, and $(1 + x)^4$
- Use the ratio test to show when the binomial series is convergent

• Replace x with — to obtain an expression for $(a + b)^n$, where *n* is an integer.

 This expression is the binomial theorem.

- Use the binomial series expression to write out $(a + b)^3$, $(a + b)^4$.
- Assume that x is so small that powers of x^3 can be safely ignored, write an approximation of $(1 - x)^{1/2}$.
- Obtain a cubic approximation of - $(2 + x)^{-1}$ When is this approximation valid?

3. Power Series

Power Series

- As we just saw, the convergence of some series depends on x. We call a series $S(x) = \sum a_n (x - x_0)^n$ a power series
 - We can think of previous series as restricted cases of power series where x = 1 and $x_0 = 0$
 - In the context of power series, the a_n are called coefficients
 - For power series if the series converges for $|x x_0| < R$ and diverges for $|x - x_0| > R$ we call R the radius of convergence
 - the series may or may not converge if $|x x_0| = R$. These endpoints will not affect the radius of convergence
 - the interval of x over which thet power series converges (including the endpoints if needed) is called the interval of convergence

• Q:

A. What is the radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n n}{4^n} (x+3)^n$, (hint, use the ratio test)

B. Use the fact that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ to find the radius of convergence of this power series, (hint, use the ratio test)

> C. Use a series expansion of $\frac{1}{1+x}$ to find an expression for $\ln(1+x)$ when |x| < 1

Radius of Convergence

