
UMD Summer Enrichment, 2024

1. Sequeces, Series, Convergence 
2. Binomial Series 
3. Power Series 
4. Taylor Series 
5. Fourier Series

Sequences & Series



1. Sequences, Series, Convergence



Sequences
• A sequence is any succession of numbers 

• Example (Fibonacci sequence): 1, 1, 2, 3, 
5, 8,… 

• The sequence is said to 

be convergent if the limit of  as n 
increases can be found. (There exists 

). We see that the 

Fibonacci sequence diverges

a1, a2, ⋯, an, ⋯
an

L such that lim
n→∞

an = L

• Q: Find the limit of the following sequences or say if 
it diverges. You might find it useful to find explicit 
formulas for  
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Series
• A series is a sum of the following form: 

, where  is called the n-th 

term 

• Arithmetic series:  

• Geometric series: 

SN =
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∑
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• Q: 

A. Show that  

B. Find a closed form solution for the arithmetic  series 

C. Using your result for B., show that  

D. Find a closed form solution for the geometric  series 

E. For the geometric series, what is the sum as  for 
 

F. What’s the connection between A. and calculus?
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Convergence of Series
• A series converges to S if 

 

• Tests for convergence: 

1. Comparison Test (A series  is convergent if there exists 

a convergent series  such that  for all ) 

2. Ratio Test (A series  converges if ) 

3. Integral Test (A series  has the same convergence/

divergence behavior as )

|S − SN | < ϵ for N > N(ϵ), where SN is the sum to N terms
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• Q: 

A. Is the geometric series convergent? 

B. Is the arithmetic series convergent? 

C. Use the comparison test to check if the harmonic 

series  is convergent. Hint: compare with 

. Why can we not use the ratio test? 

D. Use the integral test to check if the series 

 is convergent
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Convergence of Series continued
• A series converges to S if 

 is the sum 

of the first  terms 

• If  converges and  converges 

then the series is absolutely convergent 

• If  diverges but  converges 

then the series is conditionally convergent

|S − SN | < ϵ for N > N(ϵ), where SN
N
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• Q: 

A. What kind of convergence does  have? 

B. What kind of convergence does the sum of the following 

series have ? 

C. What kind of convergence does  have? 

D. What kind of convergence does  have?
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